

Draft Remedial Investigation Report

for

Remedial Investigation / Remedial Alternatives Analysis

of

Martin Aaron Site

Camden City, Camden County, New Jersey

prepared for

State of New Jersey
Department of Environmental Protection
Division of Publicly Funded Site Remediation
Trenton, New Jersey

Volume I

June 2000 ©

State of New Jersey

Čhristine Todd Whitman Governor Department of Environmental Protection PO Box 413 Trenton, New Jersey 08625-0413 (609) 984-2990 (609) 633-2360 (Fax)

Robert C. Shinn, Jr. Commissioner

19 June, 2000

Richard Ho, Remedial Project Manager United State Environmental Protection Agency 290 Broadway New York, New York 10007-1866

SUBJECT:

Martin Aaron Site

Dear Mr. Ho,

Attached is a copy of the draft Remedial Investigation Report for the Martin Aaron site. This report includes the data from the phase-3 site investigation. The NJDEP is intending on finalizing this document during July 2000. We would appreciate any comments by 17 July 2000.

If you have any questions or comments, please contact me at (609) 984-3727.

Respectfully,

Craig/W. Wallace Site Manager

cc file

DRAFT REMEDIAL INVESTIGATION REPORT

FOR

MARTIN AARON SITE CAMDEN CITY, CAMDEN COUNTY, NEW JERSEY

PREPARED FOR:

STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF PUBLICLY FUNDED SITE REMEDIATION TRENTON, NEW JERSEY

PREPARED BY:

L. ROBERT KIMBALL & ASSOCIATES ARCHITECTS & ENGINEERS, INC.

EBENSBURG, PENNSYLVANIA

TRENTON, NEW JERSEY

DRAFT June, 2000

				Pa	ige No.
1.0	INTF	RODUC	TION		1
2.0	ENVIRONMENTAL SETTING				2
	2.1	Site B	Background		2
		2.1.1	Historical Land Use		3
		2.1.2	Site Production Processes		4
		2.1.3	Nature of Contamination		2 3 4 5
		2.1.4	Previous Investigations and Enforcement Actions		6
	2.2	Soils	and Geology		9
	2.3	Hydro	ogeology		11
	2:4		graphy/Drainage		12
	2.5	Surfac	ce Water Hydrology		12
3.0	REM	EDIAL	INVESTIGATION		14
	3.1	Phase	I Field Investigation Activities (May to September 1997)		15
		3.1.1	Structural Stability Analysis and Monitoring		15
		3.1.2	Geophysical Investigation		15
			3.1.2.1 Survey Grid		15
			3.1.2.2 Magnetic Survey		16
		•	3.1.2.3 Electromagnetic (EM) Survey		16
			3.1.2.4 Ground Penetrating Radar (GPR) Survey		16
			3.1.2.5 Data Interpretation		17
		3.1.3	Soil Borings		17
			3.1.3.1 Interior Borings		17
			3.1.3.2 Exterior Borings		18
			3.1.3.3 Underground Storage Tank (UST) Borings		19
		214	3.1.3.4 Monitoring Well Borings Test Pits/Excavations		19
		3.1.4 3.1.5	Monitor Well Installations		20
		3.1.5	3.1.5.1 Shallow Unconsolidated Wells		22
			3.1.5.2 Intermediate Unconsolidated Wells		22
		3.1.6	Groundwater Level Measurements		23 23
		3.1.7	Monitoring Well Sampling		23
		3.1.7	Hydropunch® Sampling		24
		3.1.9	· -		24
	3.2		II Field Investigation Activities (September to November 1998)		25
	ع.د	3.2.1	Soil Borings		25
		3.2.1	3.2.1.1Interior Borings		25
			3.2.1.2 Exterior Borings		25
			3.2.1.3 Monitoring Well Borings		26
			3.2.1.4 Re-Sampling Borings		26
		3.2.2	Monitoring Well Installations		27
		<i>ع.</i> و. ر	3.2.2.1 Shallow Unconsolidated Wells		27
			3.2.2.2 Intermediate Unconsolidated Wells		28
		3 2 3	Groundwater Level Measurements		28

			Table of Content	Page No.			
			(continued)				
		3.2.4	Monitoring Well Sampling	28			
		3.2.5	Monitoring Well Abandonment	28			
	3.3	Phase	III Field Investigation Activities (December 1999 to Mare	ch 2000) 28			
		3.3.1	Soil Borings	28			
			3.3.1.1Pesticide/PCB Delineation Borings	29			
			3.3.1.2 Semi-volatile Delineation Borings	29			
			3.3.1.3 Rhodes Building Investigation Borings	30			
			3.3.1.4 Monitoring Well Borings	30			
		3.3.2	Monitoring Well Installations	30			
			3.3.2.1 Shallow Unconsolidated Wells	31			
			3.3,2.2 Intermediate Unconsolidated Wells	31			
		3.3.3	Groundwater Level Measurements	31			
		3.3.4	Monitoring Well Sampling	. 31			
4.0	OUA	LITY A	SSURANCE	32			
	4.1		tical Methodologies	32			
	4.2		e Management	32			
		4.2.1	Field Sample Management	32			
			4.2.1.1 Sample Preservation	33			
			4.2.1.2 Sample Storage	33			
			4.2.1.3 Sample Holding/Handling Times	33			
			4.2.1.4 Field Sample Custody	33			
		4.2.2	Laboratory Sample Management	35			
		4.2.3	Field Documentation	35			
	4.3	Equip	ment Decontamination	35			
		4.3.1	Soil Sampling Equipment Decontamination	35			
		4.3.2	Water Sampling Equipment Decontamination	36			
		4.3.3	Well Purging Equipment Decontamination	36			
		4.3.4	Heavy Equipment Decontamination	37			
	4.4	Labor	atory Data Deliverables	37			
		4.4.1	Analytical Report Deliverables	37			
		4.4.2	Data Reduction and Reporting	37			
			4.4.2.1 Data Validation	37			
			4.4.2.2 Data Reduction	39			
			4.4.2.3 Reporting	39			
5.0	FINI	FINDINGS					
	5.1		lial Investigation Activities	40 40			
		5.1.1	Structural Stability Monitoring	40			
		5.1.2	Geophysical Survey Results	40			
		5.1.3	Building Interior Soil Borings	43			
		5.1.4	Exterior Soil Borings	43			
		5.1.5	UST Soil Borings	44			
		5.1.6	Delineation Soil Borings	44			
		5.1.7	Rhodes Building Delineation Borings	44			

(continued)

	,		Page No.			
		5.1.8 Monitoring Well Borings	44			
		5.1.9 Test Trenches/Pits	45			
		5.1.10 Monitor Well Sampling	45			
	•	5.1.11 Hydropunch® Sampling	48			
		5.1.12 Sediment Sampling	48			
	5.2	Remedial Investigation Analytical Results	48			
		5.2.1 Soil and Sediment Samples	48			
		5.2.1.1 Surface Soil Samples	48			
		5.2.1.2 Subsurface Soil Samples	52			
		5.2.1.3 Sediment Samples	56			
		5.2.2 Groundwater Samples	57			
		5.2.2.1 Shallow Monitor Well/Hydropunch® Samples	57			
		5.2.2.2 Deep Monitor Well/Hydropunch® Samples	59			
		5.2.2.3 Development/Purge Water Holding Tank Samp.	les 60			
		5.2.2.4 Camden City Well #7 Samples	60			
6.0	NI A TI	URE AND EXTENT OF CONTAMINATION	62			
v.v	6.1	Physical Geology/Hydrogeology Assessment	62			
	6.2	Former Disposal Practice Assessment	63			
	6.3	Sewer Basin Assessment	64			
	6.4	UST Assessment	64			
	6.5	Type and Distribution of Soil Contamination	65			
	0.5	6.5.1 Volatile Organics	65			
		6.5.2 Semi-Volatile Organics	68			
		6.5.3 Pesticides	69			
		6.5.4 PCB	44 69			
		6.5.5 Metals	70			
		6.5.6 Dioxin/Furan	. 71			
		6.5.7 Tentatively Identified Compounds (TIC)	71			
	6.6	Type and Distribution of Groundwater Contamination				
		6.6.1 Volatile Organics	72 72			
		6.6.2 Semi-Volatile Organics	73			
		6.6.3 Metals	73			
	•	6.6.4 Pesticide/PCB	74			
		6.6.5 Off-Site Production Well	74			
		6.6.6 Tentatively Identified Compounds (TIC)	74			
	6.7	Areas of Concern	75			
7.0	CONCLUSIONS AND RECOMMENDATIONS					
	7.1	Conclusions	78			
	7.2	Recommendations	85			
Q A	REFE	PRENCES	87			

(continued)

LIST OF FIGURES (Volume II)

Figure 1	-	Site Location
Figure 2	-	Site Layout and Topography
Figure 3	-	General Soils Map
Figure 4	_	Geologic Cross Sections
Figure 5	-	Flood Insurance Rate Map
Figure 6	_	National Wetland Inventory Mapping
Figure 7	-	Sample Location Map
Figure 8	-	Shallow Groundwater Contour Map – 8/14/97 and 9/15/97
Figure 9	-	Deep Groundwater Contour Map – 8/14/97 and 9/15/97
Figure 10	_	Shallow Groundwater Contour Map - 11/10/98
Figure 11	-	Deep Groundwater Contour Map - 11/10/98
Figure 12	-	Shallow Groundwater Contour Map – 1/18/00 and 2/17/00
Figure 13	-	Deep Groundwater Contour Map – 1/18/00 and 2/17/00
Figure 14	-	Geophysical Survey Area
Figure 15	-	Magnetic Total Field Contour Map
Figure 16	-	Electromagnetic Conductivity Contour Map
Figure 17	-	Geophysical Survey Composite Results
Figure 18	-	Soil Results Above Criteria - Volatiles
Figure 19	-	Soil Results Above Criteria - Semivolatiles
Figure 20	-	Soil Results Above Criteria - Pesticides
Figure 21	-	Soil Results Above Criteria - PCBs
Figure 22	-	Soil Results Above Criteria - Metals
Figure 23	-	Soil Results - Dioxin/Furan Positive Results
Figure 24	-	Petroleum Hydrocarbon Positive Results
Figure 25	-	Groundwater Results Above GQS - Organics
Figure 26	-	Groundwater Results Above GQS - Inorganics
Figure 27	-	Total Volatiles - Surface Soil
Figure 28	-	Total Volatiles - Subsurface Soil
Figure 29	-	Total Semivolatiles - Surface Soil
Figure 30	-	Total Semivolatiles - Subsurface Soil
Figure 31	-	Arsenic Distribution - Surface Soil
Figure 32	_	Arsenic Distribution - Subsurface Soil

(continued)

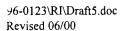
Table 1	Sample Summary Table		
Table 2	Groundwater Elevations		
Table 3	Well Construction Details		
Table 4	Sample Container, Preservation, Holding Time and Analytical Methodology		
	Requirements		
Table 5	Analysis Qualifiers		
Table 6	Surface Soil Samples - Positive Analytical Results - Volatiles		
Table 7	Surface Soil Samples - Positive Analytical Results - Semi-volatiles		
Table 8	Surface Soil Samples - Positive Analytical Results - Metals		
Table 9	Surface Soil Samples - Positive Analytical Results - Pesticide/PCB's		
Table 10	Soil Samples - Positive Analytical Results - Dioxin/Furan		
Table 11	Subsurface Soil Samples - Positive Analytical Results - Volatiles		
Table 12	Subsurface Soil Samples - Positive Analytical Results - Semi-volatiles		
Table 13	Subsurface Soil Samples - Positive Analytical Results - Metals		
Table 14	Subsurface Soil Samples - Positive Analytical Results - Pesticide/PCB's		
Table 15	Soil Samples - Positive Analytical Results - TPH		
Table 16	Particle Size Analysis		
Table 17	Solid Waste Sample - Positive Analytical Results		
Table 18	Sewer Basin Samples - Positive Analytical Results		
Table 19	Shallow Groundwater Samples - Positive Analytical Results - Volatiles		
Table 20	Shallow Groundwater Samples - Positive Analytical Results - Semi-volatiles		
Table 21	Shallow Groundwater Samples - Positive Analytical Results - Metals		
Table 22	Shallow Groundwater Samples - Positive Analytical Results - Pesticides/PCB		
Table 23	Deep Groundwater Samples - Positive Analytical Results - Volatiles		
Table 24	Deep Groundwater Samples - Positive Analytical Results - Semi-volatiles		
Table 25	Deep Groundwater Samples - Positive Analytical Results - Metals		
Table 26	Deep Groundwater Samples - Positive Analytical Results - Pesticides/PCB		
Table 27	Holding Tank Sample - Positive Analytical Results		
Table 28	City Well Number 7 Samples - Positive Analytical Results		

APPENDICES

Appendix A	_	Boring Logs

Appendix B - Geotechnical Testing Results

Appendix C - Sampling Logs


Appendix D - Building Safety Inspection Report

Appendix E - Test Pit Logs and Photos

Appendix F - Monitoring Well Construction Diagrams, Well Permits

Appendix G - Well Development Records

Appendix H - Geophysical Data

Draft Remedial Investigation Report MARTIN AARON SITE CAMDEN CITY, CAMDEN COUNTY, NEW JERSEY

1.0 INTRODUCTION

L. Robert Kimball and Associates (Kimball) is submitting this report for Remedial Investigation (RI) activities at the Martin Aaron site located at 1542 South Broadway, Camden City, Camden County, New Jersey.

To meet the objectives of the RI, a field investigation was performed which included the following major components:

- Site reconnaissance and professional assessment/evaluation of the structural stability of buildings requiring invasive investigation, and the implementation of a monitoring plan to meter stability of said structures during those activities;
- Geophysical Investigation consisting of a comprehensive survey conducted over the yard area of the Martin Aaron property, using complementary geophysical techniques including: magnetics, electromagnetics (EM) and ground penetrating radar (GPR);
- Soil investigation including the drilling and sampling of soil borings and the excavation and sampling of test trenches/pits.
- Hydrogeologic investigation including the installation, development, and sampling of monitoring wells, as well as, Hydropunch® sampling;
- Sediment investigation which included the sampling of an operating skimming basin at the Rhodes Drum facility and an abandoned settling basin inside the former Martin Aaron complex;
- Site mapping and surveying to define site planimetrics, topography and the spatial location of all sampling points.

EXECUTIVE SUMMARY

This Remedial Investigation (RI) Report was prepared by L. Robert Kimball and Associates, Inc. (Kimball) for the New Jersey Department of Environmental Protection (NJDEP) Division of Publicly Funded Site Remediation. The RI was conducted to investigate soil and groundwater contamination at the Martin Aaron site located at 1542 South Broadway, Camden City, Camden County, New Jersey.

The Martin Aaron Site (a.k.a. Drum Service of Camden and Rhodes Drum, Inc.) is identified as Lot 1 of Block 460 in the Camden County Tax Assessor records for Camden City. The site presently is a roughly rectangular parcel of about 2.46. Various drum reconditioning operations were conducted within the former Martin Aaron building. Drums were drained, pressure washed with caustic solution, and wash rinsed in the front processing rooms. The residue from drum contents, rinsate runoff, and steam blowdown was collected in drainage tanks and floor drains. Drums were then taken to the paint booth located in the warehouse for final painting according to customer specifications.

Anonymous reports have indicated that liquid and solid wastes were routinely buried in the yard area of the site. Anonymous reports also indicate that between 200 and 1000 drums of containerized wastes were buried on the property. Site inspections conducted by the USEPA (1981) and NJDEP (1983) identified roll-off containers used for storage of hazardous waste had leaked onto the site soils. Leaking drums and fumes were observed during inspection of site trailers containing drums (USEPA, 1993). In addition, drums stored within the yard area were observed to contain holes and/or were stored upside down allowing contents to leak onto soils.

Previous sampling events conducted by the NJDEP between 1986 and 1993 identified organic and inorganic constituents in the site sewer basins and drums. Organic contaminants identified included chlorinated and aromatic volatile compounds. Inorganic analytes found at high concentrations in the site drainage system and drums included arsenic, cadmium, mercury, selenium, barium, chromium and lead. In January of 1987, the NJDEP, under search warrant issued by the New Jersey Department of Law and Public Safety, Division of Criminal Justice, collected samples from on-site drums and buried drums exposed in test pits, site soil and sewer basin effluent samples. Compounds detected in drum samples included methylene chloride, toluene, ethylbenzene, xylene and naphthalene. Soil samples were found to contain arsenic, cadmium, mercury, selenium, barium, chromium and lead.

Kimball conducted remedial investigations at the site between May and September 1997 (first investigation phase) between September and November 1998 (second investigation phase) and final delineation investigations between December 1999 and March 2000 (third investigation phase). Investigation activities included site mapping, a comprehensive geophysical investigation and stability analyses of the former Martin Aaron building. Environmental sampling of soil and groundwater was conducted in and around potential contaminant source and disposal areas and in areas which could be or have been impacted by contaminant migration. Investigations included both on-site and off-site areas of the property.

Results of intrusive remedial investigation activities indicate former site operations and disposal practices have resulted in contamination of <u>surface</u> and <u>subsurface</u> soil and <u>shallow</u> groundwater beneath the site. Findings of investigation activities included the following:

Geophysical surveys completed at the Martin Aaron site identified several areas of possible disposal of drums and other debris. Test pits excavated at interpreted geophysical anomalies generally encountered fill consisting of ash, cinders, brick, concrete, scrap metal, etc., at all excavation locations. Several excavations confirmed historical reports of former buildings. Subsurface disposal areas were confirmed at test pit locations in the north central portion of the site, in the northeast portion of the property and near the east property border. Subsequent activities by the NJDEP (underground storage tank removal) resulted in the discovery of some drums buried in the south central portion of the site. Results of the test pit excavation activities do not support reports of wide spread drum burial at the site.

Results of environmental sampling activities indicate surface and subsurface soil beneath the Martin Aaron building, throughout the yard area and beyond the property borders contain levels of organic and inorganic constituents in excess of the NJDEP soil cleanup criteria. The primary contaminants of concern within the site surface and subsurface soil include chlorinated and aromatic volatile organic compounds; semi-volatile compounds consisting mostly of polyaromatic hydrocarbons (PAH); pesticides/PCBs and metals.

Results indicate volatile contamination above the NJDEP Impact to Groundwater Soil Cleanup Criteria (IGWSCC) in the site near surface and subsurface soil extend beyond the property borders to the northeast, east and possibly the southeast. When compared to the NJDEP Residential Direct Contact Soil Cleanup Criteria (RDCSCC) and the NJDEP Non-Residential Direct Contact Soil Cleanup Criteria (NRDCSCC), the extent of contamination is relatively unchanged extending across the property boundary to the northeast and possibly to the southeast. Semivolatile contamination above NJDEP soil cleanup criteria extends to the limits of current sampling. Analysis of total semivolatiles indicate the higher concentrations were identified on the site property extending to the northwest, and on the northern portions of the South Jersey Port Corp. property located across South Broadway. Results indicate the semivolatile contamination is site operations related. Pesticide and PCB contamination is generally confined to the site property extending from the former Martin Aaron building to the north, east and southeast property borders.

Inorganic contamination in the near and subsurface soil extends to the limit of current sampling completed to date. Analytes of concern include arsenic, barium, beryllium, cadmium, chromium and lead. When compared to the RDCSCC, the horizontal extent of inorganic contamination remains generally the same. However, results indicate that the apparent extent of contamination is disproportionately attributable to arsenic at concentrations above the NRDCSCC. Analysis of specific analytes, namely arsenic, cadmium and lead, indicate the highest concentrations are located on the Martin Aaron property extending to the east and northeast which is consistent with the extent of other organic contaminants.

Shallow groundwater contamination identified at the Martin Aaron site extends across the property and beyond the property borders to the east, south, and west. Based on sampling results, groundwater contamination is more prevalent in the shallow zone near the water table surface as opposed to deeper zones of the aquifer. Contaminant parameters detected in the shallow groundwater at concentrations above NJDEP Groundwater Quality Standards (GQS) include: chlorinated and aromatic volatile compounds; semi-volatile compounds; pesticides/PCBs and metals.

Contaminant parameters detected in the deeper groundwater include chlorinated hydrocarbons and metals but with much fewer compounds and analytes at concentrations above GQS.

2.0 ENVIRONMENTAL SETTING

The following sections present descriptions of the Martin Aaron site location, historical land uses, current and past site operations, and physical characteristics of surface and subsurface features as they relate to the field activities.

2.1 Site Background

The Martin Aaron Site (a.k.a. Drum Service of Camden and Rhodes Drum, Inc.) is located at 1542 South Broadway, Camden City, Camden County, New Jersey. The property is identified as Lot 1 of Block 460 in the Camden County Tax Assessor records for Camden City.

As shown on **Figure 1**, **Site Location Map**, the site is located in southwestern portion of Camden City at map coordinates 39°55'33" north latitude and 75°07'08" west longitude. The site presently is a roughly rectangular parcel of about 2.46 acres with 309.40 feet adjoining the east line of the sixty six foot wide South Broadway right-of-way and 334.30 feet adjoining the west line of the sixty foot wide Sixth Street right-of-way. The property is situated on relatively level land in mixed industrial and residential zoned properties.

One structure is currently located in the southeastern portion of the property. The former main structure, a three-story industrial building which occupied the southwest corner of the lot, was formerly occupied by the Westfall Ace Drum Company (Wadco) and is identified as the former Martin Aaron Building on Figure 2, Site Layout and Topography. The building was demolished (except for the concrete floor) by the City of Camden in November of 1998. Features associated with the former structure at the time of demolition include three underground storage tanks (USTs), located in the processing area immediately north of the former structure and one UST located east of the former structure. The USTs and associated contaminated soil were removed by the New Jersey Department of Environmental Protection (NJDEP) during the spring and summer of 1999. Prior to commencement of RI activities in 1997, five above ground storage tanks (ASTs) were removed by the NJDEP.

The remaining concrete floor of the former building contains a number of drains. The floor drains lead to three former settling basins. Settling basin 1 was located in the processing area of the former building and settling basin 2 is located east of the former building as shown on Figure 2. Settling basin 3 was reportedly located in the vicinity of basin 2. According to former site operators, all three basins reportedly received drum rinsate waters from site operations, and discharged to the Camden County Municipal Authority (CCMUA) sanitary sewer system although the actual discharge for basins 2 and 3 remains unknown. Basin 1 was removed by the NJDEP during UST removal activities in 1999.

The lone remaining structure, located in the southeast portion of the lot, was formerly occupied by Rhodes Drum Company and is identified as such on Figure 2. At the time of the Kimball field investigations, one processing vessel was located along the east side of the building. A single skimming basin (basin 4) was located east of the building. This basin received drum rinsate effluent from Rhodes Drum Co. operations and discharged to the CCMUA sanitary sewer system, posterior to pre-treatment activities. One AST, associated with these activities was located adjacent to basin 4. In the winter of 1999, the above structures associated with the former Rhodes operations were removed by the United States Environmental Protection Agency (USEPA).

The remaining site acreage, historically used for drum storage, consists of paved and unpaved surfaces. These areas are predominately open with most of the stacked drums having been removed by NJDEP. Figure 2 presents the property boundaries, planimetric features and topography for the site entirety.

Figure 2 also shows an additional property of concern located west of the Martin Aaron property, at 1535 South Broadway (Lot 15, Block 458) and owned by South Jersey Port Corporation. This property was formerly leased to Wadco, which used it for office space and drum receiving/sorting. Three commercial buildings occupy the lot, with the remaining acreage consisting of paved and unpaved lots.

2.1.1 Historical Land Use

Historical mapping and photography indicate the study area had been comprised mostly of light industrial and residential properties as early as the year 1886. These land uses have remained predominate to present day.

Historical records indicate that from 1887 to 1908, the site property was used as a tannery by Kifferty Morocco Manufacturing Co., who specialized in the tanning and glazing of hides and leathers. During this time, the facility's size tripled and adjacent industrial activity also increased.

In 1908, the property was purchased by Castle Kid Company, who retained ownership until 1940. The Castle Kid Company specialized in the manufacture of mat and glazed kid leathers. Sanborn Fire Insurance Mapping indicates that by 1921, the Castle Kid Company facility had developed into a large scale manufacturing complex. Facility expansion included a substantial amount of building construction and the addition of a railroad spur. Other significant additions included: a 200 gal. buried gasoline tank (located in the northeast corner of the site), coal stockpiles, a laboratory, a cafeteria, a liming system complete with four above ground settling tanks (also located in the northeast corner of the site) and an 85,000 gal. suction tank.

Historical mapping indicates that by 1926, the Castle Kid Company's tannery operation was on the decline. Sanborn Fire Insurance mapping represents that the facility had noticeably downsized. This concept is further evidenced by the fact that the site property was seized by the City of Camden for tax delinquency in 1940.

In 1940, the City of Camden sold the confiscated property to Benjamin Schmerling, who subsequently leased portions of the property to H. Preston Lowden Co. (Preston) and American Chain and Cable Company - Pa. Lawn mower Division (AC&C). Preston leased building space in the southwest corner of the property, and used it for a wool and hair blending operation. AC&C leased building space in the southeast corner of the property, and used it for the "physical plant" area of it's manufacturing facility.

Martin Aaron, Inc. purchased the property from Benjamin Schmerling in 1969, and remains owner of record at present. From 1969 to 1985, Martin Aaron operated a drum "recycling" business under the name "Drum Service of Camden". In 1985 the business was sold to a corporation jointly run by Westfall Ace Drum Company (Wadco) and Rhodes Drum Inc. (Rhodes), two major clients of the former Drum Service of Camden. Wadco occupied the majority of the remaining structures on the property, while Rhodes operated from a building in the southeast corner of the property (former AC&C facility). Wadco ceased operations in March of 1995. Operations at Rhodes Drum, Inc. ceased during the fall of 1997 and spring of 1998.

2.1.2 Site Production Processes

Drum Service of Camden, and most recently, Westfall Ace Drum Co., <u>Drum Service of Richmond</u> and Rhodes Drum Co. (currently active) all operated steel drum reconditioning facilities on the Martin Aaron property site. Former site operations were as follows according to a Case History prepared by the NJDEP Bureau of Planning and Assessment (NJDEP, 1988):

"Empty" drums were (and still are in Rhodes' case) transported to the facility via tractor trailer. The major transporters of these drums were <u>Drum Service of Richmond and Wadco</u>, who leased their vehicles from <u>Martin Aaron</u>.

As drums were brought into the facility or onto the adjacent property (1535 S. Broadway), they were segregated by type (open lid as opposed to bung-type) and visually/manually inspected to determine the amount of residual material, if any, remained in the drum. If greater than one inch of residue was present, the drum was returned to the customer. If less than one inch remained, the drums were taken into the facility, turned upside down over grate-covered, square-bottomed tanks and allowed to drain. After the residuals had drained, the drums were then pressure washed with a caustic solution which was also allowed to drain. The drums were then washed, rinsed and steamed dry. After drying, the drums were inspected for integrity. Dents were removed pneumatically and the drums were sandblasted with a fine steel pellet grit in preparation for final painting. A dust collection system (baghouse) was utilized during this operation. The drums were then taken to the paint booth where an enamel oil-based paint was applied, with the color being selected by the customer. The floor of the paint booth was reportedly covered with cardboard to facilitate clean-up, and these covers were drummed for disposal. the drums were allowed to dry and were then transported off-site. The estimated generation of diazardous waste from these activities was thirty 55-gallon drums every 60 to 90 days.

The residue from drum contents, rinsate runoff, and steam blowdown was collected in drainage tanks and floor drains which feed to four skimming basins. Basins 1, 2 and 3 collected effluent from the Martin Aaron facility and Basin 4 received effluent from the Rhodes Drum Co. facility. The steam tanks, pump tanks and floor drains/trenches were skimmed periodically, with the sludge being removed and drummed every 2 to 3 months. The water in the vessels was reused with approximately two gallons of caustic added to the steam tanks daily.

Basin 1 was located in the former processing area which was within the former building. The basin consisted of a baffled concrete pit, approximately four feet by eight feet with a depth of approximately five feet. A submersible pump was located in the influent side which activated a wastewater neutralization system when triggered by rising water level. This system was designed to lower the pH of the potential effluent (usually 12 to 14) to the pH limit (6 to 9) mandated by the CCMUA Permit No. 3412-Ca-1 requirements. However, reports indicate that a pipe existed between the baffle walls which might have allowed direct flow of untreated effluent to discharge. Basin 1 has subsequently been removed as part of the NJDEP UST removal actions conducted in the spring and summer of 1999.

Basins 2 and 3 were reportedly connected via pipeline and drained liquids primarily from the "open lid" drum reconditioning section of the former facility. Dye tests, conducted by NJDEP, from the outfalls of these basins did not indicate any connection to the CCMUA storm/sanitary sewer system as reported by site operators. Therefore, it may be construed that the effluent may have discharged directly to the subsurface. Both Basin 2 and 3 have reportedly been sealed with concrete by NJDEP.

Basin 4 was located east of Rhodes Drum Co. and was verified, via dye testing, to receive influent from the floor drains of the same. Construction of Basin 4 also roughly emulates that of Basin 1. The outfall of Basin 4 discharged to the CCMUA storm/sanitary sewer system and was permitted under CCMUA Permit No. 3412-Ca-5. Basin 4 has was removed by the USEPA in the winter of 1999.

In accordance with Community Right To Know Survey data collected in 1988, 1989, 1990 and 1993, the following substances were warehoused and used at the Martin Aaron property site during drum reconditioning procedures: Paint, lacquers, etc. (containing any or all of the following -Isopropanol, Toluene, Methyl Propyl Ketone, Naphtha and Mineral Spirits); No. 2 Fuel Oil; Toluene; Sodium Hydroxide; Hydrogen Chloride; Oxygen; Acetylene; Diethylaminoethanol; Potassium Hydroxide; No. 1 Fuel Oil; Waste Oil; Sulfuric Acid; and Kerosene.

2.1.3 Nature of Contamination

The Martin Aaron Inc. property is listed on the NJDEP Known Contaminated Sites In New Jersey (EPA I.D. NJD014623854). Numerous discharges of contaminants and hazardous substances to the soil and the CCMUA combined sanitary/storm water sewer system have been documented on the Martin Aaron Inc. site. Discharges to the soils and groundwater are suspected from buried wastes, underground storage tanks and effluent from sewer basins.

Anonymous reports have indicated that liquid and solid wastes were routinely buried in the yard area of the site. Anonymous reports also indicate that between 200 and 1000 drums of containerized wastes were buried on the property. One former employee of Drum Services of Camden reported his job duties included digging holes throughout the property for the disposal of wastes. Site investigations completed by the NJDEP under search warrant issued by the Division of Criminal Justice confirmed the reports of disposal. Buried drums containing hazardous waste and soils contaminated with hazardous substances were observed in test pits excavated to depths below the local water table.

Site inspections conducted by the USEPA (1981) and NJDEP (1983) identified roll-off containers used for storage of hazardous waste had leaked onto the site soils, and two tractor trailers containing 100 drums each were parked along side the facility. Leaking drums and fumes were observed during inspection of the trailers (USEPA, 1993). In addition, drums stored within the yard area were observed to contain holes and/or were stored upside down allowing contents to leak onto soils.

Extensive dye testing of sever basins 2 and 3 were unsuccessful in locating an existing outfall. Effluent from the former Wadco/Martin Aaron operations entering these basins is presumed to have been discharged directly to the site soils and/or groundwater. In addition, a discharge pipe located in the influent side of basin 1 was observed to allow untreated waters to discharge prior to pH adjustment.

Seven above ground storage tanks, five constructed of metal and two constructed of polyethylene, were located in the process area outside the north wall of the building. The metal tanks were severely corroded. Concrete containment dikes surround the five metal tanks and the remaining area is covered by concrete pavement. Storm water apparently collects throughout this area and within the containment dikes. An oily sheen was observed on the standing water surrounding the area and within the dikes. Fill pipes leading to three underground storage tanks are located in this area. Discharges to surface runoff, site soils and groundwater are suspected from the USTs and their appurtenances.

Various drum reconditioning operations were conducted within the former Martin Aaron building. Drums were drained, pressure washed with caustic solution, and wash rinsed in the front processing rooms. The residue from drum contents, rinsate runoff, and steam blowdown was collected in drainage tanks and floor drains. Drums were then taken to the paint booth located in the warehouse for final painting according to customer specifications. The processing rooms and warehouse are evaluated as high concern due to these operations. Contaminants, paint residues, and waste water could possibly have been discharged to the site soils through cracks in the building floor and floor drains. Once in the soil, these contaminants may represent a source of contamination to the site shallow groundwater.

2.1.4 Previous Investigations and Enforcement Actions

Historical reports, inspections and investigations have determined that past site operations may have included improper disposal practices such as surface disposal of liquid wastes, burial of containerized waste and discharges from basins. Inspections conducted by the USEPA (1981) and NJDEP (1983) identified roll-off containers used for storage of hazardous waste had leaked onto the site soils, and two tractor trailers containing 100 drums each were parked along the facility. Leaking drums and fumes were observed during inspection of the trailers (USEPA, 1993).

Results of previous sampling events were tabulated in a 1988 case history prepared by the NJDEP and are described below. On January 3, 1986, NJDEP personnel collected one effluent sample (sludge) from the on-site drainage system. 1,1,1-trichloroethane (5,900 ppb), toluene (14,000 ppb) and ethyl benzene (3,800 ppb) were detected in the sample. Extractable metals detected included barium (1.6 ppb) and cadmium (0.32 ppb). Sulfide and cyanide reactivity was not detected (NJDEP, 1988).

On January 9, 1986, NJDEP personnel collected one liquid sample (MH010) from a concrete drainage basin adjacent to South Broadway, one sludge sample (MH011) reportedly from a drainage basin along the south fence line, and one soil sample (MH012) from the northwest property corner. 1,1,1-Trichloroethane (10,000 ppb), trichloroethene (630 ppb), tetrachloroethene (650,000 ppb), toluene (51,000 ppb) and ethyl benzene (28,000 ppb) were detected in the liquid and sludge samples. Metals detected included arsenic, barium, cadmium, chromium, lead, mercury, nickel and selenium. Analytical results of soil sample MH012 showed methylene chloride (6,900 ppb), 1,1,1-trichloroethene (2,100 ppb), trichloroethene (15,000 ppb), tetrachloroethene (5,300 ppb) and toluene (4,700 ppb). Barium (7.2 ppb) was detected in the metal analysis (NJDEP, 1988).

On February 13, 1986, NJDEP collected one sludge sample from the sewer basin located outside the drum wash area. Petroleum hydrocarbon concentrations up to 10,000,000 ppb were detected. Metals identified included barium (4,400 ppb) and cadmium (1,300 ppb). The sample exhibited a pH of 12.2. No detectable levels of PCB were identified (NJDEP, 1988).

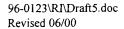
Between January 4 and January 29, 1987, the NJDEP, under search warrant issued by the New Jersey Department of Law and Public Safety, Division of Criminal Justice, collected a total of 40 samples from the site. Samples included twenty-two from on-site drums and buried drums exposed in test pits, eleven soil samples and seven effluent samples. Compounds detected in drum samples included methylene chloride, toluene, ethylbenzene, xylene and naphthalene at concentrations greater than 100,000 ppb and flash points below 75 degrees Fahrenheit. Soil samples were found to contain arsenic, cadmium, mercury, and selenium. including several concentrations of barium, chromium and lead in excess of 100,000 ppb. Effluent samples generally exhibited pH values greater than 12.5 (NJDEP, 1988).

On January 15, 1987, NJDEP collected one liquid and one sludge sample from each of three sewer basins on the site. Analytical results of the liquid samples identified methylene chloride (30,000 ppb), trichloroethene (460 ppb), tetrachloroethene (4,100 ppb), toluene (10,000 ppb), and ethyl benzene (27,000 ppb). Compounds detected in the sludge samples included 1,1,1-trichloroethane, tetrachloroethene, trichloroethene, toluene, ethyl benzene, and xylene at concentrations greater than 100,000 ppb. Metals identified included barium, cadmium, chromium, and lead. Petroleum hydrocarbon concentrations greater than 100,000 ppb were identified (NJDEP, 1988).

On May 13, 1993, NJDEP collected samples from five drums, two roll-off containers and two troughs on site. Analytical results of the drum samples indicated various volatile organic compounds and inorganics. Waste sludge samples collected from the roll-offs were found to contain volatile organics and inorganics including high levels of cadmium. No contaminants were detected in the trough samples.

Possible sources of contamination at the site include residues from steam tanks and floor drains, fallout from the spray painting operations, shot dust from the sand/shot blasting operations, solvents from paint-gun cleaning, and oil changes from vehicles and machinery and improper waste storage and disposal practices.

Prior remedial activities at the Martin Aaron site have been limited to removal of contaminated soil and drums excavated from test pit investigations conducted in January, 1987. Test pits were excavated north of the Rhodes Building and between the Martin Aaron and Rhodes building. Reports indicate that Aaxon Industries, Inc., a subcontractor to Martin Aaron, performed overpacking and disposal of excavated wastes and drums. Approximately thirty, eighty-five gallon overpacks and fifteen drums were removed from the site as hazardous waste under manifest numbers PAB 4770566 and PAB 4773204.


More recently, the NJDEP (summer and spring of 1999) and the USEPA (winter of 1999) conducted removal actions which included the removal of the USTs and Basin 1 associated with the former Martin Aaron operations and the removal of Basin 4, above ground tanks and piping associated with the former Rhodes operations. In both instances, surface and/or subsurface soil associated with the structures was also removed.

A number of orders, directives and notices of violation have been issued against Martin Aaron, Inc. and the Drum Service of Camden, Inc. (NJDEP,1988):

A Notice of Violation was issued on 11/28/72 for the installation and operation of two spray paint booths without a permit. A permit was subsequently issued in 1973.

A Complaint, Compliance Order and Notice of Opportunity for Hearing was issued by the EPA on 10/25/81. Violations included leaks in the plastic liner and joint seals of a "roll-off" container, allowing discharge to the ground. Spills were noted in an area around this "roll-off" where drums were emptied into the container. Additionally, three hazardous waste containers were observed to be leaking.

A Notice of Violation was issued in August, 1983 for a negligent release of hydrogen chloride gas from improperly closed drums on the property.

A Notice of Violation (NOV) was issued by NJDEP in February 1984, for the transportation of hazardous wastes without a transporter's license, the acceptance of hazardous wastes from a generator without a manifest and the storage of hazardous wastes in a city street adjacent to the Martin Aaron, Inc. facility.

A Notice of Violation was issued by NJDEP on 03/04/85 for the discharge of hazardous substances for the discharge of hazardous substances, non-notification of spills, and incomplete contingency plans and training of employees.

A NOV was issued by NJDEP on 9/25/85 for the improper storage of waste drums.

A NOV was issued by NJDEP on 1/3/86 for the discharge of hazardous substances and failure to report the incident to the Department.

A NOV was issued by the NJDEP on 1/9/86 for the accumulation of hazardous wastes for more than ninety days and for failure to submit a RCRA Part A and Part B permit.

A NOV was issued by NJDEP on 2/13/86 for not having a EPA identification number, hazardous waste containers not securely closed, wrong or missing generators name on manifests, and no accumulation start dates on stored drums.

A NOV was issued by NJDEP on 5/29/86 for the discharge of hazardous substances into the <u>sewer</u> system. Specific dates of violation were January 9, February 13, February 25, and March 17, 1986.

An Administrative Order was issued by NJDEP on August 14, 1986. Violations included failure to place identification labels on hazardous waste containers, failure to properly store and segregate hazardous waste by type, Failure to place an accumulation start date visibly on containers, inadequate employee training, failure to inform hospitals of on-site wastes, schedule regular inspections by the local fire department, and failure to develop and maintain a contingency plan.

A second Administrative Order and Notice of Civil Administrative Penalty Assessment was issued on 1/13/87 for violations including storage of hazardous waste for greater than 90 days, failure to submit a RCRA Part A and Part B permit application, incorrect generator names on manifests, discharge of waste to the sewer system and failure to properly manage containers.

A NOV was issued by CCMUA on 3/24/87 for constant and consistent non-compliance with discharge permit limitations. $9aex 4^{7}$

A third Administrative Order and Notice of Civil Administrative Penalty Assessment was issued on 6/10/87 for discharge of waste to the sewer system, inadequate employee training, failure to inform hospitals of on-site wastes, schedule regular inspections by the local fire department, and failure to develop and maintain a contingency plan.

A NOV was issued by NJDEP on 8/3/87 for unauthorized operation of a hazardous waste storage and disposal facility and discharge of hazardous waste.

A NOV was issued by the EPA on 10/30/87 for excessive volatile organic emissions from painting/coating operations.

A NOV was issued by NJDEP on 11/25/87 for not providing proper job descriptions and names of personnel for hazardous waste operations, and the illegal use of an underground waste oil tank. A second NOV was issued on the same date for storage of hazardous wastes for greater than 90 days.

A NOV was issued on 12/12/89 for failure to provide documentation concerning job descriptions, titles, and required training. A second NOV was issued on the same date for failure to forward generator state and TSD state copies of manifests NJAD0377731 and NJAD340826, and failure to conduct semi-annual drills.

A Directive was issued by NJDEP on 2/24/92 which required soil and groundwater investigations followed by the required remediation.

Two Field Directives were issued on 8/3/92 and 8/12/92 subsequent to site inspections and failure of the property owner to respond to the February Directive. The Field Directives restated the requirements and conditions of the February correspondence.

A Directive and Notice to Insurers was issued by the NJDEP on 11/1/94 requiring payment for the drum removal, remedial investigation and remedial alternatives analysis of the Martin Aaron, Inc. property.

A second Directive and Notice to Insurers was issued by the NJDEP on 4/6/95 requiring payment for the drum removal, remedial investigation and remedial alternatives analysis of the Martin Aaron, Inc. property. Named respondents included Martin Aaron, Inc., Drum Service of Camden, Drum Service of Richmond, Westfall-Ace Drum Company, Inc. (Wadco), and Rhodes Drum, Inc.

The respondents have not entered into an administrative consent order (ACO) with the NJDEP and the case has been transferred to the Bureau of Site Management, Division of Publicly Funded Site Remediation for the initiation of a Remedial Investigation/Remedial Alternatives Analysis.

2.2 Soils and Geology

The Martin Aaron site is located in the Atlantic Coastal Plain physiographic province in an area with moderate thicknesses of highly permeable unconsolidated sediment of Pleistocene and Cretaceous deposition which outcrop beneath the site and throughout the Delaware Valley (Kummel, 1940).

Soils in the vicinity of the site are most likely to represent Pleistocene age depositions of the Downer-Woodstown-Dragston soil associations as seen on Figure 3, General Soil Map (U.S. Department of Agriculture, 1966). The Downer-Woodstown-Dragston association consists mostly of sand and gravel deposited by streams and rivers. These soils formed from materials of the Cape May, Pennsauken, Cohansey, and Bridgeton geologic formations. The dominant soils in this association are the Downer, Woodstown, and Dragston, all of which are sandy. The Downer series consists of dark grayish-brown, well-drained sandy loam grading to a yellowish-brown sandy loam subsoil. The Woodstown and Dragston series consist of very dark grayish brown, poorly drained sandy loam surface layers. The subsoil is mottled yellowish brown or light olive brown sandy loam containing slightly more clay than the surface layers. These soils have been greatly disturbed on the site due to past industrial operations.

Intrusive remedial investigative activities conducted onsite indicate that the majority of top and shallow subsoils have been removed from the site and replaced with various fill materials, including:

construction debris (bricks, concrete, etc.); ashes and cinders; slag-type materials; and in minor cases, wood and refuse. This fill layer ranges from two to seven feet in thickness and is relatively consistent in its existence over the entire site.

The unconsolidated sediments immediately beneath the Pleistocene deposits consist primarily of sands and gravels with intervals of silts and clays classified as continental, coastal, or marine type deposits of Early to Late Cretaceous age. These deposits make up the Magothy Formation, the Raritan Formation and the Potomac Group of the Coastal Plain. The Cretaceous sediments generally strike northeast-southwest and dip from forty to one hundred feet per mile to the southeast (Langmuir, 1969). In the site vicinity, these sediments form the outcrop area of the Potomac-Raritan-Magothy (PRM) aquifer system which is a major source of potable water within the Coastal Plain of New Jersey. Intensive study of the PRM aquifer system (Farlekas et.al.,1976) show a three aquifer system in Camden County. Five mappable units are defined including three aquifers designated as upper, middle and lower, and two confining beds. The upper aquifer coincides closely with the Magothy Formation, the middle aquifer and confining bed coincides most closely with units of the Raritan Formation, and the lower aquifer and confining bed coincides most closely with units of the Potomac Group (Zapecza, 1984).

The upper most depositional formation in the site vicinity, immediately underlying the Pleistocene deposits, is the Magothy Formation. The Magothy Formation is a sheet like deposit composed primarily of coarse beach sand and other near-shore marine deposits including light colored cross-stratified sand and lenses of dark clay (Gill and Farlekas, 1976). The Magothy ranges in thickness from 0 to forty five feet in the Camden area, thickening to the east to over two hundred feet (Langmuir, 1969). On-site borings evidence the existence of this formation, which was initially encountered at an approximate depth of ten feet, and ranged in thickness from fifty to fifty two feet. Refer to Appendix A - Boring Logs and Figure 4, Geologic Cross Sections. The Magothy Formation is considered to be the uppermost water bearing zone under the Martin Aaron site with groundwater under water table conditions. Groundwater within the Magothy Formation becomes effectively confined to the east by the overlying Merchantville Formation and Woodbury Clay.

The Magothy Formation lies unconformably atop the Late Cretaceous Raritan Formation. In the outcrop area of the Delaware Valley, the Raritan Formation consists of fluvial continental deposits including thick interbeds of light colored sands and massive to thick bedded variegated silty clay which make up part of the middle aquifer and confining bed between the middle and upper aquifers of the PRM system (Gill and Farlekas, 1976). Formation thicknesses of over sixty feet have been observed in the site vicinity increasing eastward. A number of distinct sand and clay members within the Raritan have been identified several miles northeast of the Camden area but are indistinguishable beneath the site. This is due to the highly variable nature, horizontally and vertically, of the formations predominantly fluvial character which accounts for abrupt changes in individual sand and clay bed thicknesses over short distances (Langmuir, 1969). The variability is also apparent in formation sand contents which range from 60 to 100 percent. Groundwater within the Raritan Formation is expected to exist under confined or semi-confined conditions.

The oldest group of sediments deposited within the Coastal Plain consists of Cretaceous continental deposits of the Potomac Group. In the site vicinity, the Potomac Group deposits are generally indistinguishable from the overlying Raritan Formation but probably is equivalent to the lower aquifer and confining unit of the PRM aquifer system. The Potomac Group consists of clay, silt, sand, and gravel. As seen in the overlying Raritan Formation, the fluvial depositional history of the Potomac Group sediments account for considerable amounts of silts and clays to be locally interbedded with

sands and gravel. Sand contents of the Potomac Group sediments are generally over 70 percent. Thicknesses of the lower aquifer and confining unit of eighty to one hundred feet have been reported in area well logs (Zapecza, 1984).

The Cretaceous deposits of the PRM system lie unconformably upon the early Paleozoic and Precambrian crystalline basement-bedrock complex. The basement rock erosional surface dips sixty to one hundred feet per mile from the outcrop area west of Camden to the southeast (Langmuir, 1969). In the site vicinity, the bedrock surface is characterized by east and south trending channels carved by the ancient Schuykill and Delaware Rivers and their tributaries. The upper surface of the bedrock has been weathered into a micaceous residual clay which probably serves as a local confining bed below the Cretaceous unconsolidated sediments (Langmuir, 1969). Bedrock depths in the site area up to three hundred feet have been reported in local well logs.

2.3 Hydrogeology

The site is located within the outcrop area of the Potomac-Raritan-Magothy (PRM) aguifer system. Within the PRM aquifer system, five mappable hydrogeologic units are defined. The five units include three aguifers identified as the upper, middle and lower, and two confining beds (Zapecza, 1984). The PRM system in the site area has been observed to be over three hundred feet thick. The upper aguifer is the most extensive unit of the PRM system and coincides most closely with the Magothy Formation described above. Locally, groundwater within the upper aguifer has been encountered under water table conditions between 3.5 and 12.5 feet below ground surface. The confining bed between the upper and middle aguifers of the PRM system consists of thin- to thick-bedded sequence of micaceous silts and clays (Zapecza, 1984) with an estimated hydraulic conductivity of 10⁻⁶ cm/sec. Under the Martin Aaron site, the upper confining bed is expected to be less than twenty (20) feet thick. Intrusive on-site remedial investigative activities encountered what was believed to be the uppermost confining clay layer. The layer is identified as a gray clay with intermittent stringers of fine grained sand. Based on intrusive activities, Kimball has determined that this layer is at least five (5) feet thick and is located at depths between 57 and 63 feet beneath the site. A geotechnical sample obtained from (SB11) this layer (remolded to a density of 106.6 pcf) exhibited a hydraulic conductivity of 4.1 x10⁻⁸ cm/sec. Refer to Appendix B - Geotechnical Testing Results

The middle aquifer of the PRM is located within the Raritan Formation described above. Hydraulic conductivities within the middle aquifer have been estimated at 10⁻⁴ cm/sec (USEPA, 1993). The middle aquifer has been traced within a ten to twelve mile wide band that parallels the outcrop area of the Delaware Valley (Zapecza, 1984). Down-dip (east) of the site, the middle aquifer cannot be distinguished from other sand beds of the Raritan Formation (Kummel,1940). Groundwater of the middle aquifer is expected to be encountered under confined or semi-confined conditions beneath the site. The confining bed immediately underlying the middle aquifer consists primarily of very fine grained silt and clay sediment of the Potomac Group and Raritan Formation. Thickness of the middle confining bed below the Martin Aaron site is generally less than fifty feet.

The lower aquifer is located within the Potomac Group described above. Hydraulic conductivities within the lower aquifer have been estimated at 10⁻⁴ cm/sec. The lower aquifer in the site area covers approximately the same aerial extent as described for the middle aquifer.

Groundwater under water table conditions has been reported to be between 3.5 and 7.5 feet below ground surface on the site property (NJDEP, 1988). Static water levels obtained during remedial investigative activities evidence shallow groundwater levels between 5.25 and 14.40 feet below ground surface, and deeper groundwater levels between 13.83 and 15.43 feet below ground surface. Based on investigation observations and measurements, shallow groundwater flow within the upper aquifer is to the east-southeast. Deeper groundwater flow within the upper aquifer is to the east-southeast along the dip of the local formations. The easterly flow is expected to be additionally enhanced by groundwater withdrawal at various public and industrial supply wells located east of the site. On-site, building foundations and subsurface structures are believed to influence the movement of on-site shallow water.

Groundwater within the confined and semi-confined middle and lower aquifers is expected to flow southeast from the site along the formation dip but is likely to have been altered due to heavy pumping in the area.

Static groundwater levels measured within site monitoring wells mentioned above indicate the potential for vertical (downward) groundwater movement within the upper aquifer of the PRM. Vertical movement of site groundwater between the major aquifer units of the PRM system is expected to be limited based on reported hydraulic conductivities of the confining beds. Water table elevations and potentiometric surfaces measured in wells completed within the middle and lower aquifers indicate a downward vertical gradient exists in the site area. Extensive pumping and water withdrawal in the Camden area has created measurable decreases in the local static water table and potentiometric surfaces which may enhance the vertical migration of shallow waters into the deeper aquifers (Langmuir, 1969).

2.4 Topography/Drainage

Due to extensive urban development throughout the Camden area, surface water courses have experienced significant realignment and partial channeling. The site currently is surrounded by paved roadway surfaces and storm water sewers connected to the CCMUA combined storm/sewer system.

Historical drainage patterns are evident on Sanborn Fire Insurance maps which date back to the turn of the century. These maps indicate surface drainage from the property flowed northward into a lined ditch (Little Newton Creek) which marked the north property boundary. The ditch apparently carried stormwaters east to west along the north property boundary, discharging to the Delaware River. By 1926, the Little Newton Creek is no longer present on the historical mapping.

No industrial effluent is currently produced or processed at the site. Prior effluents were reportedly treated on-site prior to discharge to the sewer. During periods of heavy flow and high dilution, untreated waters may have been discharged (USEPA,1993). Water entering the storm/sewer system are treated at the CCMUA facility prior to discharge into the Delaware River.

2.5 Surface Water Hydrology

As mentioned above, extensive urban development throughout the Camden area, has significantly altered surface water courses, causing notable realignment and partial channeling. The nearest body of surface water to the site is the Delaware River located approximately .75 miles west. Additional surface water bodies include Cooper River and Newton Creek located 2 miles north-northeast and 1.5 miles south of the site.

Examination of the National Flood Insurance Program, Flood Insurance Rate Map for Camden County New Jersey (City of Camden, 1989) evidenced that the site is located within the 100 year flood plain of the Delaware River. Episodes of flooding may be of concern due to the documented evidence of surface soil contamination on the property. Refer to Figure 5, Flood Insurance Rate Map.

During review of historical site records, a wetlands delineation in the vicinity of the site was not uncovered. The United States Department of the Interior National Wetlands Inventory Map of both the Camden and Philadelphia Quadrangles do not indicate wetland areas on the site (US Depart. of Interior, 1977). (Refer to Figure 6, National Wetlands Inventory Mapping) Wetland areas within one mile of the site occur to the southwest and west along the Delaware river. These areas are classified as Riverine, Tidal Open Waters; Riverine, Tidal Flat and Palustrine, Open Waters. Additional wetland areas have been identified along the Delaware River south of the site.

3.0 REMEDIAL INVESTIGATION

Remedial investigations at the Martin Aaron site were conducted in three phases. During the first phase (May to September 1997) sampling was conducted in and around potential contaminant source and disposal areas and in areas which could be or have been impacted by contaminant migration. Sampling was biased based upon previous investigation results, geophysical investigation results, visible indicators, environmental conditions, field instrument measurements, sensory characteristics, the location and nature of potential receptors, and other indicators. Soil borings and excavations, sampling from monitoring wells, and direct grab sampling techniques were utilized for the collection of samples.

Soil samples were collected from a total of fifteen building interior test borings, twenty five exterior onsite borings, one exterior off-site boring, thirteen UST area borings, twenty six test pit/trench excavations, two on-site monitoring well borings and two off-site monitoring well borings. Two rounds of groundwater samples were collected from the seven new monitoring wells plus the existing City of Camden Municipal Well No. 7. Two sediment samples were also collected from settling basins 1 and 4, located inside the former Martin Aaron facility and east of the Rhodes facility respectively. Hydropunch® groundwater samples were collected from twelve on-site boring locations.

During the second phase field investigation (September to November 1998) sampling was conducted at off-site areas to delineate the nature and extent of contamination identified during the first phase effort. When possible, sampling was biased towards adjacent properties and property boundaries, and identified "hot spots". Soil borings and well installation and sampling were conducted.

Soil samples were collected from a total of forty-four exterior off-site borings, three building interior borings, five on-site borings, and ten on-site PCB screening borings. One round of groundwater samples were collected from the seven existing monitoring wells installed as part of the first investigation phase, and seven new monitoring wells installed as part of the second phase of investigation. In addition, several soil borings were advanced to re-sample the site due to rejection of laboratory data from the first field effort.

During the third phase field investigation (December 1999 to March 2000) sampling was conducted at and around identified "hot spots", on— and off-site, to delineate the horizontal and vertical extent of worst case conditions and provide better volume estimates for later alternative analysis evaluation. Sampling was also conducted to evaluate conditions in the vicinity and beneath the former Rhodes building. Soil borings and well installation and sampling were conducted.

Soil samples were collected from a total of fourteen pesticide/PCB delineation soil borings, ten semivolatile delineation borings, and sixteen former Rhodes building delineation borings. Two rounds of groundwater samples were collected from the eleven remaining monitoring wells installed as part of the first and second investigation phases, and two new monitoring wells installed as part of the third phase of investigation.

Table 1 - Sampling Summary Table provides a summary of the samples collected and Figure 7, Sample Location Map shows the sample locations for all three phases of investigation (Refer to Appendix A - Boring Logs and Appendix C: Sampling Logs).

3.1 Phase I Field Investigation Activities (May to September 1997)

3.1.1 Structural Stability Analysis and Monitoring

During the pre-investigation site reconnaissance, Juan Salguero, Kimball Project Manager and licensed professional engineer in the State of New Jersey, conducted a building inspection. Particular attention was given to structural deficiencies of the building deemed potentially hazardous with regard to planned field activities. Components of the building structural integrity inspection included structural soundness, overhead hazards, possible asbestos containing areas, and other areas of concern including integrity of floor drains.

Results of the building inspection were reported to NJDEP by Kimball in the document *Building Safety Inspection Report*, dated August 30, 1996. (Refer to **Appendix D - Building Safety Inspection Report**). The report contained inspection procedures, areas inspected, interpreted results, findings and conclusions and recommendations regarding safety measures and implementation suggestions. Recommendations contained in the inspection report were incorporated into the project Health and Safety Plan (Kimball, 1997) and were implemented prior to any work within the building. Safety measures included:

- performance of a detailed examination of potential overhead hazards (pipes, debris, etc.) including visual inspection of the entire area and destructive/qualitative testing of supporting beams and joists;
- selection of buffer zones encompassing areas directly below overhead hazards, as well as interpreted potential trajectory paths of falling objects, which were subsequently cordoned off and avoided;
- the installation and periodic visual monitoring of fifteen Avonguard Calibrated Crack, Slope and Movement Monitors, to monitor the behavior of the structure during investigative activities.

3.1.2 Geophysical Investigation

A comprehensive geophysical investigation was conducted over the yard area of the Martin Aaron property not containing buildings or other immobile surface objects. The objective of the geophysical surveys was to locate suspected buried drums at the site. Results of the geophysical surveys were used to direct further investigations (drilling, test pits) in an attempt to more efficiently intercept possible site contamination and guide subsurface investigations clear of possible subsurface hazards.

Three complementary geophysical techniques: magnetic; electromagnetic (EM); and ground penetrating radar (GPR) were used at the site. The techniques are non-destructive.

3.1.2.1 Survey Grid

A ten feet by five feet survey grid, used for both the magnetic and EM surveys, was constructed over the survey area. East and west grid perimeters were marked at the profile interval (10 feet) using either wood stakes or marking paint depending on surface conditions. Each stake was labeled with the appropriate profile number. Profile numbers were assigned starting in the northwest corner of the grid with 1001, increasing southward by one to 1025. Two perpendicular baselines were constructed parallel to and at the approximate midpoint between the east and west grid perimeters. Profiles were established by stretching a rope/tape, marked at the station interval (5 feet), perpendicular to and between two corresponding perimeter stakes. Station numbers were assigned starting along the west grid perimeter with 101, increasing to the east by one to 189.

At the conclusion of the geophysical surveys, several perimeter stakes/grid points were surveyed to enable direct correlation between the established survey grid and project base mapping.

3.1.2.2 Magnetic Survey

Magnetic measurements were made with a proton precession magnetometer. This instrument simultaneously measures the amplitude of the earth's magnetic total field with a sensor affixed to the top of a staff and the vertical gradient of the total field between the top sensor and a lower one. Total magnetic field data was used to estimate subsurface objects location, size, depth and weight. Vertical gradient data was used to resolve complex or overlapping anomalies and aid in the identification of shallow targets.

Magnetic data were collected by walking along the rope and recording measurements at the station marks (flags on the rope at 5 foot intervals). When one profile was completed, the rope/tape was moved to the next set of perimeter flags and the process repeated. Cultural features were noted relative to the survey grid during data collection. Locations and descriptions of cultural features were used to identify anomalies caused by surface features.

A base station was established remote from any obvious cultural features that could disturb the base readings. Repeated readings at the base station were made at a minimum of every two (2) hours during each survey day. Base loop data was used to correct the raw data for instrument and diurnal drift.

Magnetic data were downloaded to a portable computer for processing. Preliminary contour maps were generated in the field and used to augment the selection of areas requiring more intensive investigation.

3.1.2.3 Electromagnetic (EM) Survey

EM data was collected using a Geonics EM-31 Terrain Conductivity Meter. The instrument uses horizontal (vertical dipoles) co-planar coils separated by a known distance. A transmitter coil radiates a continuous, known current into the ground which produces "eddy" currents. A receiver coil detects secondary EM fields produced by the eddy currents. The ratio of the transmitted to received signal is proportional to conductivity.

Data were collected along profiles following procedures described above for the magnetic survey. The EM operator maintained a minimum fifty (50) feet distance from the magnetometer operator so as to eliminate interference between the two instruments. EM measurements were recorded digitally using a Polycorder data logger. EM data were corrected for instrument drift before interpretation.

3.1.2.4 Ground Penetrating Radar (GPR) Survey

GPR data were collected using a Geophysical Survey Systems SIR-2 configured with a Model 5103 (400 MHz) antenna. The system radiates repetitive, short-time duration electromagnetic pulses into the earth from a broad-bandwidth antenna placed on the ground surface. Transmitted pulses are partially reflected back to the surface antenna by dielectric discontinuities in the subsurface produced by buried man-made objects or features. Continuous data were collected by towing the surface antenna along the prescribed profiles and recording the reflected signals digitally on magnetic media.

GPR profiles were established at each magnetic anomaly interpreted as representing buried metal. Profiles were located relative to Magnetic and EM survey grid coordinates. Data was collected in two perpendicular directions across each anomaly. A paper record of the reflected signals, produced on site

by means of a portable computer system for real-time interpretation, was used to augment the selection of areas requiring more intensive investigation.

GPR data do not require corrections or further processing for interpretation of results. Data are presented as profiles of reflected signals. Qualitative interpretations of anomaly locations, depth estimates and spatial dimensions were made in real-time.

3.1.2.5 Data Interpretation

Each data set was interpreted on it's own merit, then results were combined. Corrected magnetic and EM data was gridded using a minimum curvature program and contoured. Contour maps were overlain on a site base map to identify anomalies thought to be caused by surface features. Remaining anomalies interpreted as representing buried metal were highlighted and prioritized based on probability of containing buried drums. GPR data was processed to the extent required to produce the best quality results. Processing included such things as automatic gain control filtering and other digital filters. Anomalies thought to represent buried metal objects were highlighted on the records and posted on the site base map. Estimates of anomaly dimensions and depth were calculated from the records.

3.1.3 Soil Borings

Soil borings were utilized to further characterize site soils and to provide additional information concerning the horizontal and vertical extent of contamination in the unsaturated zone at the Martin Aaron Site. Borings were made using methods outlined in the project QAPP and in accordance with the Substance and Percolation Waters Act, N.J.S.A. 58:A-4.1. During boring activities, qualified Kimball personnel maintained continuous lithology logs, recorded sample and core characteristics, recorded FID readings, noted first encountered water levels and completed detailed monitoring well construction logs. Soil classifications were made in accordance with the Burmeister Soil Classification System. Borings included the following investigations:

- Interior Borings (former Martin Aaron Building Complex)
- Exterior Borings (On-site + Off-site)
- · Underground Storage Tank (UST) Borings
- Monitoring Well Borings (On-site + Off-site)

3.1.3.1 Interior Borings

Seventeen interior borings were advanced utilizing Geoprobe® continuous split spoon sampling methods in the main process and warehouse areas inside the Martin Aaron main building complex. One additional boring (SB49) was advanced by split spoon sampling via sledgehammer. These borings were drilled to the first occurrence of groundwater. Three of the borings (SB34, SB35 and SB37) along the drainage trench in the central process area, were not completed, due to the presence of a reinforced concrete sub-floor that could not be penetrated by the Geoprobe® or jackhammer. (Refer to Appendix A: Boring Logs). Borings were drilled as follows:

- two borings in the floor drain/trench in the northeastern section of the process area (SB31 and SB32);
- two borings in the pits (one each) located in the southeastern section of the process area (SB38 and SB39);
- two borings in the wash down area in the central process area (SB33 and SB36);

- eight borings placed at strategic intervals throughout the floor of the warehouse area (SB40, SB41, SB42, SB43, SB44, SB45, SB46 and SB47);
- one boring in the process vessel containment area (SB49);
- three borings attempted in the central process area (SB34, SB35 and SB37).

Samples were collected from each completed boring (plus SB35). All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. For borings SB31, SB32, SB33, SB36, SB38, SB40, SB41, SB42, SB43, SB44, SB45, SB46, SB47 and SB49, two samples per boring were sent to the laboratory and analyzed for Target Compound List (TCL) Volatiles + 10 Tentatively Identified Compounds (TIC), TCL Semivolatiles, Target Analyte List (TAL) Metals, Cyanide and TCL Pesticides/Polychlorinated Biphenyls (PCB). For borings SB35 and SB39, one sample per boring was sent to the laboratory and analyzed for TCL volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide, and TCL Pesticide/PCBs. Boring SB38 was also analyzed for Total Organic Halogens (TOX), Total Organic Carbon (TOC) and Particle Size. Borings SB36, SB38, SB39, SB41, SB44 and SB46 were also analyzed for Dioxin/Furan by USEPA SW-846 method 8290. Upon completion, all borings were grout sealed.

3.1.3.2 Exterior Borings

Nineteen exterior borings were drilled, using continuous split spoon sampling methods advanced by a combination of mud rotary and HSA techniques, in strategic locations throughout the open areas of the site. One additional boring (SB29) was drilled on an adjacent property. These borings were drilled to the first occurrence of groundwater, with the exception of boring SB11 (which was advanced to a depth of 63' to delineate the stratigraphy, confining layers and geotechnical properties of the unconsolidated zone in the site area, and borings SB08, SB17, SB19 and SB29 (which were advanced to allow Hydropunch sampling in the strata directly above what was identified as the first confining layer). (Refer to **Appendix A: Boring Logs**). Borings were drilled as follows:

- two borings along the western perimeter of the site (SB01 and SB02);
- four borings along the northern perimeter of the site (SB03, SB06, SB09 and SB14);
- three borings along the eastern perimeter of the site (SB17, SB18 and SB19);
- ten borings placed at strategic intervals throughout the remainder of the open area north of and between the Martin Aaron and Rhodes Drum buildings (SB04, SB05, SB07, SB08, SB10, SB11, SB12, SB13, SB15 and SB16).
- one boring in the mid-eastern portion of the South Jersey Port Corporation property, across the street (S. Broadway) from the site (SB29).

Samples were collected from each boring. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. For borings SB01, SB02, SB03, SB04, SB05, SB06, SB07, SB08, SB09, SB10, SB11, SB12, SB13, SB14, SB15, SB16, SB17, SB18, SB19 and SB29, two samples per boring were sent to the laboratory and analyzed for TCL volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide, and TCL Pesticides/PCB. Borings SB01, SB03, SB05, SB07, SB09, SB12, SB13, SB14, SB16 AND SB19 were also analyzed for TOX, TOC and Particle Size. Borings SB02, SB04, SB06, SB08, SB10, SB13, SB14 and SB16 were also analyzed for Dioxin/Furan. Geophysical samples were taken from potential confining layers in borings SB11, SB22 and SB27. Shelby tubes were planned for this activity but could not be taken due to the dense nature of the material (as evidenced by

our failed attempt on SB22). Thus, the samples were collected via split spoon, were homogenized and remolded; and then the composite tested for vertical permeability. (Refer to **Appendix B** - **Geotechnical Testing Results**). Upon completion, all borings were grout sealed.

3.1.3.3 Underground Storage Tank (UST) Borings

Thirteen borings were drilled to investigate the presence of releases from the UST/AST storage tank area located adjacent to the central process portion of the former Martin Aaron main complex building. These borings were drilled to the first occurrence of groundwater, using the continuous split spoon method, advanced by hollow stem auger (HSA). (Refer to **Appendix A: Boring Logs**). Borings were drilled as follows:

- one boring adjacent to containment dike (SB48);
- two borings north of the tank area near the edge of the concrete apron (SB50 and SB60);
- two borings adjacent to the northern wall of UST 2 (SB51 and SB52);
- two borings adjacent to the northern wall of UST 1 (SB53 and SB54);
- one boring adjacent to the western wall of UST1 (SB55);
- one boring adjacent to the southern wall of UST 1 (SB56);
- two borings adjacent to the southern wall of UST 2 (SB57 and SB58);
- one boring south of the 9' diameter AST (SB59);
- one boring north of the 9' diameter AST (SB61).

Samples were collected from each boring. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. For borings SB50, SB51, SB52, SB53, SB55, SB56, SB57, SB58, SB59, SB60 and SB61, one sample per boring was sent to the laboratory and analyzed for TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide, TCL Pesticides/PCB, and Petroleum Hydrocarbons (TPH). For boring SB48, two samples were sent to the laboratory and analyzed for TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide and TCL Pesticides/PCB. For boring SB54, two samples were sent to the laboratory: the first was analyzed for TCL Volatiles+10; the second was analyzed for TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide, TCL Pesticides/PCB, and TPH. Upon completion, all borings were grout sealed.

3.1.3.4 Monitoring Well Borings

Seven additional exterior borings were drilled for the purpose of installing monitoring wells in prescribed locations on and off-site. Shallow borings were performed using continuous split spoon sampling methods advanced by the HSA technique. Deeper borings were advanced using the mud rotary technique. (Refer to **Appendix A: Boring Logs**). Depths of borings were dictated by optimal placement of well screens in ensuing monitoring well installations. Well clusters MW-1, MW-2 and MW-3 were originally intended to have three borings/wells each (shallow, intermediate & deep water bearing zones). However, observed stratigraphy failed to identify suitable confining layers to support the need for deep wells at this time. Consequently, borings SB21, SB25 and SB28 were not performed. Borings were drilled as follows:

- two borings in the northwest corner of the site drilled for the installation of monitoring well cluster MW-1 (SB20 and SB22);
- two borings along the eastern perimeter of the site drilled for the installation of

- monitoring well cluster MW-2 (SB23 and SB24);
- two borings adjacent to the southern perimeter of the site, on the Comarco Products property, drilled for the installation of monitoring well cluster MW-3 (SB26 SB27);
- one boring in the mid-eastern portion of the South Jersey Port Corporation property, across the street (S. Broadway) from the site, drilled for the installation of MW-4S (SB30).

Samples were collected from selected borings. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. For borings SB20, SB23, SB26 and SB30, two samples per boring were sent to the laboratory and analyzed for TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide and TCL Pesticides/PCB.

3.1.4 Test Pits/Excavations

A total of twenty four test pits (including four multi-pit excavations) and two sewer basin excavations were advanced on the Martin Aaron property to investigate anomalies identified by the geophysical investigation and investigate two sewer basins on the property. (Refer to **Appendix E: Test Pit Logs and Photos**). Test pits/excavations were excavated to the depth required to: expose the source of the observed anomalies; collect grab samples from suspect soils; and obtain samples from any drums or buried containers encountered. Excavation/backfilling/grading were performed by a qualified operator using a Bobcat Model 100 trac-excavator (w/dozer blade). The test pits/excavations were:

- one 20'x2'x5' deep excavation, investigating anomalies EM8 and M3, which uncovered construction debris and a concrete pad (TP01);
- one 12'x2'x5.5' deep excavation, investigating anomaly M3, which uncovered construction debris, a steel pipe and a concrete foundation (TP02);
- one 13'x2'x6' deep excavation, investigating anomaly M3, which uncovered construction debris and a concrete/brick foundation (TP03);
- one 12'x2'x3.5' deep excavation, investigating anomaly M5, which uncovered construction debris, a concrete pad and brick foundation (TP04);
- one 10'x2'x4' deep excavation, investigating anomaly M5, which uncovered construction debris and a concrete structure (TP05);
- one 15'x2'x5' deep excavation plus one (1) 4'x4'x5' deep perpendicular excavation, investigating anomaly M9, which uncovered construction debris and what appeared to be a concrete pipe chase (TP06);
- one 20'x2'x6' deep excavation plus one (1) 8'x2'x5' deep branch excavation, investigating anomaly M8, which uncovered black slag and cinders (TP07);
- one 18'x2'x4.5' deep excavation, investigating anomaly EM1, which uncovered construction debris, a concrete slab and a concrete pipe chase (TP08);
- one 14'x2'x4' deep excavation, investigating anomaly EM1, which uncovered construction debris, a concrete slab and a concrete pipe chase (TP09);
- one 17'x2'x5.5' deep excavation, investigating anomalies EM3 and M7, which uncovered construction debris and a concrete footing (TP10);
- one 15'x2'x5.5' deep excavation plus one (1) 8'x2'x5' deep adjacent excavation, investigating anomaly M1, which uncovered tires, construction debris, what appeared to be empty drum liners and a 1' dia. x 3' long concrete cylinder (TP11 & 11A);
- one 15'x2'x5' deep excavation, investigating anomaly M2, which uncovered black slag

- and construction debris (TP12);
- one 15'x2'x5.5' deep excavation, investigating anomalies M2 and EM4, which uncovered black slag and cinders (TP13);
- one 17'x2'x5.5' deep excavation, investigating anomalies M1 and EM5, which uncovered a concrete footing and a 3.5" dia. metal pipe (TP14);
- one 15'x2'x6' deep excavation, investigating anomaly M6, which uncovered a concrete footing and a 2" dia. metal pipe (TP15);
- one 12'x2'x5.5' deep excavation, investigating anomaly M6, which uncovered black and gray cinders and a 2" dia. metal pipe (TP16);
- one 12'x2'x6' deep excavation plus one 10'x2'x5' deep adjacent excavation, investigating anomaly M6, which uncovered black slag and cinders and one crushed metal drum (TP17 & 17A);
- one 10'x2'x5.5' deep excavation, investigating anomaly EM4, which uncovered black and gray slag, a 8" dia. metal pipe and a 3" dia. metal pipe (TP18);
- one 8'x2'x4.5' deep excavation, investigating the southeast corner of the site, which uncovered black and gray cinders and a 4" dia. metal pipe (TP19);
- one 12'x2'x6.5' deep excavation, investigating anomalies M4 and EM7, which uncovered black slag and a concrete/brick foundation (TP20);
- one 13'x2'x5' deep excavation, investigating anomaly M4, which uncovered black slag, plastic buckets, drum liners w/small amount of liquid, drum rings, partial fiber drums, various pieces of scrap metal and a "pocket" of a white powdery substance (TP21);
- one 12'x2'x5.5' deep excavation, investigating anomalies M4 and EM7, which uncovered construction debris and a brick structure (TP22);
- one 13'x2'x5.5' deep excavation, perpendicular to TP21 (M4), which uncovered black slag, plastic buckets, drum liners, wood and pieces of railroad rail (TP23);
- one 12'x3'x4' deep excavation, in concrete apron adjacent to the UST area (M10 and EM10), which uncovered a concrete slab, some conduit pipe and a 10" dia. vertical pipe (TP24);
- one 10'x2'x4' deep excavation, investigating sewer basin 4, which uncovered construction debris and the inlet pipe (SE03);
- one 8'x2'x6' deep excavation and one 6'x2'x4' deep perpendicular excavation, investigating sewer basin 2, which uncovered black cinders, construction debris and a metal outlet pipe (SE01).

Samples were collected from selected test pits/excavations. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. For test pits/excavations TP01, TP06, TP09, TP10, TP13, TP14, TP17, TP18, TP20, TP21, TP24, SE01 and SE03, one sample per location was sent to the laboratory and analyzed for TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide and TCL Pesticides/PCB. For test pit TP05, one sample was sent to the laboratory and analyzed for TCL Semivolatiles+20, TAL Metals, Cyanide and TCL Pesticides/PCB. One additional sample was collected from a white powder discovered in test pit TP21. This sample was submitted to the laboratory and analyzed for TCL Semivolatiles+20, TAL Metals, Cyanide, TCL Pesticides/PCB and RCRA Compatibility. Sampling procedures followed those outlined in the final QAPP for soil sampling. Upon completion, each test pit/excavation was backfilled by replacing the exhumed material in shallow lifts and compacting it with the excavator bucket. Each location was then finish graded to approximate original contour using the dozer blade of the machine. Excess soils and/or excavated drum parts and liners were overpacked in approved drums pending disposal.

3.1.5 Monitoring Well Installations

Seven monitoring wells were installed on and in the vicinity of the Martin Aaron site, to evaluate extent and level of potential groundwater contamination, characterize site hydrogeology and validate the possibility of off-site migration of said contamination. Installations included:

- one monitoring well cluster in the northwest corner of the site consisting of two wells identified as MW-1S (shallow) and MW-1M (intermediate);
- one monitoring well cluster along the eastern perimeter of the site consisting of two wells identified as MW-2S (shallow) and MW-2M (intermediate);
- one monitoring well cluster adjacent to the southern perimeter of the site, on the Comarco Products property, consisting of two wells identified as MW-3S (shallow) and MW-3M (intermediate);
- one monitoring well in the mid-eastern portion of the South Jersey Port Corporation property, across the street (S. Broadway) from the site, identified as MW-4S (shallow).

The monitoring wells were installed in borings advanced for the soils investigation described above. Shallow unconsolidated wells MW-1S, MW-2S, MW-3S and MW-4S were installed in borings SB20, SB23, SB26 and SB30, respectively. Intermediate unconsolidated wells MW-1M, MW-2M and MW-3M were installed in borings SB22, SB24 and SB27, respectively. Well Construction details are provided in **Table 2 - Monitoring Well Construction Details**.

3.1.5.1 Shallow Unconsolidated Wells

Four shallow unconsolidated wells (as described above) were installed on-site and on adjacent properties to obtain near-surface unconsolidated zone physical and hydraulic characteristics plus groundwater quality characteristics. Hollow stem augers (8" outside dia.) were used to extend the boreholes to depths necessary to successfully screen each well across the water table. A four inch dia., schedule 40 polyvinyl chloride (PVC) monitoring well was installed in each boring with a ten feet long four inch dia., 010 slot well screen situated across the water table phreatic surface, with at least two feet of screen above said surface. The well screen and riser were situated in the center of the borehole. A #1 Morie sand gravel pack was place in the annular space, extending one to two feet above the screened interval. A #00 Morie fine sand pack, one foot in thickness, was placed on top of the gravel pack. The remainder of the annular space was filled with bentonite grout and/or Portland cement.

The monitoring wells were finished with water-tight, flush-mounted protective casings with twelve inch dia. covers. Each cover is clearly marked "Monitoring Well" and is stamped with the corresponding New Jersey Well Permit number. Riser pipes are fitted with water-tight, locking well caps, with locks for which all keyed alike.

After a suitable hiatus (min. 24 hours) allowing the grout in each well to "cure", the wells were developed by pumping until a turbid-free discharge was observed. A minimum of five well volumes were purged from each well. Three measurements of temperature, pH and specific conductivity were recorded during each episode. (Refer to Appendix F: Monitoring Well Construction Diagrams, Well Permits and Appendix G: Well Development Records, Permits).

3.1.5.2 Intermediate Unconsolidated Wells

Three intermediate unconsolidated wells (as described above) were installed on-site and on an adjacent property to obtain unconsolidated zone physical and hydraulic characteristics plus groundwater quality characteristics immediately above the first confining layer beneath the site. Hollow stem augers (8" outside dia.) were used to extend the boreholes to depths necessary to successfully screen each well just above what was identified to be that first continuous confining layer. A four inch dia., schedule 40 polyvinyl chloride (PVC) monitoring well was installed in each boring with a ten feet long four inch dia., .010 slot well screen place directly above the first evidence of said confining layer. The well screen and riser were situated in the center of the borehole. A #1 Morie sand gravel pack was place in the annular space, extending to two feet above the screened interval. A f#00 Morie fine sand pack, one foot in thickness, was placed on top of the gravel pack. The remainder of the annular space was filled with bentonite grout and/or Portland cement.

The monitoring wells were finished with water-tight, flush-mounted protective casings with twelve inch dia. covers. Each cover is clearly marked "Monitoring Well" and is stamped with the corresponding New Jersey Well Permit number. Riser pipes are fitted with water-tight, locking well caps, with locks for which all keyed alike.

After a suitable hiatus (min. 24 hours) allowing the grout in each well to "cure", the wells were developed by pumping until a turbid-free discharge was observed. A minimum of five well volumes were purged from each well. Three measurements of temperature, pH and specific conductivity were recorded during each episode. (Refer to Appendix F: Monitoring Well Construction Diagrams, Well Permits and Appendix G: Well Development Records).

3.1.6 Groundwater Level Measurements

Two rounds of groundwater synoptic water level measurements were obtained from all newly constructed monitoring wells. The first round was taken on 8/14/97 during the first round of water sampling. The second round was taken on 9/15/97 during the second round of water sampling. (Refer to Appendix F: Monitoring Well Construction Diagrams, Well Permits for measurement results). Groundwater level measurements were procured using a decontaminated water level indicator/electronic interface probe. No product interfaces were observed. Water levels were documented in both the field log book and on well sampling logs. (Refer to Appendix C: Sampling Logs). Groundwater level measurements and calculated groundwater elevations are provided in Table 3 – Groundwater Elevation Measurements. Visual representation of the phreatic surface of groundwater for each round of measurement can be found on Figure 8, Shallow Groundwater Contour Map – 8/14/97 and 9/15/97.

3.1.7 Monitoring Well Sampling

Two rounds of monitor well sampling, spaced one month apart, were conducted to evaluate the groundwater quality characteristics of the site and to assess the possibility of migration of contamination from the site. Seven newly installed monitoring wells and one existing City of Camden municipal well, located approximately 3500 feet southeast of the site, were sampled. The monitoring wells were purged using a centrifugal pump (minimum three well volumes removed) and then sampled using disposable teflon bailers. Grab samples were collected directly from the sampling port on the municipal well pump after opening the valve and allowing it to run for approximately five minutes to purge the line. Sampling

procedures followed those outlined in the final QAPP for monitoring well sampling. Monitoring well samples were sent to the laboratory for analysis of TCL Volatiles+30, TCL Semivolatiles+30, TAL Metals and TCL Pesticides/PCB. Municipal well samples were sent to the laboratory for analysis of (USEPA SW846) method 524.2 Volatiles, Low Level Base Neutrals (BN), Low Level Metals and method 508 Pesticide/PCBs. (Refer to **Appendix C: Sampling Logs**).

3.1.8 Hydropunch® Sampling

Groundwater screening samples were collected from twelve of the exterior soil borings described in section 3.1.3 above. Samples were collected using a Hydropunch® II sampler. Hydropunch® sample locations were determined in the field based on geophysical investigation findings and field observations. Sample locations (SB01, SB06, SB07, SB08, SB10, SB13, SB14, SB15, SB16, SB17, SB19, and SB29) were chosen based on an expected groundwater flow direction from west to east, to evaluate groundwater in the vicinity of sewer basins, and evaluate groundwater in areas of suspected buried drums.

Soil borings SB01, SB06, SB07, SB10, SB13, SB14, SB15 and SB16 were advanced following procedures outlined in section 3.1.3 above. Once the groundwater table was reached, borings were advanced a minimum of two feet below this depth for the collection of groundwater samples. A Hydropunch® II sampler was driven into the saturated soils for the collection of water samples. The Hydropunch® consists of a hollow, stainless steel tube equipped with a polyethylene screen and drive point. The device is driven into the saturated zone to a sufficient depth as to create adequate hydrostatic head to partially fill the hollow body when the drive point is removed. Once the device is driven to the desired depth, the device is retracted a short distance which exposes the screen. The Hydropunch® was allowed to sit undisturbed for a sufficient amount of time to allow the required amount of formation water to enter the hollow tube. A Teflon bailer was lowered into the hollow tube to collect the water samples.

Soil borings SB08, SB17, SB19 and SB29 were extended to allow collection of a groundwater screening sample from immediately above the first confining layer. Borings will be extended following procedures described above using hollow stem auger drilling techniques. Once the total depth of boring was reached, groundwater samples were collected using the Hydropunch® methodology described above. Two attempts were required at SB19, due to malfunction of the Hydropunch® device during retraction.

Sampling procedures followed those outlined in the final QAPP for monitoring well sampling. One groundwater screening sample per boring was collected and sent to the laboratory for volatile organic analysis (USEPA SW-846 Method 8240/8260).

3.1.9 Sediment Sampling

Grab samples SD01 and SD02 were collected from the sediment material found in sewer basins 1 and 4 respectively. The samples were collected by scooping the sediment from the bottoms of each basin using a stainless steel/high density polyethylene (HDPE) dredging device. Samples collected were sent to the laboratory for analysis of TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide and TCL Pesticides/PCB.

3.2 Phase II Field Investigation Activities (September to November 1998)

3.2.1 Soil Borings

Soil borings were utilized to further characterize site soils and to provide additional information concerning the horizontal and vertical extent of contamination in the unsaturated zone at the Martin Aaron Site. Borings were advanced as described in Section 3.1.3 above using a combination of hollow stem augering, rotary drilling, GeoProbe®, and split spoon sampling and in accordance with the project QAPP. Borings included the following investigations:

- · Interior Borings (Former Martin Aaron Building Complex)
- · Exterior Borings (On-site + Off-site)
 - Monitoring Well Borings (On-site + Off-site)
- Re-sampling Borings (On-site)

3.2.1.1 Interior Borings

Three interior borings were advanced utilizing continuous split spoon sampling methods in the former one story brick structure immediately west of the former processing areas inside the Martin Aaron main building complex. (Refer to **Appendix A: Boring Logs**). Borings were drilled as follows:

- one boring in the southwest corner of the former one-story brick structure (SB111);
- one boring in the northwest corner of the former one-story brick structure (SB111);
- one boring in the eastern portion of the former one-story brick structure (SB112);

Samples were collected from each completed boring. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. Two samples per boring were sent to the laboratory and analyzed for TCL Volatiles+10, TCL Semivolatiles+20, TAL Inorganics, Cyanide and TCL Pesticides/PCBs. Upon completion, all borings were grout sealed.

3.2.1.2 Exterior Borings

Fifty four exterior borings were drilled, using continuous split spoon sampling methods advanced by a combination of Geoprobe® and HSA techniques, in strategic locations in the open areas of the site, at off-site locations surrounding the property border, and on the South Jersey Property located west of the site across Broadway. These borings were advanced to the first occurrence of groundwater (Refer to Appendix A: Boring Logs). Borings were advanced as follows:

- Seventeen borings on the South Jersey Port Corporation property, across the street (S. Broadway) and west of the site (SB63 to SB79):
- Five borings just beyond the west property border of the Martin Aaron Site along the east side of South Broadway (SB80 to SB84);
- one boring on property south of the former Martin Aaron Building (SB85);
- ten borings spaced between the north property border and the southern side of Everett Street (SB 86 to SB95).
- nine borings spaced between the east property border and the east side of Sixth Street (SB96 to SB99 and SB105 to SB109).

- two borings north of the former Martin Aaron building and north of the former processing areas (VOA1 and VOA2)
- ten borings strategically located around Total PCB "hot spots" within the yard area of the Martin Aaron property (PCB1 to PCB10)

Samples were collected from each boring. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. For borings SB63 to SB99 and SB105 to SB109, two samples per boring were sent to the laboratory and analyzed for TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide and TCL Pesticides/PCB. For borings VOA1 and VOA2, two samples per boring were sent to the laboratory and analyzed for TCL Volatiles+10. For borings PCB1 to PCB8 and boring PCB10, two samples were collected and field screened for Total PCB utilizing the Ensys Inc. PCB RIS^c® Soil Test System. Due to sample recovery problems, one sample was collected from boring PCB9 and field screened for Total PCB using the above system.

3.2.1.3 Monitoring Well Borings

Seven additional exterior borings were drilled for the purpose of installing monitoring wells in prescribed locations on and off-site. Shallow borings were performed using continuous split spoon sampling methods advanced by the HSA technique. Deeper borings were advanced using the mud rotary technique. (Refer to **Appendix A: Boring Logs**). Depths of borings were dictated by optimal placement of well screens in ensuing monitoring well installations. Borings were drilled as follows:

- one boring in the central portion of the yard area north of the former Martin Aaron building for the installation of monitoring well MW5S (SB115);
- one boring in the former processing area north of the former Martin Aaron building and east of the existing under ground storage tanks for the installation of monitoring well MW7S (SB113);
- one boring east of the former processing areas of the former Martin Aaron building for the installation of monitoring well MW6S (SB114);
- one boring in the northwestern corner of the South Jersey Port Corporation property, across the street (S. Broadway) from the site, drilled for the installation of monitoring well MW8S (SB62);
- two borings southeast of the Martin Aaron site on the east side of Sixth Street for the installation of monitoring well cluster MW9 (SB116 and MW9D);
- one boring east of the Martin Aaron site on the east side of Sixth Street for the installation of monitoring well MW10S;

Samples were collected from selected borings. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. For borings SB62, SB113, SB114, SB115 and SB116, two samples per boring were sent to the laboratory and analyzed for TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide and TCL Pesticides/PCB.

3.2.1.4 Re-Sampling Borings

Validation of analytical results for samples collected by Kimball between May 12, 1997 and September 16, 1997 indicate all semi-volatile and some volatile results were rejected for not meeting contract

Quality Assurance Requirements as described in Section 4.4.2.1 below. Kimball was directed by the State to present a Corrective Action Plan outlining the method and justification for re-sampling of surface and sub-surface soil. Based on the approved re-sampling plan, fourteen additional soil borings were advanced throughout the yard area and within the warehouse portion of the former Martin Aaron building for the purpose of re-sampling. Borings were advanced as described in Section 3.1.1 above using a combination of GeoProbe®, and split spoon sampling and in accordance with the project QAPP. Borings were advanced as follows:

- three building interior borings within the former three-story warehouse portion of the former Martin Aaron building adjacent to existing soil borings SB42, SB43 and SB46 designated as SB42A, SB43A and SB46A, respectively.
- eleven exterior borings adjacent to existing borings SB01, SB02, SB03, SB09, SB11, SB13, SB15, SB16, SB23, SB19 and existing test pit TP13 designated as SB01A, SB02A, SB03A, SB09A, SB11A, SB13A, SB15A, SB16A, SB23A, SB19A and TP13A, respectively.

Samples were collected from each boring. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. For boring SB01A, two samples were sent to the laboratory and analyzed for TCL Volatiles+10 and TCL Semivolatiles+20. For the remaining borings, two samples per boring were sent to the laboratory and analyzed for TCL Semivolatiles+20.

3.2.2 Monitoring Well Installations

Seven monitoring wells were installed on and in the vicinity of the Martin Aaron site, to further evaluate extent and level of potential groundwater contamination, characterize site hydrogeology and validate the possibility of off-site migration of said contamination. Monitoring well construction details are provided in **Table 2**. Installations included:

- one shallow monitoring well in the central portion of the yard area north of the former Martin Aaron building identified as MW5S;
- one shallow monitoring well in the former processing area north of the former Martin Aaron building and east of the existing under ground storage tanks identified as MW7S;
- one shallow monitoring well east of the former processing areas of the former Martin Aaron building identified as MW6S;
- one shallow monitoring well in the northwestern corner of the South Jersey Port Corporation property, across the street (S. Broadway) from the site, identified as MW8S;
- one monitoring well cluster consisting of two wells southeast of the Martin Aaron site on the east side of Sixth Street identified as MW9S (shallow) and MW9D (intermediate);
- one shallow monitoring well east of the Martin Aaron site on the east side of Sixth Street identified as MW10S;

3.2.2.1 Shallow Unconsolidated Wells

Six shallow unconsolidated wells (as described above) were installed on-site and on adjacent properties to obtain near-surface unconsolidated zone physical and hydraulic characteristics plus groundwater quality characteristics. Shallow monitoring wells were installed and developed as described in Section 3.1.5.1 above (Refer to Appendix F: Monitoring Well Construction Diagrams, Well Permits).

3.2.2.2 Intermediate Unconsolidated Wells

one intermediate unconsolidated well (as described above) was installed down-gradient of the site to obtain unconsolidated zone physical and hydraulic characteristics plus groundwater quality characteristics immediately above the first confining layer beneath the site. Intermediate monitoring wells were installed and developed as described in Section 3.1.5.2 above (Refer to Appendix F: Monitoring Well Construction Diagrams, Well Permits and Appendix G: Well Development Records).

3.2.3 Groundwater Level Measurements

One round of groundwater synoptic water level measurements were obtained from all newly constructed monitoring wells and existing monitoring wells installed as part of the first investigation phase. Synoptic water level measurements were taken on 11/10/98 during the groundwater sampling event (Refer to Appendix F: Monitoring Well Construction Diagrams, Well Permits for measurement results). Groundwater level measurements were procured using a decontaminated water level indicator/electronic interface probe. No product interfaces were observed. Water levels were documented in both the field log book and on well sampling logs. (Refer to Table 3 and Appendix C: Sampling Logs). Visual representation of the phreatic surface of groundwater for each round of measurement can be found on Figure 10, Shallow Groundwater Contour Map - 11/10/98 and Figure 11, Deep Groundwater Contour Map - 11/10/98.

3.2.4 Monitoring Well Sampling

One round of monitoring well sampling was conducted to further evaluate the groundwater quality characteristics of the site and to assess the possibility of migration of contamination from the site. Seven newly installed monitoring wells and seven existing monitoring wells were sampled. Sampling procedures were as described in Section 3.1.7 above. Monitoring well samples were sent to the laboratory for analysis of TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide and TCL Pesticides/PCB (Refer to Appendix C: Sampling Logs).

3.2.5 Monitoring Well Abandonment

Two monitoring wells (MW3S and MW3M) located on the property immediately south of the former Martin Aaron building complex and installed as part of the first phase of investigation were abandoned. Well abandonment took place on 11/16/98 and was performed by James C. Anderson Associates, Inc. of Mt. Laurel, New Jersey (JCA). Well abandonment procedures were in accordance with NJDEP Bureau of Water Allocation requirements (Refer to Appendix F: Monitoring Well Construction Diagrams).

Phase III Field Investigation Activities (December 1999 to March 2000)

3.3.1 Soil Borings

3.3

Soil borings were utilized to further characterize site soils and to provide additional information concerning the horizontal and vertical extent of contamination in the unsaturated zone at the Martin Aaron Site. Borings were advanced as described in Section 3.1.3 above using a combination of hollow stem augering, rotary drilling, GeoProbe®, and split spoon sampling and in accordance with the project QAPP. Borings included the following investigations:

- Pesticide/PCB Delineation Borings (On-site)
- · Semivolatile Delineation Borings (On-site + Off-site)
 - Rhodes Building Investigation Borings (On-site + Off-site)
 - Monitoring Well Borings (Off-site)

3.3.1.1 Pesticide/PCB Delineation Borings

Fourteen Pesticide/PCB Delineation borings were advanced, utilizing continuous split spoon sampling methods and Geoprobe® techniques, in areas north and east of the former processing areas of the former Martin Aaron main building complex. (Refer to **Appendix A: Boring Logs**). Borings were drilled as follows:

- Four borings in the west-central portion of the yard area around previous boring SB04 (SB144, SB145, SB146, SB147);
- Four borings in the north-central portion of the yard area around previous test pit TP09 (SB148, SB149, SB150, SB151);
- a. Three borings immediately north of the former Martin Aaron building north and east of previous boring SB08 (SB152, SB153, SB154);
- b. Three borings east of the former Martin Aaron building east of previous test pit TP05 (SB155, SB156, SB157);

Samples were collected from each completed boring. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. Two (2) samples per boring were sent to the laboratory and analyzed for TCL Pesticides/PCBs. Upon completion, all borings were grout sealed.

3.3.1.2 Semivolatile Delineation Borings

Ten Semivolatile Delineation borings were advanced, using continuous split spoon sampling methods and Geoprobe® techniques, along the east property border and at off-site locations on the South Jersey Port Property located west of the site across Broadway and north of the Martin Aaron property (Refer to Appendix A: Boring Logs). Borings were advanced as follows:

- Four borings along the east property border around previous boring SB23 (SB134, SB135, SB136, SB137);
- Four borings on the South Jersey Port Corporation property around previous boring SB75 located across the street (S. Broadway) and west of the site (SB138, SB139, SB140, SB141);
- Two borings spaced between the north property border and the southern side of Everett Street near previous boring SB88 (SB142, SB143).

Samples were collected from each boring. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. Two samples per boring were sent to the laboratory and analyzed for TCL Semivolatiles+20. Upon completion, all borings were grout sealed.

3.3.1.3 Rhodes Building Investigation Borings

Sixteen Rhodes Building Investigation borings were advanced, using continuous split spoon sampling methods and Geoprobe® techniques, within the building, adjacent to the building to the east, north and west, along the east and south property borders and at off-site locations southeast of the building along Sixth Street. (Refer to Appendix A: Boring Logs). Borings were advanced as follows:

- Eight borings around the perimeter of the former Rhodes building (SB118, SB119, SB120, SB121, SB122, SB123, SB124, SB129);
- Four borings within the former Rhodes building (B125, SB126, SB127, SB128);
- Two borings along the east property border (SB130, SB131);
- Two borings off-site and southeast of the former Rhodes building along the west side of Sixth Street (SB132, SB133);

Samples were collected from each boring. All samples were screened with a flame-ionization detector (FID) for volatiles and visually inspected for staining. Sampling procedures followed those outlined in the final QAPP for soil sampling. For borings SB118, SB122, SB124, SB126, SB127, SB129, SB130, SB131, SB132, SB133 two samples per boring were sent to the laboratory and analyzed for TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide and TCL Pesticides/PCB. For borings SB119, SB120, SB121, SB123, SB125 and SB128, two samples per boring were sent to the laboratory and analyzed for TCL Volatiles+10. Upon completion, all borings were grout sealed.

3.3.1.4 Monitoring Well Borings

Two additional borings were drilled for the purpose of installing monitoring wells in prescribed off-site locations. Shallow borings were performed using continuous split spoon sampling methods advanced by the HSA technique. Deeper borings were advanced using the mud rotary technique. (Refer to Appendix A: Boring Logs). Depths of borings were dictated by optimal placement of well screens in ensuing monitoring well installations. Borings were drilled as follows:

Two borings along the south side of Jackson Street approximately 800 feet southeast of the Martin Aaron Property for the installation of monitoring well cluster MW11 (MW11S and MW11M).

3.3.2 Monitoring Well Installations

Two monitoring wells were installed in the vicinity of the Martin Aaron site, to further evaluate extent and level of potential groundwater contamination, characterize site hydrogeology and validate the possibility of off-site migration of said contamination. Well construction details are provided in **Table 2**. Installations included:

- one monitoring well cluster consisting of two wells southeast of the Martin Aaron site on the south side of Jackson Street identified as MW11S (shallow) and MW11 (intermediate);

3.3.2.1 Shallow Unconsolidated Wells

One shallow unconsolidated well (as described above) was installed off-site and down-gradient to obtain near-surface unconsolidated zone physical and hydraulic characteristics plus groundwater quality characteristics. The shallow monitoring well was installed and developed as described in Section 3.1.5.1 above (Refer to Appendix F: Monitoring Well Construction Diagrams, Well Permits and Appendix G: Well Development Records, Permits).

3.3.2.2 Intermediate Unconsolidated Wells

One/intermediate unconsolidated well (as described above) was installed down-gradient of the site to obtain unconsolidated zone physical and hydraulic characteristics plus groundwater quality characteristics immediately above the first confining layer beneath the site. The intermediate monitoring well was installed and developed as described in Section 3.1.5.2 above (Refer to Appendix F: Monitoring Well Construction Diagrams, Well Permits and Appendix G: Well Development Records).

3.3.3 Groundwater Level Measurements

Two rounds of groundwater synoptic water level measurements were obtained from both newly constructed monitoring wells and existing monitoring wells (excluding MW3S, MW3M and MW7S which were previously abandoned or removed) installed as part of the first and second investigation phases. Synoptic water level measurements were taken on 1/18/00 during the first groundwater sampling event and 2/17/00 during the second groundwater sampling event (Refer to Appendix F: Monitoring Well Construction Diagrams, Well Permits for measurement results). Groundwater level measurements were procured using a decontaminated water level indicator/electronic interface probe. No product interfaces were observed. Water levels were documented in both the field log book and on well sampling logs. (Refer to Table 3 and Appendix C: Sampling Logs). Visual representation of the phreatic surface of groundwater for each round of measurement can be found on Figure 12, Shallow Groundwater Contour Map 1/18/00 and 2/17/00, and Figure 13, Deep Groundwater Contour Map 1/18/00 and 2/17/00.

3.3.4 Monitoring Well Sampling

Two rounds of monitoring well sampling were conducted to further evaluate the groundwater quality characteristics of the site and to assess the possibility of migration of contamination from the site. Sampling procedures were as described in Section 3.1.7 above. Monitoring well samples were sent to the laboratory for analysis of TCL Volatiles+10, TCL Semivolatiles+20, TAL Metals, Cyanide and TCL Pesticides/PCB (Refer to **Appendix C: Sampling Logs**). During the first sampling round (1/18/00 to 1/20/00), two newly installed monitoring wells and eleven existing monitoring wells were sampled (all wells but MW3M, MW3S and MW7S which we. Candoned or removed). During the second sampling round (2/17/00), only the two new monitoring wells (MW11S and MW11M) were sampled.

4.0 QUALITY ASSURANCE

4.1 Analytical Methodologies

Soil, water, and sediment samples were analyzed for concentrations of inorganic and organic contaminants using field screening and contract laboratory program procedures. For laboratory analytical procedures, approved EPA/NJDEP methods in combination with standard operating procedures (SOP) for QA/QC were utilized.

Samples collected in the field during the first investigation phase were analyzed by Accredited Laboratories, Inc. of Carteret, NJ and Quanterra Inc. of Knoxville, TN. Samples collected during the second and third investigation phases were analyzed by Ecology and Environment Inc., of Lancaster, NY. Table 4 - Sample Container, Preservation, Holding Time and Analytical Methodology Requirements provides a summary by matrix and analytical parameter of the analyses performed, plus containerization requirements, preservation requirements, holding times, and analytical methods.

Full documentation of all handling and analytical procedures and analytical results was included in the laboratory data packages. This information was reviewed by the L. Robert Kimball and Associates project chemist in order to ensure that all procedures were followed.

QA/QC samples were utilized throughout the field operation to ensure the quality and reproducibility of the data. QA/QC field duplicate samples were processed every twenty (20) unique samples per matrix. Additional QA/QC samples were processed if the QA/QC results fell outside the data quality objectives, or if the field chemist determined that additional QA/QC samples were required.

4.2 Sample Management

This section details the general procedures followed during collection, packaging, handling, and shipping of samples. Sample management and quality control was initiated at the laboratory during preparation and packaging of sample containers, continued through field investigation and sample preparation activities, and ended when laboratory analyses are validated and accepted.

4.2.1 Field Sample Management

Sample identification was developed relative to sampling matrix, location, and depth. Results of field screening and analyses were recorded in the field log book. A sample label was prepared for each sample and logged both in the field log book and on the chain of custody form. Sample labels included sample identification number, collection date and time, sample type, analyses desired, preservation type, and sampler identification.

Once sample containers were filled and labeled, the samples were packaged in coolers with ice to maintain the desired temperature of four (4) degrees Celsius. Sample coolers were transported to the laboratory separated from potential sources of contamination of external influences, such as fuels. If sampling was completed in one day, the samples were delivered within twenty-four (24) hours of collection to the laboratory. If sampling continued for more than one day, then the samples were shipped to the laboratory within 48 hours of collection, with total handling time not to exceed sixty hours from time of collection.

The field chain of custody form documented control of sample jars from laboratory to field, and samples from field to laboratory. Internal laboratory records then documented the custody of the sample through its final disposition. All sample containers were traceable from initial preparation at the laboratory, through field use, and to final disposal as follows:

- 1. The field sampler accepted the sample containers from the laboratory, and monitored the care and custody of the environmental samples until custody was properly transferred.
- 2. Sampling information was entered on the chain of custody form immediately after sample labeling.
- 3. A separate chain-of-custody form was completed for each shipment. Shipping containers were sealed any time the container was not in the control of the person assigned for custody as designated and documented on the chain-of- custody form.
- 4. The person relinquishing samples requested the signature of a representative of the party receiving custody of the samples. If a representative was unavailable or refused to sign, the circumstances, location, and time were noted in the "Received by" space and the "Remarks" space of the chain-of-custody form.

4.2.1.1 Sample Preservation

Sample preservation was dependent upon the analytical program specified for each sample. Preservation methodologies were followed as outlined in Table 3. These procedures conformed to those given in <u>Technical Additions to Methods for Chemical Analysis of Water and Wastes</u>, EPA-600/4-82-005 and the <u>NJDEP Field Sampling Procedures Manual</u>, May 1992.

Preservatives were added to the sample bottles by the laboratory prior to shipment to the field. Following collection, samples were maintained at 4°C until analyzed by the contract laboratory.

4.2.1.2 Sample Storage

Sampling and blanks, both in the field and laboratory, were stored in a refrigerated (at 4 degrees Celsius), secure area until required analyses were completed. Field and laboratory storage were the responsibility of the Field Sampling Supervisor and Laboratory Manager, respectively. In general, samples will not be retained longer than six months beyond the completion of analysis, unless otherwise specified.

4.2.1.3 Sample Holding/Handling Times

Sample control was strictly maintained from sample acquisitions through analysis in order to assure that the sample was representative. Maximum holding/handling time requirements are shown in Table 4.

4.2.1.4 Field Sample Custody

The following procedures were enforced to ensure that control of each sample was maintained from collection, during analysis, and through data reduction. The field chain-of-custody form documented

control of sample jars from laboratory to field, and of samples from field to laboratory. Internal laboratory records then documented the custody of the sample through its final disposition.

Sample Identification:

Field measurements were recorded directly in the Field Logbook, along with identifying information (project code, station numbers, station location, date, time, samplers), field observations, and remarks. Examples of field measurements included pH, temperature, conductivity, water levels, and FID readings.

Soil and water samples were labeled, packaged and transported from the sample location to the laboratory. The sample label included: sampling location, collection date and time, type of analyses required and preservation notes. The sample label also identified the sample as a grab or a composite sample and identified the sample matrix (water or soil).

Field Chain of Custody Procedures:

All samples were traceable from the time the samples were collected until they or their derived data were incorporated into the final report. In order to maintain and document sample possession, the following chain-of-custody procedures were used.

- a) Samples were collected as described in the project QAPP.
- b) The field sampling supervisor was personally responsible for the care and custody of the samples collected until they were properly transferred or dispatched.
- c) During sampling, field blank samples were prepared, as established in the Plan and as appropriate (with and without preservatives).
- d) Logbook pages and other records were signed and dated.
- e) When photographs were taken of the sampling as part of the documentation procedure, the name of the photographer, date, time, site location and site description were entered sequentially in the Logbook as photos were taken. Once developed the photographic prints were serially numbered corresponding to the Logbook descriptions.
- f) Sample labels were completed using waterproof ink unless prohibited by weather conditions, e.g., a logbook notation would explain that a pencil was used to fill out the sample label because a ballpoint pen would not function in freezing weather.
- g) The Site Manager determined whether proper custody procedures were followed during the field work and decided if additional samples were required.
- h) Samples were accompanied by a Chain-of-Custody Record. When transferring the possession of samples, the relinquishing and receiving individuals signed, dated, and noted the item on the Record. This Record documented sample custody transfer from the sampler, often through another person, to the analyst in the laboratory.

- i) Samples were packaged properly for shipment, dispatched to the appropriate laboratory for analysis, and accompanied by a separate custody record for each shipment. Shipping containers were sealed for shipment to the laboratory. The method of shipment, courier name(s), and other pertinent information were entered in the "Remarks" section on the custody record.
- j) All shipments were accompanied by Chain-of-Custody Records which identified their contents. An original Record accompanied each shipment, and a copy was retained by the Sampling Supervisor.
- k) If sent by mail, the package was registered with return receipt requested. If sent by common carrier, proper documentation was maintained.

4.2.2 Laboratory Sample Management

A designated sample custodian accepted custody of the shipped samples and verified that the information on the sample labels matched that on the Chain-of-Custody Records. Pertinent information concerning shipment, pickup, courier, etc., was entered in the "Remarks" section. The custodian then entered the sample label information into a bound logbook which was arranged by project code and station number.

The laboratory custodian used the sample label number or assigned a unique laboratory number to each sample label. All samples were transferred to the proper analyst or stored in an appropriate secure area.

4.2.3 Field Documentation

During installation procedures, a detailed record of drilling and sampling operations and geological material was maintained in accordance with the project QAPP. These procedures were obtained from the USEPA Compendium of Methods. All entries were legible, initialed and dated.

4.3 Equipment Decontamination

All equipment used for sample collection was properly decontaminated before use to prevent cross-contamination from prior sampling locations. Sample containers used for sample packaging were provided by the laboratory performing the analysis. Field monitoring equipment was wiped with a clean disposable wipe and rinsed with distilled/deionized water. All sampling equipment was cleaned, marked, and wrapped in foil prior to delivery to the field and between uses. Where possible, dedicated sampling equipment was utilized.

4.3.1 Soil Sampling Equipment Decontamination

Field sampling equipment employed to collect or hold non-aqueous samples was decontaminated prior to use as follows:

- 1. Visible contamination was removed from the equipment using a brush and/or paper towel saturated with potable water and laboratory grade soap.
- 2. The equipment was rinsed with potable water to remove residual soap and solids.
- 3. The final equipment rinse was performed with distilled/deionized water.

If the above procedures failed to remove all visible contamination or if gross contamination was suspected at the sampling location, then the equipment was further decontaminated as follows:

- 4. If metals were to be analyzed, the equipment was rinsed with a 10% nitric acid solution (1% solution for carbon steel equipment to prevent leaching of metals).
- 5. The equipment was rinsed with distilled/deionized water.
- 6. If the sample was to be analyzed for organic contaminants, the equipment was rinsed with laboratory grade acetone or methanol, and then air dried.
- 7. The equipment was rinsed with distilled/deionized water.
- 8. The equipment was protected from new contamination by wrapping in aluminum foil or it was stored in a polyethylene bag.
- 9. Decontamination methodology, date, time, and responsible personnel were recorded in the field log book.

4.3.2 Water Sampling Equipment Decontamination

All water sampling equipment was properly decontaminated before each use. For each day of sampling, field sampling equipment was dedicated to a particular sampling point. The field sampling equipment was decontaminated prior to use in the field and between uses as follows:

- 1. Visible contamination was removed from the equipment using a brush and/or paper towel saturated with potable water and laboratory grade soap.
- 2. The equipment was rinsed with potable water to remove residual soap and solids.
- 3. The second equipment rinse was performed with distilled/deionized water.
- 4. If metals were to be analyzed, the equipment was rinsed with a 10% nitric acid solution (1% solution for carbon steel equipment to prevent leaching of metals).
- 5. The equipment was rinsed with distilled/deionized water.
- 6. If the sample was to be analyzed for organic contaminants, the equipment was rinsed with laboratory grade acetone or methanol, and allowed to air dry or cleaned with nitrogen.
- 7. The equipment was rinsed with distilled/deionized water.
- 8. The equipment was protected from new contamination by wrapping in aluminum foil or storing in a polyethylene bag. The equipment was labeled or tagged with a number and date and time of cleaning.
- 9. Decontamination methodology, equipment number, date, time, and responsible personnel were documented in the field log book.

Decontamination liquids and solids were collected in a plastic lined decon pad.

4.3.3 Well Purging Equipment Decontamination

Centrifugal pumps used for well evacuation prior to well sampling were field decontaminated prior to and between each use. New polyethylene (ASTM Grade) tubing was used for each well and did not require decontamination. The new tubing was rinsed/wiped with distilled/deionized water prior to placement in the well. Submersible pumps were decontaminated as follows:

1. Visible contamination was removed from the pump casing and electrical leads using a

- brush and/or paper towel saturated with potable water and laboratory grade soap.
- 2. The equipment was rinsed with potable water.
- 3. The pump was flushed with a minimum of 20 gallons of potable water by submerging the pump in a plastic container filled with potable water.
- 4. The pump casing and electrical leads were again rinsed with distilled/deionized water.
- 5. The equipment was stored on clear polyethylene sheeting to prevent recontamination.
- 6. Decontamination methodology, equipment, date, time and responsible personnel were documented in the field log book.

Decontamination liquids/solids were collected in a plastic lined decon pad.

4.3.4 Heavy Equipment Decontamination

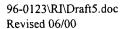
Heavy equipment (excavator/drill rigs) were steam cleaned prior to arrival on-site. Cleaning was also done between drilling/excavation locations using the first two steps of the decontamination procedure in Section 4.3.1. Items which required decontamination between locations included the backhoe bucket, extension arm, tracks, drill auger flights, drill rods and drill bits.

4.4 Laboratory Data Deliverables

This section describes the deliverables and procedures employed in evaluating, reporting, and using the results of environmental sample analyses and quality assurance program analyses. NJDEP standard formats were used for all data deliverables.

4.4.1 Analytical Report Deliverables

Analytical results, quality assurance data, and raw data were provided in NJDEP approved format noted in Appendix A of the <u>Proposed Technical Requirements for Site Remediation NJAC 7:26E</u>. Analytical data packages were provided as Full Laboratory Data Deliverables - USEPA/CLP method for all analysis except Methods 524.2 and 508. Full Laboratory Data Deliverables -Non USEPA/CLP Methods were provided for samples analyzed by Methods 524.2 and 508.


4.4.2 Data Reduction and Reporting

NJDEP is currently in the process of reviewing data packages, validating the laboratory compliance with standard operating procedures and project plans, and providing summaries of environmental and QA results in their report of findings.

4.4.2.1 Data Validation

4.4.2.1.1 First Investigation Phase (May 1997 to September 1997)

Data validation has been completed for all data collected and analyzed from the first investigation phase. Results reported in the following sections have been edited to reflect validation comments, qualifiers, and corrections. The following presents a summary of validation results:

- Results of data validation of data collected during the first investigation phase indicate that all (100 percent) semivolatile results including soil, groundwater, sediment and associated blanks have been rejected and deemed unusable due to improper initial calibrations during analysis. Results presented in the following sections only contain semivolatile results from the second and third investigation phases. Where applicable, semivolatile results from the first investigation phase have been flagged with an "R" qualifier and the result omitted.
- Eight soil samples submitted for analysis of TCL volatiles +10 have been rejected and deemed unusable (SB01-2, SB01-4, SB07-2, SB07-3, SB29-2, SB29-3, SB48-2, and SB60-1) due to a rejected continuing calibration (% D exceeded the limit of 40%) and internal standard areas below limits without associated re-analysis.
- Results of data validation of groundwater data collected during the first investigation phase indicate
 that all (100 percent) metals results from the first sampling round including associated blanks have
 been rejected and deemed unusable due to expired Linear Range Analysis determinations and
 expired Detection Limit determinations.
- Two samples submitted for volatile organics (USEPA 524.2) and one sample submitted for pesticides/PCB have been rejected for holding time exceedances and retention time exceedances, respectively.
- For data collected during the second round of groundwater sampling, four samples submitted for volatile organic analysis were rejected due to a rejected continuing calibration. One sample submitted for pesticide/PCB analysis was rejected for retention time exceedances.
- Several other analytes and compounds were qualified, negated, and/or rejected based on a variety of
 quality assurance issues. Results presented in the remaining sections of this report have been
 corrected based on validation results. All validation results can be found in reports completed by
 Environmental Quality Associates, Inc., Quality Specialists and Environmental Analysts, Inc., and
 the NJDEP.

4.4.2.1.2 Second Investigation Phase (September 1998 to November 1998)

Data validation has been completed for all data collected and analyzed from the second investigation phase. Results reported in the following sections have been edited to reflect validation comments, qualifiers, and corrections. The following presents a summary of validation results:

Several analytes and compounds were qualified, negated, and/or rejected based on a variety of
quality assurance issues. Results presented in the remaining sections of this report have been
corrected based on validation results. All validation results can be found in reports completed by
Environmental Quality Associates, Inc., Quality Specialists and Environmental Analysts, Inc., and
the NJDEP.

4.4.2.1.3 Third Investigation Phase (December 1999 to March 2000)

As of the date of this report, NJDEP data validation has not been complete for this investigation phase. Reported concentrations, findings and conclusions reach in this report must therefore be regarded as qualitative until the validation process is complete.

4.4.2.2 Data Reduction

As part of the data validation process, the analytical results were reduced to include only positive results. These data tables included all qualifier codes and were cross-checked against the analytical results by an individual other than the author to ensure accuracy. In addition to positive results and qualifier codes, the data tables included sampling location and date and laboratory identification numbers. Data were presented according to matrix type (i.e., soil and sediments, groundwater and surface water, etc.).

4.4.2.3 Reporting

Data generated in the field was logged into the field log book, saved on field data loggers where appropriate, and noted on field logs. The field log book will be kept in project files as a hard copy documentation of field conditions, observations, and findings. Sampling and drill logs were prepared to present field data and are included in this report.

5.0 FINDINGS

The following sections describe findings of each of the three investigation phases for the Martin Aaron Site. Detailed findings for the Remedial Investigation are presented in the following appendices:

Appendix A - Boring Logs

Appendix B - Geotechnical Testing Results

Appendix C - Sampling Logs

Appendix D - Building Safety Inspection Report

Appendix E - Test Pit Logs and Photos

Appendix F - Monitoring Well Construction Diagrams, Well Permits

Appendix G - Well Development Records

Appendix H - Geophysical Data

5.1 Remedial Investigation Activities

5.1.1 Structural Stability Monitoring

Qualified Kimball personnel performed a detailed examination of potential overhead hazards (pipes, debris, etc.) including visual inspection of the entire area and destructive/qualitative testing of supporting beams and joists. Buffer zones encompassing areas directly below overhead hazards, as well as interpreted potential trajectory paths of falling objects, were subsequently cordoned off and avoided. Fifteen Avonguard Calibrated Crack, Slope and Movement Monitors, were installed at predetermined locations to monitor the behavior of the structure during investigative activities. These devices were visually monitored periodically throughout the entire term of interior investigative activities. Said visual monitoring evidenced that investigative activities did not contribute to the degradation of structural integrity of the Martin Aaron building. The activities were executed without incident.

5.1.2 Geophysical Survey Results

A ten feet by five feet survey grid, used for both the magnetic and EM surveys, was constructed over the survey area. East and west grid perimeters were marked at the profile interval (10 feet) using either wood stakes or marking paint depending on surface conditions. Each stake was labeled with the appropriate profile number. Profile numbers were assigned starting in the northwest corner of the grid with 1001, increasing southward by one. Two perpendicular baselines were constructed parallel to and at the approximate midpoint between the east and west grid perimeters. The baselines were marked at ten foot intervals across the site. Profiles were established by stretching a rope/tape, marked at the station interval (5 feet), perpendicular to and between two corresponding perimeter stakes. Station numbers were assigned starting along the west grid perimeter with 101, increasing to the east by one. (Refer to Figure 14 - Geophysical Survey Area).

Magnetic Survey

A Total of eleven primary magnetic anomalies thought to represent buried metal objects were identified. Figure 15, Magnetic Total Field Contour Map, presents the location of each magnetic anomaly identified as M1 through M11. In addition, five secondary anomalous areas were identified. Secondary locations were selected based on proximity to primary anomalies and their probability of representing buried metal. Secondary locations are not identified but were considered during investigations.

Each of the eleven primary magnetic anomalies is described below:

- M1- Approximately 35 x 40 feet located in the northeast corner of the site. Anomaly is located in area previously excavated by the Department of Justice. Large amplitude magnetic anomaly indicating large mass of ferrous metal.
- M2- Approximately 25 x 40 feet also located in the northeast corner of the site. Similar to M1 in amplitude. Magnetic gradient data indicate this anomaly may represent a distinct burial separate from anomaly M1.
- M3 Approximately 75 x 25 feet located between the Martin Aaron and Rhodes buildings. Anomaly is located in area previously excavated by the Department of Justice. Consists of two (2) large amplitude magnetic lows. Secondary anomaly located to the north. Secondary location is very close to the former waste storage concrete pad and should be investigated if drums found at anomaly M3.
- M4 Approximately 75 x 45 feet located east of the Rhodes building. Anomaly consists of many large amplitude magnetic highs and lows. Some of the anomaly may be due to the building and the perimeter fence. Previous reports of drum burial activities identify this area as a possible location.
- M5 Approximately 35 x 15 feet located against the east wall of the Martin Aaron building. Some surface metal in this area. Previous inspections by the NJDEP noted this area as possibly being a "fresh" excavation with little vegetation and disturbed surface soil.
- M6 Approximately 45 x 40 feet located immediately north of the Rhodes building. Characterized by very large amplitude magnetic low and several medium amplitude magnetic highs. Secondary locations identified to the west and south east of anomaly M6. These areas should be investigated if M6 is found to contain drums.
- M7 Approximately 20 x 15 feet located northwest of M6. Medium amplitude magnetic dipole located in surface depression. May indicate previous excavation activity.
- M8 Approximately 25 x 20 feet located near the center of the site. Also within surface depression. Consists of a large amplitude magnetic low.
- M9 Approximately 25 x 30 feet located near the northwest corner of the site. Similar to M6 but a bit smaller. Located in a slight surface depression characterized by a very large amplitude magnetic low.
- M10- Approximately 35 x 30 located north of the Martin Aaron building. Very similar to M9 and M6 in amplitude. Located under existing concrete surface which probably makes this location unlikely for previous drum burial.
- M11- Similar to anomaly M8 located near the center of the site. Secondary to M8. To be excavated if drums found at M8.

Electromagnetic Survey

A total of ten primary electromagnetic anomalies thought to represent buried metal objects and or disposal pits/trenches were identified. **Figure 16, Conductivity Contour Map**, presents the location of each electromagnetic anomaly identified as EM1 through EM10..

Each of the ten primary electromagnetic anomalies is described below:

EM1, EM2, EM3 - Located near the center of the site thought to represent possible burial trenches. Each anomaly is approximately 60 x 15 feet oriented north- south. Similar sizes and parallel orientation may indicate trench excavation. No magnetic anomalies observed in these locations indicating the absence of significant buried ferrous metal.

EM4 - Approximately 180 x 15 feet located in the eastern portion of the site. Anomaly is oriented north-south extending from the front of the Rhodes building to the northern fence. Similar in appearance to anomalies EM1, EM2, and EM3. Long linear length may indicate buried utility. Possibly former drainage to the former surface ditch along the north property border.

EM5, EM6 - Approximately 60 x 15 feet each oriented north south and located north of the Rhodes building near EM4. Very similar in appearance to EM1 through EM3. No corresponding Magnetic anomaly may indicate the absence of significant ferrous metal (steel drums). If investigations of anomalies EM1 through EM3 find buried waste, this anomaly should be investigated.

EM7- Approximately 35 x 40 feet located east of the Rhodes building. Corresponds with magnetic anomaly M4 described above. Possible buried metal (drums).

EM8, EM9- Located between the Martin Aaron and Rhodes buildings. Correspond with magnetic anomaly M3 and secondary magnetic anomaly north of M3. Possible buried metal. In area of previous test pits conducted by the Department of Justice.

EM10- Approximately 20 x 20 located north of the Martin Aaron building and overlapping magnetic anomaly M10. Located under existing concrete which probably makes this location unlikely for previous drum burial.

Ground Penetrating Radar Survey

Ground Penetrating radar data were collected over the majority of geophysical anomalies interpreted from the magnetic and electromagnetic data. In addition, GPR was used to evaluate the location of underground storage tanks north and east of the former Martin Aaron building.

In general, GPR was found to be ineffective in delineating the horizontal extent of subsurface objects thought to represent the cause of observed anomalies. Reasons for failure of the GPR method include the very high conductivity of the site soil as observed in the electromagnetic data. Radar penetration depth is very limited in high soil conductivities. Also, the existence of construction debris, rubble, and other subsurface structures throughout the site limits the ability to interpret the extent of possible burial areas. Interpretations are generally qualitative in nature using visual interpretation of the reflected

signal. If the entire subsurface returns reflections characteristic of burial pits or buried debris, delineations of the target objects cannot be made.

For specific data and visual representation of the geophysical survey results refer to Appendix H - Geophysical Data and Figure 17, Geophysical Survey Composite Results.

5.1.3 Building Interior Soil Borings

Seventeen interior (Former Martin Aaron Main Complex) soil borings were drilled (or attempted), via split spoon advanced by Geoprobe®, from June 16, 1997 to June 19, 1997, by James C. Anderson Associates, Inc. of Mt. Laurel, New Jersey (JCA). Successful borings encountered groundwater at six to ten feet below grade. Flame-ionization detector (FID) screening detected volatile organics in all borings except SB39 and SB41. Volatiles were detected in a range from the surface to fourteen feet below grade.

On October 8, 1998, an additional six interior (Former Martin Aaron Main Complex) soil borings were drilled via split spoon advanced by electric jackhammer by JCA. Three borings were advanced within the former one story brick structure west of the processing areas of the building and three borings were advanced within the former three story warehouse portion of the building (Re-sampling borings). FID screening detected volatile organics in all borings to approximately eight feet below grade. Borings within the former one story brick structure encountered cinders and other combustion by-products to depths of at least six feet below grade. Borings within the former three-story warehouse encountered similar material as was found during the initial investigation phase. (Refer to Appendix A: Boring Logs).

No building interior (Martin Aaron Main Building Complex) soil borings were advanced during the third investigation phase.

5.1.4 Exterior Soil Borings

Twenty exterior soil borings were drilled, via split spoon advanced by a combination of mud rotary and HSA techniques, from June 24, 1997 to July 18, 1997, by JCA. Borings encountered groundwater at five to 7.5 feet below grade. All borings, with the exception of SB07, SB11 and SB17, contained what were classified as cinders and/or a slag-type material. A strong product (fuel) odor was associated with borings SB03, SB05, SB07, SB12, SB17 and SB19. FID screening detected volatile organics (VOC) in all borings except SB13. Significant levels of VOCs were detected in a range from the surface to nineteen feet below grade. (Refer to **Appendix A: Boring Logs**).

Between September 29, 1998 and October 8, 1998, an additional fifty-four exterior soil borings and eleven re-sampling soil borings were drilled via split spoon advanced by Geoprobe® by JCA. Exterior borings completed on the South Jersey Port Corp. property (SB63 to SB79) encountered groundwater at depths ranging from six to twelve feet below grade, with the deeper groundwater observed in the borings located in the west and southwestern portions of the property (SB64, SB65, SB66, SB71, and SB72). Cinders and/or slag-type material were again reported in the majority of the South Jersey Port Corp. property borings. Soil borings completed around the site perimeter (SB80 to SB99 and SB105 to SB109) encountered groundwater at depths ranging from five to nine feet below grade with the deeper groundwater identified in areas south and southeast of the Martin Aaron property. All borings encountered some degree of cinders/slag type material with only limited amounts reported in borings

located along South Broadway (SB81 to SB84). The remaining borings advanced within the yard area of the Martin Aaron property encountered similar subsurface conditions as found during the initial investigation phase (Refer to **Appendix A: Boring Logs**).

Exterior soil borings advanced during the third investigation phase are described in Sections 5.1.6 and 5.1.7 below.

5.1.5 UST Soil Borings

Thirteen UST soil borings were drilled, via split spoon advanced by HSA, from July 21, 1997 to July 23, 1997, by JCA. Borings encountered groundwater at six to eight feet below grade. All borings evidenced black staining (oily sheen) and a product (fuel) odor. FID screening detected VOCs in all borings in a range from the surface to sixteen feet below grade (maximum depth advanced). No additional UST borings were advanced during the second or third investigation phases. (Refer to **Appendix A: Boring Logs**).

5.1.6 Delineation Soil Borings

Between December 1, 2000 and December 9, 2000, twenty-four delineation borings (pesticide/PCB and semivolatile) were advanced via split spoon sampling and Geoprobe® techniques by JCA. Delineation borings were advanced within close proximity to previous borings advanced during the first and second investigation phases. All borings encountered similar subsurface conditions as found during the first and second investigation phases.

5.1.7 Rhodes Building Delineation Borings

Between December 1, 2000 and December 9, 2000, sixteen Rhodes Building Delineation borings were advanced via split spoon sampling and Geoprobe® techniques by JCA. Delineation borings were advanced around the perimeter of and beneath the former Rhodes building. Borings within the Rhodes building (SB125 to SB128) encountered approximately four feet of void space beneath a double concrete slab floor (two 4-inch slabs separated by a few inches of void space). Beneath the void space, borings generally encountered two to four feet of fill (cinders and slag) underlain by silt, silty sand and clayey silt. Groundwater was generally encountered between nine and twelve feet below the concrete floor. FID/PID screening detected volatile organics (VOC) in all borings.

The remaining borings were advanced around the building perimeter (SB118 to SB124 and SB129), along the east property border (SB130 and SB131), and at off-site locations southeast of the former Rhodes building (SB132 and SB133). All borings encountered similar subsurface conditions as found during the first and second investigation phases. On-site borings encountered fill material consisting of cinders, slag, brick, and other debris extending six to ten feet below the ground surface. FID/PID screening detected volatile organics (VOC) in all borings each of the first and SB131 and SB132. A product (fuel) odor was associated with borings SB120, SB121, and SB129.

5.1.8 Monitoring Well Borings

Seven monitoring well borings were drilled, via split spoon advanced by a combination of mud rotary and HSA techniques, from June 25, 1997 to July 8, 1997, by JCA. Borings encountered groundwater at 5.5 to ten feet below grade. All borings, with the exception of SB30, contained what were classified as

cinders and/or a slag-type material. A product (fuel) odor was associated with borings SB22, SB23 and SB24. FID screening detected VOCs in all borings except SB20 and SB26. Significant levels of VOCs were detected in a range from the surface to thirty seven feet below grade. (Refer to **Appendix A: Boring Logs**).

Between October 12, 1998 and October 16, 1998, an additional seven monitoring well borings were drilled by JCA via a combination of HSA and mud rotary techniques. Borings encountered groundwater between six and eighteen feet below grade with the deeper groundwater observed east and southeast of the Martin Aaron Property (MW10S and MW9S (SB116)). FID screening detected VOCs in all borings with significant levels encountered in boring MW7S (SB113). A strong product (fuel) odor was reported while advancing MW7S.

Between December 27, 1999 and December 29, 1999, an additional two monitoring well borings were drilled by JCA via a combination of HSA and mud rotary techniques. Borings encountered groundwater at sixteen feet below grade. FID/PID screening did not detect VOCs in the borings.

5.1.9 Test Trenches/Pits

Twenty four test pits (including four multi-pit excavations) and two sewer basin excavations were dug, via a track-excavator, from August 4, 1997 to August 13, 1997, by Kimball. A few test pits encountered groundwater at five ½ (5.5) to ten (10) feet below grade. Most test pits contained fill material comprised mainly of ashes, cinders, sand and construction debris (pieces of brick and concrete). TP12, TP13, TP14, TP15, TP16, TP17, TP18, TP19, TP20, TP22, TP23 and TP24 also contained a metallic slag-type material. TP04 contained orange sand and large pieces of concrete and brick. TP05 contained black stained sand, large pieces of concrete and purple stained soil. Drum lids, bungs and pieces of crushed drums were observed just below the surface at test pits TP09, TP13, TP17, TP18 and TP21. Drum liners were observed in test pits TP11, TP21 and TP23. A cache of an unidentified white powder was observed in test pit TP21 at a level of 3.5-5' below the ground surface. Various articles of personal protective equipment (PPE), such as rubber boots and gloves, were observed in test pits TP08 and TP11. FID screening detected VOCs in all test pits/trenches except TP04, TP05, TP15 and TP20. Significant levels of VOCs were detected in a range from the surface to six feet below grade (maximum excavation depth). (Refer to Appendix E: Test Pit Logs). Test pits were not excavated during the second and third investigation phases.

5.1.10 Monitor Well Sampling

During the first investigation phase, monitor well sampling was conducted from August 14, 1997 to August 15, 1997 (Event #1) and again on September 15, 1997 (Event #2), by Kimball. Both events included the sampling of the newly install monitoring wells and the Camden City Well #7. During both events, all wells (with the exception of the City Well) were checked with an interface probe for presence of product, none of which yielded positive results. However, a strong product odor and discoloration was noted in both MW-2S and MW-2M. While purging of the monitoring wells during event #1, the following parameters were checked: temperature; specific conductivity; % dissolved oxygen; and pH. The range of results for wells checked during Event #1 are as follows:

Monitoring Well	Temperature (°C)	Specific Conductivity (us)	Dissolved Oxygen (%)	PH
MW-1S	19.53		14.4	7.47
MW-1M	16.68		18.3	6.76
MW-2M	17.03		21.3	6.67
MW-3S	17.04		29.2	6.99
MW-3M	15.78		32.7	6.68
MW-4S	21.25		24.4	6.66

The results for wells checked during Event #2 are as follows:

Monitoring Well	Temperature (°C)	Specific Conductivity (us)	Dissolved Oxygen (%)	РН
MW-1S	19.80		9.0	7.15
MW-1M	16.40		31.2	7.06
MW-3S	18.01		40.6	6.87
MW-3M	16.53	· 	71.3	6.76
MW-4S	20.11		77.8	6.85

(Refer to Appendix C: Sampling Logs). Due to the delicate nature of the analytical device utilized in collecting the above-mentioned data, Kimball believed it inadvisable to immerse it in the odorous and discolored purge water from MW-2S (Events 1 & 2) and MW-2M (Event 2), thus, no data was recorded or is presented. In addition, specific conductance was not recorded due to a malfunction of the recording equipment.

During the second investigation phase, monitor well sampling was conducted from November 10 1998 to November 11, 1998, by Kimball. The second investigation phase groundwater sampling included the sampling of the seven (7) existing monitoring wells installed as part of the first investigation phase, and the seven (7) new monitoring wells installed during the second investigation phase. All wells were checked with an interface probe for presence of product, none of which yielded positive results. However, a strong product odor and discoloration was noted in monitoring wells MW-2S, MW-2M, and MW7S. While purging of the monitoring wells the following parameters were checked: temperature; specific conductivity; % dissolved oxygen; and pH. The range of results are as follows:

Monitoring Well	Temperature (°C)	Specific Conductivity (us)	Dissolved Oxygen (%)	РН
MW-1S	17.22	4650	26.8	8.10
MW-1M	15.83	1451	48.9	7.71
MW-2M	15.78	1430	17.17	7.28
MW-3S	16.35	1088	9.4	7.39
MW-3M	14.82	1242	9.9	6.45
MW-4S	17.16	1213	26.2	7.09
MW-5S	19.60	4052	15.9	8.15
MW-6S	16.51	2810	14.0	7.48
MW-7S	15.73	1368	18.6	7.78
MW-8S	17.30	2556	27.2	6.95
MW-9S	16.41	1491	17.7	6.83
MW-9D	15.86	1377	8.2	6.81
MW-10S	21.41	1657	18.7	7.40

During the third investigation phase, monitor well sampling was conducted from January 18, 2000 to January 19, 2000 (Event #1) and again on February 17, 2000 (Event #2), by Kimball. The first event included the sampling of the remaining wells installed during the first two investigation phases and the two new monitoring wells installed as part of the third investigation phase. During both events, each well was checked with an interface probe for presence of product, none of which yielded positive results. However, a strong product odor and discoloration was noted in both MW-2S and MW-2M. While purging of the monitoring wells during event #1, the following parameters were checked: temperature; specific conductivity; % dissolved oxygen; and pH. The range of results for wells checked during Event #1 are as follows:

Monitoring Well	Temperature (°C)	Specific Conductivity (us)	Dissolved Oxygen (%)	РН
MW-1S	15.57	2474	19.44	7.16
MW-1M	15.37	932	47.4	6.19
MW-2M	15.55	1050	39.2	6.17
MW-5S	15.70	3368	34.81	7.54
MW-6S	14.70	3124	20.74	5.08
MW-8S	15.73	1365	23.71	6.48
MW-9S	15.27	1326	11.99	7.00
MW-9D	15.34	1616	14.03	7.18
MW-10S	16.33	1755	10.47	7.44
MW-11S	14.49	1484	19.72	7.30
MW-11M	14.52	2110	7.74	7.10

The results for wells checked during Event #2 are as follows:

Monitoring Well	Temperature (°C)	Specific Conductivity (us)	Dissolved Oxygen (%)	PH
MW-11S	15.32	1575	15.53	7.15
MW-11M	15.50	2432	11.73	7.06

5.1.11 Hydropunch® Sampling

Twelve groundwater screening samples were collected, via a Hydropunch® II sampler, from July 9, 1997 to July 17, 1997, by JCA / Kimball. No notable discoloration or odor were observed during sampling. Refer to **Appendix A: Boring Logs** for locations and depths of Hydropunch® samples. No Hydropunch sampling was conducted during the second and third investigation phases.

5.1.12 Sediment Sampling

Two sediment samples were collected, via stainless steel/HDPE dredging device, on August 14, 1997, by Kimball. Both samples emitted a strong odor (reminiscent of paint sludge or solvents) and produced a noticeable sheen (Refer to **Appendix C: Sampling Logs**). No sediment sampling was conducted during the second and third investigation phases.

5.2 Remedial Investigation Analytical Results

The following sub-sections describe sampling results based on sample matrix, media disposition and analytical parameters. Results discussed are positive concentrations observed from each type of sample. The attached tables show positive analytical results only. **Table 5 – Analysis Qualifiers**, presents an explanation of data qualifiers and shading used on the ensuing result tables and qualifiers used on the result figures.

As of the date of this report, NJDEP validation of the analytical data submitted for the third investigation phase has not been completed. For reporting purposes, all data are assumed to be valid. The data, results, and conclusions should be considered as qualitative at this time.

5.2.1 Soil and Sediment Samples

5.2.1.1 Surface Soil Samples

5.2.1.1.1 Volatiles

Analytical results from surface soil samples (0-2' depth) report positive concentrations of twenty seven volatile parameters. Twelve of these parameters were measured at concentrations exceeding NJDEP's Impact to Groundwater Soil Cleanup Criteria (IGWSCC). The most common compounds detected at concentrations in excess of the IGWSCC include 1,2-dichloroethene (16 samples), tetrachloroethene (PCE) (30 samples), and trichloroethene (TCE) (21 samples). Other compounds detected at

concentrations above the IGWSCC but at a lesser frequency include 1,1-dichloroethane (1 sample), 1,2-dichloroethane (1 sample), benzene (4 samples), chlorobenzene (3 samples), chloroform (4 samples), cis-1,2-dichloroethene (2 samples), methylene chloride (7 samples), toluene (1 sample), and xylene (total) (7 samples). 1,2-Dichloroethene (total) concentrations range from below detection limit to a maximum of 180 mg/kg in sample SB05-2. PCE concentrations range from below method detection limit to a maximum of 2400 mg/kg in sample SB05-2. TCE concentrations range from below method detection limit to a maximum of 1800 mg/kg in sample SB31-2. Maximum concentrations for the remaining compounds detected in excess of the IGWSCC are as follows: 1,1-dichloroethane (98 mg/kg, SB31-2), 1,2-dichloroethane (4.2 mg/kg, SB31-2 sample), benzene (19 mg/kg, SB54-1), chlorobenzene (21 mg/kg, SB05-2), chloroform (14 mg/kg, SB129A2), cis-1,2-dichloroethene (7.1 mg/kg, SB120-1), methylene chloride (18 mg/kg, SB33-2), toluene (1800 mg/kg, SB31-2), and xylene (total) (190 mg/kg, SB08-2)

Of the twenty-seven parameters with reported positive concentrations, six were detected at concentrations in excess of the NJDEP Residential Direct Contact Soil Cleanup Criteria (RDCSCC) (1,2-dichloroethene (total), benzene, tetrachloroethene, toluene, trichloroethene, and vinyl chloride) and four (4) were detected above the NJDEP Non-Residential Direct Contact Soil Cleanup Criteria (NRDCSCC) (benzene, tetrachloroethene, toluene, and trichloroethene). Results indicate twenty-one samples contain one or more compounds at concentrations above the RDCSCC and seventeen samples, collected from borings located mainly within and near the processing areas of the former Martin Aaron building, contain one or more compounds at concentrations above the NRDCSCC. The most common compound detected at concentrations above the RDCSCC and/or NRDCSCC was tetrachloroethene which exceeded both criteria in each of the seventeen samples.

Total volatile concentrations ranged from less than 2 mg/kg in sample SB15-2 to 4567 mg/kg in sample SB31-2. Three samples exceeded the NJDEP criteria for total volatiles (1,000 mg/kg). Total volatile concentrations in excess of the NJDEP criteria (1,000 mg/kg) were detected in samples SB05-2 (3421 mg/kg), SB31-2 (4567 mg/kg), and SB33-2 (1630 mg/kg) collected from borings located within and near the processing areas of the former Martin Aaron building.

A complete listing of volatile positive analytical results, including results above NJDEP soil cleanup criteria, can be found in **Table 6 - Surface Soil Samples - Positive Analytical Results - Volatiles**. Results are also shown on **Figure 18**, **Soil Results Above Criteria - Volatiles**, which shows sample locations, sample identifications, sample depths, and concentrations and distribution of compounds detected above each of the NJDEP soil cleanup criteria.

5.2.1.1.2 Semi-Volatiles

Analytical results from surface soil samples (0-2' depth) report positive concentrations of thirty eight semi-volatile parameters. Seven of these parameters were measured at concentrations exceeding one or more of the three NJDEP soil cleanup criteria (IGWSCC, RDCSCC, NRDCSCC). One compound (benzo(b)fluoranthene) was measured at concentrations in excess of the IGWSCC. Sample SB88-1 contained benzo(b)fluoranthene at a concentration of 82 mg/kg which exceeds the IGWSCC of 50 mg/kg.

Of the thirty eight compounds with reported positive concentrations, seven were detected at concentrations above the RDCSCC. The most common compounds detected above the RDCSCC include benzo(a)anthracene (46 samples), benzo(a)pyrene (56 samples), benzo(b)fluoranthene (48

samples) and benzo(k)fluoranthene (46 samples). Other compounds detected at concentrations above the RDCSCC, but at a lesser frequency, include chrysene (6 samples), dibenz(a,h)anthracene (10 samples) and indeno(1,2,3-cd)pyrene (21 samples). Maximum concentrations of the most common compounds detected above the RDCSCC were found in sample SB88-1 as follows: benzo(a)anthracene (61 mg/kg), benzo(a)pyrene (75 mg/kg), benzo(b)fluoranthene (82 mg/kg) and benzo(k)fluoranthene (69,mg/kg). Results indicate fifty four samples contain one or more compounds at concentrations above the RDCSCC.

Each of the seven compounds detected above the RDCSCC were also detected above the NRDCSCC. The most common compounds detected above the NRDCSCC were again benzo(a)anthracene (16 samples), benzo(a)pyrene (56 samples), benzo(b)fluoranthene (14 samples) and benzo(k)fluoranthene (13 samples). Other compounds detected at concentrations above the NRDCSCC, but at a lesser frequency, include chrysene (1 samples), dibenz(a,h)anthracene (10 samples) and indeno(1,2,3-cd)pyrene (5 samples). Results indicate fifty four samples contain one or more compounds above the NRDCSCC.

Total semi-volatile concentrations ranged from less than 2 mg/kg to 743 mg/kg in sample SB88-1 located north of the site property along the southern side of Everett Street. The highest on-site total semi-volatile concentration was detected in sample SB129A1 (437 mg/kg) located along the southeast side of the former Rhodes building.

A complete listing of semi-volatile positive analytical results, including results above action levels, can be found in **Table 7 Surface Soil Samples - Positive Analytical Results - Semi-Volatiles**. Results are also shown on **Figure 19**, **Soil Results Above Criteria - Semivolatiles**, which shows sample locations, sample identifications, sample depths, and concentrations and distribution of compounds detected above each of the NJDEP soil cleanup criteria.

5.2.1.1.3 TAL Metals

Analytical results from surface soil samples (0-2' depth) report positive concentrations of twenty four analytes. Eleven of these analytes were measured at concentrations exceeding the NJDEP RDCSCC. The most common analytes detected at concentrations above the RDCSCC include arsenic (62 samples), barium (52 samples), cadmium (45 samples) and lead (29 samples). Other analytes detected above the RDCSCC, but at a lesser frequency, include antimony (8 samples), beryllium (6 samples), chromium (1 sample), copper (3 samples), thallium (2 samples), mercury (1 sample) and zinc (10 samples). Arsenic concentrations range from 3.1 mg/kg to a maximum of 1640 mg/kg in sample SB133-1. Barium concentrations range from below method detection limits to 25,300 mg/kg in sample SB20-1. Concentrations of cadmium range from below detection limits to 21.4 mg/kg in sample SB129-1. Maximum lead concentrations were found in sample SB116-1 at 6620 mg/kg. Maximum concentrations detected for the remaining analytes above the RDCSCC are as follows: antimony (106 mg/kg, SB48-1), beryllium (2 mg/kg, SB33-1), chromium (845 mg/kg, SB133-1), copper (1260 mg/kg, SB129-1), thallium (19.6 mg/kg, SB129-1), mercury (16 mg/kg, SB36-1), and zinc (4470 mg/kg, SB106-1). Results indicate seventy three samples contain one or more analytes at concentrations above the RDCSCC.

Of the eleven analytes detected at concentrations above the RDCSCC, seven were also detected at concentrations in excess of the NRDCSCC (arsenic, beryllium, chromium, copper, lead, thallium and zinc). The most common analyte detected above the NRDCSCC was arsenic (62 samples). Beryllium

was detected at concentrations in excess of the NRDCSCC in six samples. Chromium was detected above NRDCSCC in one sample. Copper was detected above NRDCSCC in three samples. Lead was detected above the NRDCSCC in twenty two samples. Thallium was detected above NRDCSCC in two samples. Zinc was detected above NRDCSCC in ten samples. Results indicate sixty six samples contain one or more analytes at concentrations in excess of the NRDCSCC.

A complete listing of TAL metal positive analytical results, including results above criteria, can be found in Table 8 - Surface Soil Samples - Positive Analytical Results - Metals. Results are also shown on Figure 22, Soil Results Above Criteria - Metals, which shows sample locations, sample identifications, sample depths, and concentrations and distribution of analytes detected above each of the NJDEP soil cleanup criteria.

5.2.1.1.4 Pesticides/Polychlorinated Biphenyls (PCBs)

Analytical results from surface soil samples (0-2' depth) report positive concentrations of twenty three (23) pesticide/PCB parameters. Three (3) of these parameters were measured at concentrations exceeding the NJDEP RDCSCC. One (1) sample (SB08-1) exceeds the criteria for 4,4-DDE with a concentration of 6.9 mg/kg. Ten (10) samples exceed the criteria for Aldrin with the highest concentration from sample SB04-1 (45 mg/kg). Six (6) samples exceed the criteria for Dieldrin with the highest concentration from sample SB16-1 (4 mg/kg). Results indicate nineteen samples contain one or more pesticide parameters at concentrations in excess of the RDCSCC.

Of the pesticide compounds detected at concentrations in excess of the RDCSCC, aldrin (7 samples) and dieldrin (3 samples) were also detected in excess of the NRDCSCC. Results indicate nine samples submitted for laboratory analysis (SB03-1, SB04-1, SB05-1, SB08-1, SB16-1, SB17-1, SB19-1, SB144-1, SB157-1) contain either aldrin or dieldrin at concentrations above the NRDCSCC. No pesticide compounds were detected at concentrations in excess of the NJDEP IGWSCC.

Thirty seven samples submitted for laboratory analysis exceed the RDCSCC for total PCBs with the highest concentration from sample SB08-1 (65 mg/kg). Of the thirty seven samples containing total PCBs at concentrations in excess of the RDCSCC, twenty two also exceed the NJDEP NRDCSCC. Results indicate one (1) sample (SB08-1) located immediately north of the former Martin Aaron building processing areas contains total PCBs (65 mg/kg) in excess of the NJDEP IGWSCC. The result of 65 mg/kg identified in sample SB08-1 is also an exceedance of Toxic Substance Control Act (TSCA) levels for PCBs indicating the presence of regulated waste.

A complete listing of pesticide/PCB positive analytical results, including results above each of the three NJDEP soil cleanup criteria, can be found in Table 9 - Surface Soil Samples - Positive Analytical Results - Pesticide/PCBs. Results are also shown on Figure 20, Soil Results Above Criteria - Pesticides, and Figure 21, Soil Results Above Criteria - Total PCB, which show sample locations, sample identifications, sample depths, and concentrations and distribution of compounds detected above each of the NJDEP soil cleanup criteria for pesticides and PCBs, respectively.

Screening of total PCB was also completed during the second investigation phase using the Ensys Inc. PCB RIS[©]® Soil Test System. Severe matrix interference was reported by the Kimball chemist with final extracted solutions resulting in a variety of colors. Based on these reports, the test kit data have been designated as highly suspect and such are not presented. Subsequent Phase III soil borings and samples provide a more accurate and reliable source of PCB delineation described in Section 6.0 below.

5.2.1.1.5 Dioxin/Furan

Analytical results from surface soil samples (0-2' depth) report positive concentrations of twenty five Dioxin/Furan parameters. Nine (9) of these parameters were measured at concentrations exceeding 1000 pg/g (1 ppb). USEPA toxic equivalency factors were applied to the dioxin/furan results to obtain the equivalent amount of 2,3,7,8 tetrachlorodibenzodioxin represented by the other compounds resulting in a total toxic equivalent value for each sample. Toxic equivalent results ranged from 0.492 pg/g in sample 46-1 to 280.691 pg/g in sample SB16-1. A complete listing of dioxin/furan positive analytical results can be found in Table 10 - Soil Samples - Positive Analytical Results - Dioxin/Furan. Results are also shown on Figure 23, Dioxin/Furan Toxic Equivalent Results - Soil , which shows sample locations, sample identifications, sample depths, and concentrations and distribution of compounds detected.

5.2.1.2 Subsurface Soil Samples

5.2.1.2.1 Volatiles

Analytical results from subsurface soil samples (below 2' depth) report positive concentrations of thirty four volatile parameters. Fifteen of these parameters were measured at concentrations exceeding NJDEP IGWSCC. Compounds detected above criteria generally compare to compounds detected in surface samples with the addition of 2-butanone, ethylbenzene and vinyl chloride detected above the IGWSCC in subsurface samples. The most common compounds detected above IGWSCC in the subsurface soil were identical to surface soil results and include 1,2-dichloroethene (total) (31 samples), tetrachloroethene (35 samples), and trichloroethene (27 samples). Other compounds detected above the IGWSCC, but at a lesser frequency, include 1,1-dichloroethane (2 samples), 1,2-dichloroethane (6 samples), 2-butanone (2 samples), benzene (17 samples), chloroform (12 samples), cis-1,2-dichloroethene (2 samples), ethylbenzene (3 samples), methylene chloride (13 samples), toluene (2 samples), vinyl chloride (2 samples) and xylene (total) (24 samples). 1,2-Dichloroethene (total) concentrations range from below detection limit to a maximum of 900 mg/kg in sample SB33-4. PCE concentrations range from below method detection limit to a maximum of 1500 mg/kg in sample SB32-2. TCE concentrations range from below method detection limit to a maximum of 390 mg/kg in sample SB33-4. Maximum concentrations for the remaining compounds detected in excess of the IGWSCC are as follows: 1,1-dichloroethane (74 mg/kg, TP13-1), 1,2-dichloroethane (360 mg/kg, SB32-2), 2-butanone (160 mg/kg, SB10-3), benzene (78 mg/kg, SB52-1), chlorobenzene (18 mg/kg, SB33-4), chloroform (15 mg/kg, SB32-2), cis-1,2-dichloroethene (46 mg/kg, SB129A3), ethylbenzene (320 mg/kg, SB51-1), methylene chloride (33 mg/kg, SB33-4), toluene (700 mg/kg, SB51-1), vinyl chloride (19 mg/kg, SB52-1) and xylene (total) (2000 mg/kg, SB51-1). Results indicate sixty one samples contain one or more compounds at concentrations above the IGWSCC.

Of the thirty four parameters with reported positive concentrations, nine were detected at concentrations in excess of the RDCSCC (1,2-dichloroethane, 1,2-dichloroethene (total), 1,2-dichloropropane, benzene, styrene, tetrachloroethene, trichloroethene, vinyl chloride and xylene (total)) and seven were detected above the NRDCSCC (1,2-dichloroethane, 1,2-dichloropropane, benzene, tetrachloroethene, trichloroethene, vinyl chloride, and xylene (total)). Results indicate thirty two samples contain one or more compounds at concentrations above the RDCSCC and twenty four samples, collected from borings located mainly within and near the processing areas of the former Martin Aaron building, contain one or more compounds at concentrations above the NRDCSCC. The most common

compound detected at concentrations above the RDCSCC and/or NRDCSCC was tetrachloroethene which exceeded both criteria in twenty one samples.

Total volatile concentrations ranged from less than 1 mg/kg to 3303 mg/kg in sample SB51-1. Nine (9) samples exceeded the NJDEP criteria for total volatiles (1,000 mg/kg). Total volatile concentrations in excess of the NJDEP criteria (1,000 mg/kg) were detected in samples collected immediately north and southeast of the Rhodes building (SB16-3 (1110 mg/kg), SB129A3 (1111 mg/kg)), beneath the processing area of the former Martin Aaron building (SB32-2 (2499 mg/kg), SB32-3 (1248 mg/kg), SB33-4 (2573)) and around the underground storage tanks located north of the Martin Aaron building (SB50-1 (1556 mg/kg), SB51-1 (3303 mg/kg), SB52-1 (2201), SB56-2 (2419 mg/kg) and SB59-1 (1223 mg/kg)).

A complete listing of volatile positive analytical results, including results above criteria, can be found in Table 11 - Subsurface Soil Samples - Positive Analytical Results - Volatiles. Results are also shown on Figure 18, Soil Results Above Criteria - Volatiles, which shows sample locations, sample identifications, sample depths, and concentrations and distribution of compounds detected above each of the NJDEP soil cleanup criteria

5.2.1.2.2 Semi-Volatiles

Analytical results from subsurface soil samples (below 2' depth) report positive concentrations of thirty nine semi-volatile parameters. Twelve of these parameters were measured at concentrations exceeding one or more of the three NJDEP soil cleanup criteria (IGWSCC, RDCSCC, NRDCSCC). Five compounds (acenaphthene, benzo(b)fluoranthene, fluoranthene naphthalene, and pyrene) were measured at concentrations in excess of the IGWSCC. Sample SB112-3 contains benzo(b)fluoranthene (65 mg/kg), fluoranthene(170 mg/kg) and pyrene (130 mg/kg) at concentrations which exceed the IGWSCC. Sample SB23A-2 contains naphthalene (1900 mg/kg) in excess of the IGWSCC. Sample SB132A3 contains acenaphthene (120 mg/kg), fluoranthene (120 mg/kg), and naphthalene (130 mg/kg) in excess of the IGWSCC. Sample SB137-2 contains naphthalene (360 mg/kg) in excess of IGWSCC.

Of the thirty nine compounds with reported positive concentrations, nine were detected at concentrations above the RDCSCC. Similar to the surface soil results, the most common compounds detected above the RDCSCC include benzo(a)anthracene (23 samples), benzo(a)pyrene (24 samples), benzo(b)fluoranthene (22 samples) and benzo(k)fluoranthene (21 samples). Other compounds detected at concentrations above the RDCSCC, but at a lesser frequency, include bis(2-ethylhexyl)phthalate (1 sample), chrysene (9 samples), dibenz(a,h)anthracene (11 samples), indeno(1,2,3-cd)pyrene (17 samples) and naphthalene (2 samples). Maximum concentrations of the most common compounds detected above the RDCSCC were as follows: benzo(a)anthracene (97 mg/kg, SB112-3), benzo(a)pyrene (73 mg/kg, SB112-3), benzo(b)fluoranthene (65 mg/kg, SB112-3) and benzo(k)fluoranthene (26 mg/kg, SB75-3). Results indicate twenty eight samples contain one or more compounds at concentrations above the RDCSCC.

Seven of the nine compounds detected above the RDCSCC were also detected above the NRDCSCC. The most common compounds detected above the NRDCSCC were again benzo(a)anthracene (16 samples), benzo(a)pyrene (24 samples), benzo(b)fluoranthene (15 samples) and benzo(k)fluoranthene (14 samples). Other compounds detected at concentrations above the NRDCSCC, but at a lesser frequency, include chrysene (1 samples), dibenz(a,h)anthracene (11 samples) and indeno(1,2,3-

cd)pyrene (4 samples). Results indicate twenty five samples contain one or more compounds above the NRDCSCC.

Total semi-volatile concentrations ranged from less than 2 mg/kg to 6800 mg/kg in sample SB140-2 located across S. Broadway on the South Jersey Port property. The highest on-site total semi-volatile concentration is 3601 mg/kg in sample SB23A-2 located near the east property border.

A complete listing of semi-volatile positive analytical results, including results above each NJDEP cleanup criteria, can be found in Table 12 - Subsurface Soil Samples - Positive Analytical Results - Semi-Volatiles. Results are also shown on Figure 19, Soil Results Above Criteria - Semivolatiles, which shows sample locations, sample identifications, sample depths, and concentrations and distribution of compounds detected above each of the NJDEP soil cleanup criteria.

5.2.1.2.3 TAL Metals

Analytical results from subsurface soil samples (below 2' depth) report positive concentrations of twenty four (24) TAL metal parameters. Twelve of these parameters were measured at concentrations exceeding the RDCSCC. Analytes detected above criteria generally compare to surface soil results with the addition of nickel (1 sample). Similar to the surface soil findings, the most common analytes detected above the RDCSCC include arsenic (91 samples), barium (72 samples), cadmium (59 samples) and lead (41 samples). Other analytes detected above the RDCSCC, but at a lesser frequency, include antimony (21 samples), beryllium (8 samples), chromium (12 samples), copper (3 samples), mercury (2 samples), thallium (2 samples) and zinc (21 samples). Arsenic concentrations range from 1.4 mg/kg to a maximum of 14,000 mg/kg in sample SB23-6. Barium concentrations range from below method detection limits to 28,400 mg/kg in sample SB92-3. Concentrations of cadmium range from .07 mg/kg to 231 mg/kg in sample SB75-3. Maximum lead concentrations were found in sample SB106-3 at 8,960 mg/kg. Maximum concentrations detected for the remaining analytes above the RDCSCC are as follows: antimony (198 mg/kg, SB30-3), beryllium (3.2 mg/kg, SB08-3), chromium (16,000 mg/kg, TP13-1), copper (1240 mg/kg, SB64-4), mercury (25.6 mg/kg, SB126-1), nickel (295 mg/kg, SE03-1). thallium (3 mg/kg, SB118-3), and zinc (15,200 mg/kg, SB69-3). Results indicate one-hundred ten samples contain analytes above the RDCSCC.

Of the twelve analytes detected at concentrations above the RDCSCC, eight were also detected at concentrations in excess of the NRDCSCC (arsenic, beryllium, cadmium, chromium, copper, lead, thallium and zinc). The most common analyte detected above the NRDCSCC was arsenic (91 samples). Beryllium was detected at concentrations in excess of the NRDCSCC in eight samples. Cadmium was detected above NRDCSCC in one sample. Chromium was detected above NRDCSCC in twelve samples. Copper was detected above NRDCSCC in three samples. Lead was detected above the NRDCSCC in twenty nine samples. Thallium was detected above NRDCSCC in two samples. Zinc was detected above NRDCSCC in twenty one samples. Results indicate ninety four samples contain one or more analytes at concentrations in excess of the NRDCSCC.

A complete listing of TAL metal positive analytical results, including results above each NJDEP soil cleanup criteria, can be found in **Table 13 - Subsurface Soil Samples - Positive Analytical Results - Metals**. Results are also shown on **Figure 22**, **Soil Results Above Criteria - Metals**, which shows sample locations, sample identifications, sample depths, and concentrations and distribution of compounds detected above each of the three NJDEP soil cleanup criteria.

5.2.1.2.4 Pesticides/PCBs

Analytical results from subsurface soil samples (below 2' depth) report positive concentrations of twenty three pesticide/PCB parameters. Three of these parameters were measured at concentrations exceeding the NJDEP RDCSCC. Thirteen samples exceed the RDCSCC for Aldrin with the highest concentration from sample SB05-3 (11 mg/kg). Six samples exceed the criteria for Dieldrin with the highest concentration from sample SB49-2 (0.92 mg/kg). Two samples exceed the criteria for heptachlor with the highest concentration from sample SB114-3 (4.5 mg/kg). Results indicate seventeen samples contain one or more pesticides at concentrations in excess of the RDCSCC.

Of the pesticide compounds detected at concentrations in excess of the RDCSCC, aldrin (6 samples), dieldrin (3 samples) and heptachlor (2 samples) were also detected in excess of the NRDCSCC. No pesticide compounds were detected at concentrations in excess of the NJDEP IGWSCC.

Thirty samples submitted for laboratory analysis exceed the RDCSCC for total PCBs with concentrations above criteria ranging from 0.63 mg/kg in sample SB38-3 to 107 mg/kg in sample TP05-1. Of the thirty samples containing total PCBs at concentrations in excess of the RDCSCC, sixteen also exceed the NJDEP NRDCSCC. Results indicate two samples, TP05-1 and TP09-1, contain total PCBs in excess of the NJDEP IGWSCC. The result of 107 mg/kg identified in sample TP05-1, and 83 mg/kg identified in sample TP09-1 are also an exceedance of Toxic Substance Control Act (TSCA) levels for PCBs indicating the presence of regulated waste.

A complete listing of pesticide/PCB positive analytical results, including results above each of the three NJDEP soil cleanup criteria, can be found in Table 14 - Subsurface Soil Samples - Positive Analytical Results - Pesticide/PCBs. Results are also shown on Figure 20, Soil Results Above Criteria - Pesticides, and Figure 21, Soil Results Above Criteria - Total PCB, which show sample locations, sample identifications, sample depths, and concentrations and distribution of compounds detected above the each of the NJDEP soil cleanup criteria for pesticides and PCBs, respectively.

Screening of total PCB was also completed during the second investigation phase using the Ensys Inc. PCB RIS^c® Soil Test System. Severe matrix interference was reported by the Kimball chemist with final extracted solutions resulting in a variety of colors. Based on these reports, the test kit data have been designated as highly suspect and such are not presented. Subsequent Phase III soil borings and samples provide a much more accurate and reliable source of PCB delineation data described in Section 6.0 below.

5.2.1.2.5 Total Petroleum Hydrocarbons (TPH)

Analytical results from subsurface soil samples (below 2' depth) report positive concentrations of Total Petroleum Hydrocarbons. One sample (SB59-1) exceeds the NJDFD's cleanup criterio for total organics with a concentration of 19,000 mg/kg. A complete listing of TPH positive analytical results, including results above criteria, can be found in Table 15 - Soil Samples - Positive Analytical results - TPH. Results are also shown on Figure 24, Petroleum Hydrocarbon Positive Results, which shows sample locations, sample identifications, depths, and concentrations compounds detected.

5.2.1.2.6 Additional Analyses

Eleven subsurface soil samples were also analyzed for Particle Size, Total Organic Carbon (TOC) and Total Organic Halogen (TOX). None of these samples exceed the NJDEP's most stringent cleanup criteria for TOC or TOX. A complete listing of analytical results can be found in **Table 16 - Particle Size Analysis**.

5.2.1.2.7 Product (Unidentified Solid) Sample

A single product sample (white powdery substance) was recovered from TP21 at a depth of 4-5 feet. Analytical results from this sample report positive concentrations of: fourteen TAL metal parameters; and four pesticides/PCBs parameters. None of these parameters were measured at concentrations exceeding any of the three NJDEP soil cleanup criteria. Semivolatile results from the product sample collected during the first investigation phase were rejected and deemed unusable by the data validation process as described in section 4.0 above. Therefore, semivolatile results are not reported. A complete listing of these positive analytical results, as well as compatibility testing results, can be found in **Table 17 - Solid Waste Sample - Positive Analytical Results**.

5.2.1.3 Sediment Samples

5.2.1.3.1 Volatiles

Analytical results from sediment samples (sewer basins) report positive concentrations of seventeen VOC parameters. Thirteen of these parameters were measured at concentrations exceeding the NJDEP IGWSCC. The most common compounds detected above the IGWSCC include styrene, PCE, toluene, TCE, and xylene (total) identified in both sample SD01-1 and sample SD02-1. Other compounds detected at concentrations above the IGWSCC include 1,1,1-trichloroethane (140 mg/kg), 1,1-dichloroethane (21 mg/kg), 1,2-dichloroethene (total) (880 mg/kg), and chlorobenzene (7.4 mg/kg) in sample SD01-1, and 1,2-dichloropropane (63 mg/kg), 2-butanone (190 mg/kg), acetone (110 mg/kg), and chloroform (4.7 mg/kg) in sample SD02-1.

Seven of the thirteen compounds detected at concentrations in excess of the IGWSCC were also detected at concentrations above the RDCSCC and four compounds were detected above the NRDCSCC. Compounds detected above the either the RDCSCC or NRDCSCC and their maximum concentrations include 1,1-dichloroethene (total) (880 mg/kg), 1,2-dichloropropane (63 mg/kg), styrene (39/mg/kg), PCE (2700 mg/kg), toluene(5500 mg/kg), TCE (340 mg/kg), and xylene (total) (680 mg/kg). A complete listing of volatile compound positive analytical results, including results above the NJDEP soil cleanup criteria, can be found in **Table 18 - Sewer Basin Samples - Positive Analytical Results**.

5.2.1.3.2 Semi-Volatiles

Semi-volatile results from sediment samples (sewer basins) collected during the first investigation phase were rejected and deemed unusable by the data validation process as described in section 4.0 above. Therefore, results are not reported..

5.2.1.3.3 TAL Metals

Analytical results from sediment samples (sewer basins) report positive concentrations of twenty three TAL metal parameters. Seven of these parameters were measured at concentrations exceeding the NJDEP RDCSCC. The most common analytes detected above the RDCSCC and the corresponding maximum concentrations include antimony (26.5 mg/kg, SD02-1), cadmium (29.3 mg/kg, SD01-1), lead (2710 mg/kg, SD02-1) and zinc (3110 mg/kg, SD02-1) identified in both sample SD01-1 and sample SD02-1. Other analytes identified at concentrations in excess of the RDCSCC include arsenic (38.7 mg/kg, SD02-1), barium (1980 mg/kg, SD02-1), and nickel (819 mg/kg, SD02-1). Of the analytes detected above the RDCSCC, three (3) were also detected at concentrations above the NRDCSCC. Analytes detected above the NRDCSCC include arsenic, lead, and zinc. A complete listing of TAL metal positive analytical results, including results above the NJDEP soil cleanup criteria, can be found in **Table 18 - Sewer Basin Samples - Positive Analytical Results**.

5.2.1.3.4 Pesticides/PCBs

Analytical results from sediment samples (sewer basins) report positive concentrations of five pesticide/PCB parameters. None of these parameters were measured at concentrations exceeding any of the three NJDEP soil cleanup criteria. (Comparison was made to soils cleanup criteria to develop a contrast between sewer basin sediments and on-site soil contaminants identified above.) . A complete listing of pesticide/PCB positive analytical results can be found in **Table 18** - **Sewer Basin Samples - Positive Analytical Results**.

- 5.2.2 Groundwater Samples
- 5.2.2.1 Shallow Monitoring Well/Hydropunch® Samples

5.2.2.1.1 Volatiles

96-0123\RI\Draft5.doc

Revised 06/00

Analytical results from shallow monitoring well/Hydropunch® groundwater samples report positive concentrations of thirty two volatile parameters. Nine of these parameters were measured at concentrations exceeding NJDEP's Groundwater Quality Standard (GQS). Two samples exceed the standard for 1,2-dichloroethane with the highest concentration from sample MW6S-4 (12 ug/l). One sample (SB07-4) exceeds the standard for cis-1,2-dichloroethene (total) with a concentration of 73 μg/l. One (1) sample (MW9S-3) exceeds the standard for 1,2-dichloropropane (with a concentration of 2 ug/l. One (1) sample (MW2S-1) exceeds the standard for Acetone with a concentration of 1400 μg/l. Ten samples exceed the standard for benzene with the highest concentration from sample SB07-5 (560 μg/l) and monitoring well sample MW5S-4 (360 ug/l). Three samples exceed the standard for tetrachloroethene with the highest concentrations from sample SB10-4 (4 μg/l) and monitoring well sample MW9S-3 (2 ug/l). Four samples exceed the standard for trichloroethene with the highest concentration from samples MW9S-3 and MW6S-4 (3 μg/l). One sample (MW3S-3) exceeds the standard for vinyl chloride with a concentration of 13 ug/l. Two (2) samples exceed the standard for Xylene (total) with the highest concentration from sample SB07-5 (3280 μg/l).

A complete listing of volatile positive analytical results, including results above GQS, can be found in **Table 19- Shallow Groundwater Samples - Positive Analytical Results - Volatiles**. Results are also shown on **Figure 25**, **Groundwater Results Above GQS - Organics**, which shows sample locations, identifications, depths and concentrations of organic compounds detected above NJDEP GQS.

5.2.2.1.2 Semi-Volatiles

Analytical results from shallow monitoring well groundwater samples report positive concentrations of twenty six semi-volatile compound parameters. Two (2) of these parameters (n-nitrosodiphenylamine (1) and naphthalene) were measured at concentrations exceeding NJDEP's GQS. Both compounds were detected at concentrations in excess of the GQS in samples collected from wells MW1S and MW2S. The highest concentration of each compound was found in well MW2S during the 11/10/98 and 1/19/00 sampling events. Maximum concentrations of n-nitrosodiphenylamine (1) were found in samples MW2S-3 (390 ug/l) and MW2S-4 (440 ug/l). Maximum concentrations of naphthalene were found in the same two samples (12000 ug/l and 9800 ug/l, respectively). Concentrations detected in MW1S ranged from 24 ug/l to 17 ug/l n-nitrosodiphenylamine and 3700 ug/l to 1800 ug/l naphthalene. No semivolatile compounds were detected above the method detection limit in sample MW10S-3.

In addition, well MW2S was found to contain 2-methylphenol, 4-methylphenol, and phenol at concentrations in excess of the interim generic criteria for non-carcinogenic organic compounds of 100 ug/l. The maximum concentration of 2-methylphenol (2100 ug/l) was found during the 11/10/98 sampling event. Concentrations of 4-methylphenol ranged from 3100 ug/l to 3800 ug/l over the 11/10/98 and 1/19/00 sampling events. Over the same sampling events, phenol concentrations ranged from 2600 ug/l to 3100 ug/l.

A complete listing of semi-volatile positive analytical results, including results above GQS, can be found in Table 20 - Shallow Groundwater Samples - Positive Analytical Results - Semi-Volatiles. Results are also shown on Figure 25.

5.2.2.1.3 TAL Metals

Analytical results from shallow monitoring well groundwater samples report positive concentrations of twenty three TAL metal parameters. Twelve of these parameters were measured at concentrations exceeding NJDEP's GQS. Iron was detected above GQS in each sample submitted for analysis with concentrations ranging from 1600 ug/l in sample MW9S-4 to 104000 ug/l in sample MW8S-4. Aluminum and manganese were detected above GQS in all but one samples submitted (MW5S-4) with the highest concentrations recorded in samples MW1S-2 (51,800 ug/l) and MW8S-3 (1840 ug/l), respectively. Arsenic and lead were the next most frequently detected analytes exceeding GQS in nineteen samples. The maximum arsenic concentration was detected in sample MW1S-2 (9800 ug/l). The maximum lead concentration was found in sample MW8S-4 (1470 ug/l). Other analytes detected at concentrations in excess of the GQS include sodium (12 samples), chromium (12 samples), barium (7 samples), cadmium (6 samples), nickel (1 sample) and mercury (1 sample). Maximum concentrations for these analytes are as follows: sodium (572,000 ug/l, MW7S-3), chromium (1090 ug/l, MW1S-2), barium (16,100, MW2S-4), cadmium (55.5 ug/l, MW8S-4), nickel (135 ug/l, MW8S-4) and mercury (2.7 ug/l, MW4S-3).

A complete listing of TAL metal positive analytical results, including results above GQS, can be found in Table 21 - Shallow Groundwater Samples - Positive Analytical Results - Metals. Results are also shown on Figure 26, Groundwater Results Above GQS - Inorganics, which shows sample locations, sample identifications, sample depths, and concentrations and distribution of inorganic analytes detected above NJDEP GQS.

5.2.2.1.4 Pesticides/PCBs

Analytical results from shallow monitoring well groundwater samples report positive concentrations of thirteen pesticide/PCB parameters. Two of these parameters, aldrin and dieldrin were measured at concentrations exceeding NJDEP's GQS. Aldrin was detected at a concentration of 0.13 ug/l in sample MW6S-4, while dieldrin was detected at a concentration of 0.056 ug/l in sample MW11S-5.

In addition, one sample (MW6S-4) was found to contain a total PCB concentration of 5.4 ug/l which exceeds the NJDEP GQS. It should be noted that up until the Phase III sampling events, no pesticide parameters had been detected above GQS in any of the wells sampled. Furthermore, no aroclors had been detected above the method detection limits. A complete listing of pesticide/PCB positive analytical results, including results above GQS, can be found in Table 22 - Shallow Groundwater Samples - Positive Analytical Results - Pesticide/PCBs. Results are also shown on Figure 25.

5.2.2.2 Deep Monitoring Well/Hydropunch Samples

5.2.2.2.1 Volatiles

Analytical results from deep monitoring well/Hydropunch® groundwater samples report positive concentrations of eleven volatile parameters. One of these parameters was measured at a concentration exceeding NJDEP's GQS. One sample (MW1M-2) exceeds the standard for tetrachloroethene (PCE) with a estimated concentration of 8 µg/l. The result is evaluated as suspect because a duplicate of this sample (MW1M-1) did not report PCE above the detection limit. Also, subsequent samples of the same well (MW1M-3, MW1M-5, MW1M-5D and MW1M-6) reported no PCE above the method detection limits. No other compounds were detected at concentrations above GQS.

A complete listing of volatile positive analytical results, including results above GQS, can be found in **Table 23 - Deep Groundwater Samples - Positive Analytical Results - Volatiles**. Results are also shown on **Figure 25**, **Groundwater Results Above GQS - Organics**, which shows sample locations, sample identifications, depths, and concentrations of compounds detected above GQS.

5.2.2.2.2 Semi-Volatiles

Analytical results from deep monitoring well groundwater samples report positive concentrations of nine semi-volatile compound parameters. Only one compound (bis(2-ethylhexyl)phthalate) was detected at a concentration in excess of the NJDEP GQS. The compound was detected in new (Phase III) off-site well MW11M at a concentration of 32 ug/l (sample MW11M-5). It should be noted that the duplicate sample (MW11M-6) from this well indicates a estimated concentration of 1 ug/l. In addition, the previous sample collected approximately one month prior (MW11M-4) did not detect bis(2-ethylhexyl)phthalate above the detection limit. No other parameters were measured at concentrations exceeding NJDEP's GQS. A complete listing of semi-volatile positive results, including results above GQS, can be found in Table 24 - Deep Groundwater Samples - Positive Analytical Results - Semi-Volatiles. Results are also shown on Figure 25.

5.2.2.2.3 TAL Metals

Analytical results from deep monitoring well groundwater samples report positive concentrations of twenty one TAL metal parameters. Six of these parameters were measured at concentrations exceeding

NJDEP's GQS. Seven samples exceed the standard for Aluminum with the highest concentration from sample MW1M-4 (3240 μ g/l). Nine samples exceed the standard for Arsenic with the highest concentration from sample MW2M-4 (528 μ g/l). Fourteen samples exceed the standard for Iron with the highest concentration from sample MW2M-4 (20,900 μ g/l). Two samples exceed the standard for lead with the highest concentrations in samples MW2M-3 (11.9 μ g/l) and MW9D-3 (11.8 μ g/l). Sixteen samples exceed the standard for Manganese with the highest concentration from sample MW11M-4 (2390 μ g/l). Six samples exceed the standard for sodium with the highest concentration in sample MW11M-4 (117000 μ g/l).

A complete listing of TAL metal positive analytical results, including results above GQSs, can be found in Table 25 - Deep Groundwater Samples - Positive Analytical Results - Metals. Results are also shown on Figure 26, Groundwater Results Above GQS - Inorganics, which shows sample locations, sample identifications, sample depths and concentrations and distribution of inorganic compounds detected above NJDEP GQS.

5.2.2.2.4 Pesticides/PCBs

Analytical results from deep monitoring well groundwater samples report positive concentrations of six pesticide/PCB parameters. None of these parameters were measured at concentrations exceeding NJDEP's GQS. A complete listing of pesticide/PCB positive analytical results can be found in Table 26 - Deep Groundwater Samples - Positive Analytical Results - Pesticides/PCBs.

5.2.2.3 Development/Purge Water Holding Tank Samples

A single water sample (HTANK-1) was recovered from the holding tank used to store the development/purge water from the installation, and subsequent sampling, of the new monitoring wells during the first investigation phase. Analytical results from this sample report positive concentrations of: two volatile parameters (1,2-dichloroethene (total), methylene chloride) and zero pesticides/PCBs parameters. None of these parameters were measured at concentrations exceeding NJDEP's GQS. Based on this report of low-level contamination, NJDEP instructed L. Robert Kimball and Associates, Inc. to discharge the contents of the holding tank on-site. The tank was allowed to slowly discharge so as not to allow any effluent to leave the site area or to create a "ponding" situation. The discharge was performed without incident.

A complete listing of positive analytical results, including results above action levels, can be found in **Table 27 - Holding Tank Sample - Positive Analytical Results**. All semivolatile and TAL metal analysis results were rejected and deemed unusable by the data validation process as described in section 4.0 above. Therefore, semivolatile and TAL metal results are not reported.

5.2.2.4 Camden City Well #7 Samples

Potable water samples (prior to treatment) were recovered, during two (2) sampling events of the first investigation phase, from Camden City Well #7, located approximately 3500 feet southeast of the site. Analytical results from this sample report positive concentrations of: two volatile parameters (chloromethane and methylene chloride) and one pesticides/PCBs parameter (dieldrin). None of these parameters were measured at concentrations exceeding NJDEP's GQS. Analytical results from these samples also report positive concentrations of nine TAL metal parameters. Two of these parameters (iron (19300 ug/l) and manganese (327 ug/l)) were measured exceeding NJDEP's GQS.

A complete listing of positive analytical results, including results above action levels, can be found in **Table 28 - City Well Number 7 Samples - Positive Analytical Results**. All semivolatile results and results from two samples submitted for TAL metal and volatile organics analysis were rejected and deemed unusable by the data validation process as described in section 4.0 above. Therefore, no semivolatile results and only one set of TAL metal and volatile organic results are reported.

6.0 NATURE AND EXTENT OF CONTAMINATION

Results of intrusive remedial investigation activities indicate former site operations and disposal practices have resulted in contamination of site surface and subsurface soil and shallow groundwater beneath the site. Intrusive activities found the majority of the yard area of the site consists of fill (ash, cinders, demolition rubble) with indications of possible former disposal areas containing drum liners, skimmer belts, buckets and other miscellaneous debris. Results of environmental sampling activities indicate surface and subsurface soil beneath the Martin Aaron building, throughout the yard area and beyond the property borders contain levels of organic and inorganic constituents in excess NJDEP soil cleanup criteria. The primary contaminants of concern within the site surface and subsurface soil include chlorinated and aromatic volatile organic compounds; semi-volatile compounds consisting mostly of polyaromatic hydrocarbons (PAH); pesticides/PCBs and metals.

Hydrogeologic investigation results indicate organic and inorganic constituents are present at concentrations in excess of the NJDEP Groundwater Quality Standards within the shallow and deep groundwater zones beneath the site. The primary constituents of concern within the site shallow groundwater zone include chlorinated and aromatic volatile compounds; semi-volatile compounds (PAH); pesticide/PCBs; and metals. Deep groundwater zone constituents of concern include metals and, to a lesser degree, chlorinated volatile compounds.

6.1 Physical Geology/Hydrogeology Assessment

Intrusive remedial investigative activities conducted onsite indicate that the majority of top and shallow subsoils have been removed from the site and replaced with various fill materials, including: construction debris (bricks, concrete, etc.); ashes and cinders; slag-type materials; and in minor cases, wood and refuse. This fill layer ranges from two to seven feet in thickness and is relatively consistent in its existence over the entire site.

The unconsolidated sediments immediately beneath the fill consist primarily of sands and gravels with intervals of silts and clay (Magothy Formation). On-site borings evidence the existence of this formation, which was initially encountered at an approximate depth of ten feet, and ranged in thickness from fifty to fifty two feet.

Under the Martin Aaron site, the upper confining bed between the upper and middle aquifers of the PRM system was expected to be located approximately 40 feet below ground surface and to be less than twenty feet thick. Intrusive on-site remedial investigative activities encountered what was believed to be the uppermost confining clay layer at depths ranging from approximately 57 to 63 feet. Intrusive activities at the site indicate this layer is at least five feet thick. A geotechnical sample obtained from (SB11) this layer (remolded to a density of 106.6 pcf) exhibited a hydraulic conductivity of 4.1 x10-8 cm/sec. Reports indicate the upper most confining bed consists of thin- to thick-bedded sequence of micaceous silts and clays (Zapecza, 1984) with an estimated hydraulic conductivity of 10-6 cm/sec.

Static water levels obtained during remedial investigative activities evidence shallow groundwater levels between 5.25 and 14.40 feet below ground surface, and deeper groundwater levels between 13.83 and 15.43 feet below ground surface. Measured groundwater elevations in the shallow and deep wells indicate a potential for vertical groundwater movement. Shallow groundwater flow within the upper aquifer is to the east and southeast based on groundwater elevations measured in site monitoring wells. However, based on observations during test pit excavation and soil boring activities, building

foundations and subsurface structures are believed to influence the movement of on-site shallow water creating local mounds and sinks. Secondary flow patterns, due to the observed mounds and sinks, may exist within the site boundaries resulting in migration (horizontal and/or vertical) pathways and/or velocities different than predicted from static water elevation measurements.

The relatively shallow groundwater evidenced in the northwestern portion of the site (MW1S) and extending west onto the South Jersey Port. Corp. property (MW4S and MW8S) may be representative of a local perched groundwater zone (Refer to Figure 10 and Figure 12, Section 3 above). Soil borings completed in the south and southwestern portions of the South Jersey Port Corp. property during the second investigation phase evidenced the first groundwater at depths of 10 to 12 feet below ground surface indicating a possible southern extent to this shallow perched water. Data indicate that the shallow groundwater static levels approach levels recorded in the deeper wells on the eastern portions of the site and south east of the site at monitoring wells MW9S, MW9D, MW11S and MW11D.

Deeper groundwater flow within the upper aquifer is to the east and southeast along the dip of the local formations. The easterly flow is expected to be additionally enhanced by groundwater withdrawal at various industrial and public supply wells located east of the site.

6.2 Former Disposal Practice Assessment

Magnetic and electromagnetic induction surveys completed at the Martin Aaron site identified several areas of possible drum and other debris disposal. Data quality was generally good considering the extensive cultural noise features at the site (buildings) fence, Rhodes Drum operations). Later excavation activities confirmed that several interpreted geophysical anomalies were probably caused by subsurface structures including footings, concrete pads, pipe runs and other subsurface utilities.

Ground Penetrating Radar (GPR) surveys conducted over the interpreted geophysical anomalies were not effective in delineating the horizontal extent of buried objects. Penetration depths were limited due to the extremely high conductivity of the site soils observed in the electromagnetic induction survey. In addition, the abundance of subsurface structures at the site prohibited identification of burial pits as opposed to construction debris. However, GPR surveys were effective in delineating the actual location of USTs north of the former Martin Aaron building and one UST east of the building.

Test pits excavated at interpreted geophysical anomalies generally encountered fill consisting of ash, cinders, brick, concrete, scrap metal, etc., at all excavation locations. Several excavations confirmed historical reports of former buildings with the discovery of subsurface footings, pipe runs, and other subsurface structures including a subsurface concrete pad or possible vault and vertical 8- inch diameter pipe (possible former well) at test pit TP24. The majority of test pits revealed the probable cause of observed geophysical anomalies. Subsurface disposal areas were confirmed at test pit locations TP08 located in the north central portion of the yard area, TP11 located in the northeast portion of the property and TP21 located just east of the Rhodes operations with the discovery of buried drum rings, boots, and gloves in test pit TP08, drum liners, gloves and drum rings in test pit TP11 and skimmer belts, drum liners, buckets, and solid product (white solid) in test pits TP21 and TP23.

Results of the test pit excavation activities and recent removal activities conducted by the NJDEP indicate that past subsurface disposal practices are evident and containerized wastes are buried at the site. Drums were excavated by the NJDEP in the vicinity of geophysical anomaly M3 in the summer of 1999. However, findings of the intrusive investigation do not support reports of widespread burial.

6.3 Sewer Basin Assessment

Excavations around sewer basin numbers 2 (east of former Martin Aaron building) and former basin 4 east of Rhodes Drum building exposed the basin walls and associated piping. Basin number 3 (reportedly between the former Martin Aaron building and Rhodes Drum building) could not be located but a test pit (TP01) was excavated in the reported vicinity.

Except for some loose bricks encountered near the top of sewer basin 4, both basins appeared to be competent and intact to the depth excavated. No leaks were evident from the piping exposed. Soil adjacent to basin 2 was observed to be stained and exhibited a strong odor. It is uncertain whether observed staining is the direct result of discharges from the basin or general site operations. Results of soil sampling (SE01-1) from the excavation adjacent to sewer basin 2 indicates chlorinated hydrocarbons (1,2-dichloroethene (total), 1,2-dichloroethane, trichloroethene) and aromatics (xylene (total)) at concentrations in excess of the IGWSCC. These results are similar to results found in soil beneath the entire processing area of the former Martin Aaron building complex. Soil adjacent to basin 4 also exhibited a slight odor but no staining was evident. Extensive construction debris (bricks and concrete) were identified in soil adjacent to Basin 4.

Sediment samples collected from former basin numbers 1 (within the former Martin Aaron building) and 4 were found to contain chlorinated and aromatic volatile compounds, and metals at concentrations above NJDEP soil cleanup criteria. Compounds and analytes detected are consistent with constituents found in the site soil and groundwater. As mentioned above, chlorinated and aromatic volatile compounds and metals have been identified throughout the property. Results of soil sampling adjacent to Basins 2 and 4 do not indicate that the basins are major sources of the site contamination, relative to results of sampling within the process areas, but probably are contributing.

6.4 Underground Storage Tank Assessment

Soil and groundwater investigations conducted in the vicinity of the underground storage tanks (USTs) located immediately north (three known USTs) and east (one UST) of the former Martin Aaron building found evidence of impacts attributable to past leaks and spills. During the Summer of 1999, the NJDEP completed a removal action of all on-site USTs and associated soil. The following assessment is based on data collected prior to the removal actions.

Investigations around the three former USTs located north of the Martin Aaron building evidenced strong fuel odors from two to three feet below ground surface up to a maximum depth of sixteen feet below ground surface. At depths between six and eight feet below ground surface, an oily sheen was observed in the site soil. Analytical results of samples collected from soil borings advanced around the USTs located north of the building (SB50 to SB61) evidenced some of the highest total volatile organic contamination beneath the site, with results above 1000 mg/kg ranging from 1223 mg/kg (SB59) to 3303 mg/kg (SB51). Five of the eleven borings advanced to investigate the USTs contained total volatiles in excess of 1000 mg/kg.

Based on the investigation activities, the impacts from the USTs located north of the building extend north to at least boring VOA1, to the west no further than boring SB02, and to the south no further than boring SB112. These limits were established based on the absence of aromatic hydrocarbons (benzene, toluene, xylene, etc.) at concentrations above NJDEP soil cleanup criteria in these borings. To the east,

aromatic hydrocarbons are present above NJDEP soil cleanup criteria in borings SB33 and SB31 advanced within the former building, SB05 and SB08 advanced just north of the building, and SB12, SE01, and TP01 located east of the building. This trend in contamination, which corresponds closely to the shallow groundwater gradient, probably indicates the extent of impacts attributable to the USTs. A more definite delineation of the eastern extent of impacts in hindered by the presence of elevated levels of chlorinated hydrocarbons beneath the former building.

Aromatic compounds were detected at concentrations above NJDEP GQS in shallow groundwater monitoring wells MW7S (formerly located adjacent to the USTs), MW6S located east of the tank area, MW5S located northeast of the tank area, and MW2S located along the east property border. The highest aromatic hydrocarbon concentrations were observed in wells MW7S and MW5S (both containing benzene at greater than 300 ug/l). Based on the current data, contamination in wells MW5S, MW7S and MW6s is interpreted as being attributable to the UST area. Contamination found in well MW2S is probably due to a more local source as described in subsequent Sections below. Aromatic hydrocarbons at concentrations above the NJDEP GQS were not found in any other wells including the deep monitoring wells.

Investigations completed around the one UST formerly located east of the former Martin Aaron building found no evidence of impacts attributable to the UST.

6.5 Type and Distribution of Soil Contamination

Near surface and subsurface soil contamination is wide spread throughout the site and extends beyond the site property borders. Contaminant parameters detected in excess of NJDEP soil cleanup criteria include: chlorinated and aromatic volatile organic compounds; semi-volatile compounds consisting mostly of polyaromatic hydrocarbons (PAH); metals; and pesticides/PCBs.

6.5.1 Volatile Organics

Volatile organic contamination is widespread across the Martin Aaron property and was found to extend beyond the property borders to the northeast, east and possibly to the southeast. Seventeen volatile organic compounds were detected in site surface and/or subsurface soil at concentrations in excess of at least one of the three NJDEP soil cleanup criteria. Volatile compounds of concern include 1,2-dichloroethane, 1,2-dichloroethene (total), 1,2-dichloropropane, benzene, styrene, tetrachloroethene, toluene, trichloroethene, vinyl chloride and xylene (total) found in site surface and/or subsurface soil at concentrations in excess of the NJDEP RDCSCC. Volatile compounds detected at concentrations in excess of the NJDEP NRDCSCC include 1,2-dichloroethane, 1,2-dichloropropane, benzene, tetrachloroethene, toluene, trichloroethene, vinyl chloride and xylene (total). In general, volatile compound concentrations in site soil were found to decrease with depth across the site. However, the frequency of occurrence and number of compounds detected generally increase with depth.

Shaded and hatched areas on **Figure 18, Soil Results Above Criteria - Volatiles**, represent the estimated extent of volatile organic contamination in excess of the IGWSCC, RDCSCC and NRDCSCC beneath the Martin Aaron site. Concentrations in excess of cleanup criteria were most frequently observed within and around processing areas of the site (near buildings and underground tank areas). Volatile organic concentrations observed in samples collected from the yard area (north of the buildings) probably are a result of former surface and subsurface disposal practices.

As shown on Figure 18, results of sampling activities indicate the extent of volatile organic contamination at concentrations in excess of the NJDEP IGWSCC has been delineated to the north, northwest, west, southwest, and southeast with contamination extending only to the property borders in each direction. To the northeast, volatile organic concentrations in excess of the IGWSCC were identified across the property border (SB95) and extending across Sixth Street to boring SB105. To the east, volatile contamination above IGWSCC was identified in surface soil across the property border at boring SB98. No volatile organic contamination was identified further east across sixth Street. To the south (property adjacent to the former Rhodes building), the extent of possible soil contamination in excess of the IGWSCC remains unknown but was found to extend at least to the south property borders.

When compared to the NJDEP RDCSCC, and as shown on Figure 18, the extent of volatile organic contamination falls completely within the IGWSCC delineation with contamination extending across the property borders to the northeast and possibly to the south (south of the Rhodes building). Only two off-site boring locations (SB95 and SB105) were found to contain volatile organic contamination in excess of the RDCSCC. The lack of sample information on the property south of and adjacent to the Rhodes Drum facility does not allow for delineation to the south, however, results of samples collected from soil borings SB132 and SB133 southeast of the property did not contain volatile compounds above the RDCSCC. When compared to the NRDCSCC, the extent of volatile organic contamination is virtually identical to the extent in excess of the RDCSCC with the exception of the northeast portion of the site where contamination extends only to boring SB95 and areas northeast of the former Rhodes building. Delineation of the extent of soil contamination to the south of the former Rhodes building is again limited by the lack of sampling information on the adjacent property.

Figure 27, Total Volatiles - Surface Soil and Figure 28, Total Volatiles - Subsurface Soil, present the distribution of total volatile concentrations. Increased total volatile results are presented through increased symbol size. Total volatile concentrations in excess of NJDEP criteria for total volatile compounds (1000 ppm) were identified in surface and subsurface soil beneath the northern portions of the Martin Aaron building (processing area) and the yard area just north of the building, and in subsurface soil immediately north and east of the former Rhodes building. The eastern most sample containing total volatiles above 1000 mg/kg was collected along the south property border (SB129). Shaded areas on Figures 27 and 28 present the estimated extent of total volatiles in surface and subsurface soil, respectively, in excess of 1000 mg/kg.

Volatile organic contamination within the site surface and subsurface soil consists mainly of chlorinated volatile compounds and aromatic volatile compounds. Based on sampling results, chlorinated volatile compounds detected at concentrations in excess of either the IGWSCC, RDCSCC or NRDCSCC are present across the entire Martin Aaron property and extend beyond the property boundaries to the northeast (SB95), east (SB98), and possibly south. Aromatic hydrocarbon compounds detected at concentrations in excess of NJDEP soil cleanup criteria are generally located in two areas: around the former underground storage tanks immediately north of the former Martin Aaron building (soil borings SB50 to SB60) extending east beneath the processing area of the building to test pit TP01 and an area northeast of the Rhodes Drum building defined by soil borings SB16, SB23, SB120, SB123 and test pit TP21. In general, aromatic hydrocarbon contamination does not extend beyond the property borders.

The most common chlorinated compounds detected include 1,2-dichloroethene (total), tetrachloroethene and trichloroethene. The highest concentrations of chlorinated volatile compounds were detected in the vicinity of soil borings SB31, SB32 and SB33 located in the northeast portion of the former Martin Aaron building and areas adjacent to and north of the building at soil boring location SB05. These

results are consistent with a source of volatile contamination originating from drum processing areas within the building. South of the source area, chlorinated volatile compound concentrations generally decrease to below NJDEP cleanup criteria at boring locations SB42, SB45, and SB26 marking a probable southern extent of migration. To the west, no chlorinated hydrocarbons at concentrations in excess of NJDEP soil cleanup criteria were identified in borings located along South Broadway, marking a western limit of migration.

To the north and northeast, contaminant concentrations vary across the site. A second area of elevated chlorinated hydrocarbon concentrations was identified at test pit TP13 located near the northeast corner of the site and boring SB95 located just beyond the northeast property border. Elevated concentrations of chlorinated compounds at test pit TP13 (3-4 feet depth) and SB95 (surface and subsurface) may indicate an area of past subsurface disposal as opposed to a limit of migration.

To the east and southeast, chlorinated compounds in site soil at concentrations greater than NJDEP soil cleanup criteria extend across the property to at least borings SB130 and SB131located along the east property boundary and SB19 located in the southeast corner of the property. Phase III investigations confirmed the presence of chlorinated hydrocarbons above all three NJDEP soil cleanup criteria beneath the former Rhodes building. Only one sample (SB98-1) collected from soil borings advanced east of the property border contains chlorinated hydrocarbons in excess of NJDEP soil cleanup criteria. Waste encountered while excavating test pit TP21 indicates an area of past subsurface disposal as opposed to an extent of contaminant migration. To the west, chlorinated volatile compound contamination in site surface and subsurface soil extends at least to soil boring locations SB02 and SB01. No chlorinated hydrocarbon concentrations in excess of NJDEP soil cleanup criteria were identified beyond the north, northwest, west, or southwest property borders or on the South Jersey Port. Corp. property located across South Broadway.

Aromatic hydrocarbon contamination in site soil consists mainly of benzene, toluene, and xylene (total). Contamination identified around the underground storage tanks located just north of the former Martin Aaron building is probably due to spills and leaks associated with the tanks. Strong odors and a distinctive sheen were observed during advancement of soil borings around the tanks. As mentioned in Section 6.4, above, the eastern portion of this area may be an indication of contaminant migration to the east and southeast beneath the building or may be representative of drum processing operations. The latter scenario is supported by the presence of aromatic hydrocarbon contamination in soil adjacent to sewer basin No. 2 (test pit SE01), which accepted washdown water from operations within the northeast portion of the building, and in soil encountered in test pit TP01 located in the reported vicinity of sewer basin No. 3 (unknown location) which is believed to have received the effluent of Basin No. 2.

Aromatic hydrocarbon contamination in site soil located north and northeast of the Rhodes Drum facility is probably associated with past surface and subsurface disposal practices at the site based on waste encountered in test pit TP21 which included used skimmer belts, 5-gallon buckets and other debris. Aromatic hydrocarbons including xylene (total) (680 mg/kg) and toluene (5500 mg/kg) were detected in sample SD02 collected from former sewer basin No. 4 (east of Rhodes facility). Results indicate that aromatic hydrocarbon contamination detected in the eastern portion of the site has not migrated beyond the eastern property border.

Only one off-site soil boring (SB105) located northeast of the site and across Sixth Street was found to contain aromatic hydrocarbons, specifically benzene, at concentrations in excess of NJDEP soil cleanup criteria. Benzene in SB105 were found at concentrations in excess of both the NJDEP IGWSCC and

RDCSCC. No other samples in the vicinity of SB105 contain aromatic hydrocarbons in excess of NJDEP soil cleanup criteria. Based on this observation, the contamination identified in boring SB105 is interpreted as not site related.

6.5.2 Semi-Volatile Organics

Semi-volatile organic contamination appears to be widespread across the Martin Aaron property and extends beyond the property boundaries to the north, east, southeast, and west. Twelve semi-volatile organic compounds were detected in site surface and/or subsurface soil at concentrations in excess of one or more of the three NJDEP soil cleanup criteria. Semi-volatile compounds of concern include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, chrysene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene and naphthalene detected at concentrations above the RDCSCC. Each of these nine compounds, excluding naphthalene, were also detected above the NRDCSCC. Five compounds (acenaphthalene, benzo(b)fluoranthene, fluoranthene naphthalene, and pyrene) were detected at concentrations above IGWSCC.

Shaded and hatched areas on Figure 19, Soil Results Above Criteria - Semivolatiles, represent the estimated extent of semi-volatile organic (PAH) contamination in excess of each NJDEP soil cleanup criteria. Contaminant concentrations in excess of soil cleanup criteria were most frequently observed within the yard area of the Martin Aaron property north of the former and existing buildings, and in the northern half of the South Jersey Port. Corp. property across South Broadway. The apparent lack of significant semi-volatile contamination observed beneath the oldest portions of the former Martin Aaron building may indicate the source is associated with past disposal/filling operations as opposed to drum processing although contamination due to site operations has not been ruled out.

As shown on Figure 19, the horizontal extent of semi-volatile organic contamination at concentrations in excess of both the RDCSCC and NRDCSCC possibly emanating from the site extends to the limit of current sampling. Semi-volatile contamination at concentrations in excess of the NJDEP IGWSCC was identified at soil borings SB75 located in the northeast corner of the South Jersey Port Corp. property, SB88 located north of the site along Everett Street, SB112 located in the former one-story brick structure of the Martin Aaron building complex, SB23A located on the property along the east border and at one off-site location, boring SB132, located southeast of the property along sixth street. Phase III soil borings were advanced at strategic locations near and around the majority of the areas above the IGWSCC in an attempt to provide additional delineation. Based on the Phase III results, the estimated areas impacted above the IGWSCC were reduced and are shown as hatched areas on Figure 19.

Semi-volatile compounds detected at concentrations in excess of the most stringent NJDEP cleanup criteria within the site surface and subsurface soil consists mainly of polyaromatic hydrocarbons (PAH) which are generally associated with combustion and combustion by-products. Results indicate that the PAH contamination may be associated with the observed combustion by-products (ash and cinders) apparently used as fill across the site. This scenario is supported by the apparent lack of contamination identified beneath the southern portions of the former Martin Aaron building and southern portions of the South Jersey Port Corp. property where less combustion by-products were observed in the subsurface. The lack of contamination beneath the older (southern) portions of the former building may indicate the placement of the combustion products was probably after the original site buildings were constructed. Intrusive activities conducted as part of this investigation indicate the observed combustion product fill extends beyond the property borders in all directions. Past operations at the site may be the source of the combustion product. Several large smoke stacks were once located on the property.

Figure 29, Total Semivolatiles - Surface Soil and Figure 30, Total Semivolatiles - Subsurface Soil, present the distribution of total semivolatile concentrations. Increased total semivolatile results are presented through increased symbol size. These figures show that the majority of total semivolatile results in excess of 150 mg/kg were identified on the Martin Aaron property extending beyond the property border to the northeast, and in the northern portions of the South Jersey Port Corp. property. This distribution of semivolatile contamination supports the former use of the property for contaminant disposal and former use of the South Jersey Port Corp. Property.

6.5.3 Pesticides

Pesticide contamination, relative to semi-volatile and volatile contamination described above, appears to be less widespread across the Martin Aaron property. Four pesticide compounds were detected in site surface and/or subsurface soil at concentrations in excess of either the IGWSCC, RDCSCC or NRDCSCC. Pesticide compounds of concern include aldrin, dieldrin and heptachlor found in site surface and subsurface soil at concentrations in excess of NJDEP NRDCSCC. No pesticide compounds were detected at concentrations above IGWSCC.

Shaded and hatched areas on Figure 20, Soil Results Above Criteria - Pesticides, presents the estimated extent of pesticide contamination in excess of each NJDEP soil cleanup criteria. Based on sampling results, pesticides detected at concentrations in excess of the RDCSCC are generally confined to the site with the exception of surface and subsurface soil at soil boring location SB91 just across the north property border, and subsurface soil at soil boring SB69 located in the northern portions of the South Jersey Port property. The extent of contamination to the south of the Rhodes building cannot be determined due to a lack of sampling information on the southern adjacent property. However, no pesticides above NJDEP soil cleanup criteria were identified in Phase III borings advanced southeast of the site. The highest pesticide concentrations were identified in soil borings located immediately north and east of the former Martin Aaron building (SB04, SB05, SB08 and SB114) and immediately north of the Rhodes building (SB16) with contamination in soil borings SB04, SB05 and SB08 in excess of 100 times the current RDCSCC. Phase III delineation borings and sampling results indicate that the extent of contamination in excess of 100 times the RDCSCC is limited to the immediate area of these borings.

Contamination at soil boring SB91 is probably due to migration from the Martin Aaron property based on results of additional borings further north. Contamination identified on the South Jersey Port property may be indicative of former Martin Aaron operation activities on that property as discussed in Section 6.5.2 above.

When compared to the NRDCSCC, pesticide contamination is completely within the site property borders with the highest frequency of positive concentrations associated with the former buildings. Away from the buildings, pesticides in excess of the NRDCSCC are generally confined to surface soil.

6.5.4 PCB

Total PCB contamination within the site surface and subsurface soil extends across the Martin Aaron site. The horizontal extent of contamination is similar to the extent described for the pesticide contamination above. Shaded areas on Figure 21, Soil Results Above Criteria - PCB, presents the estimated extent of total PCB contamination in excess of each NJDEP soil cleanup criteria.

Based on sampling results, and as shown on Figure 21, total PCB contamination in excess of the RDCSCC extends from beneath the former processing areas of the former building north to the northern property line, northeast and east to the east and northeast property borders, and southeast to the southeast property border. Results indicate total PCB contamination in excess of the RDCSCC extends across the east and northeast property borders (surface soil) to at least soil boring SB106 located on the east side of Sixth Street. No other soil borings on the east side of sixth street contain total PCB in excess of the RDCSCC. One additional soil boring (SB89) located north of the property contains subsurface soil at concentrations in excess of the RDCSCC. Delineation of total PCB contamination in excess of the RDCSCC across the southern property border south or the former Rhodes building could not be accomplished due to the lack of sample information on the adjacent property. However, Phase III soil borings advanced southeast of the site along Sixth Street do not contain total PCBs in excess of NJDEP soil cleanup criteria.

When compared to the NRDCSCC, the extent of total PCB contamination in the site surface and subsurface soil is generally confined to the Martin Aaron property with the exception of one soil boring location (SB99, surface soil) located just beyond the east property border. Total PCB contamination at concentrations in excess of the NRDCSCC was most frequently identified adjacent to and north of the former and existing site structures with the highest concentrations at sample locations SB05, SB08, SB12, SE01 and TP05.

Total PCB concentrations in excess of the IGWSCC were detected at three sampling locations (TP05, SB08, TP09) on the Martin Aaron property. Results of field test kits were used in an attempt to delineate total PCB concentrations in excess of 50 mg/kg (TSCA regulated waste). Field test kit data experienced extreme matrix interference as reported by the Kimball chemist. Therefore, additional Phase III soil borings and associated laboratory analysis of soil samples were used to better delineate the extent of contamination in excess of 50 mg/kg. Phase III sampling and analysis has resulted in a better delineation of total PCBs in excess of 50 mg/kg and indicate that these areas are generally confined to the three sampling locations mentioned above. Hatched areas on **Figure 21** present the estimated extent of soil containing total PCBs in excess of 50 mg/kg.

The distribution of total PCB contamination presented in Figure 21 suggests site process operations and past surface and subsurface disposal practices are the source. The distribution of observed concentrations away from the processing areas of the building suggest a combination of contaminant migration, filling operations and possible isolated disposal areas (north and east property borders) as the source of contamination across the site.

Total PCB concentrations in excess of the NJDEP soil cleanup criteria were not detected in samples collected from the South Jersey Port Corp. property.

6.5.5 Metals

Metals contamination is widespread across the Martin Aaron property extending beyond the property boundaries to the north, south, east, southeast, and west. Twelve analytes were detected in site surface and/or subsurface soil at concentrations in excess of the RDCSCC. The most common analytes detected above the RDCSCC, include arsenic, barium, cadmium, lead, antimony, beryllium and chromium. Analytes of additional concern include arsenic, beryllium, cadmium, chromium, copper, lead, thallium and zinc found in site and off-site surface and subsurface soil in excess of NJDEP NRDCSCC.

Figure 22, Soil Results Above Criteria - Metals, presents the estimated extent of metal contamination in excess of each NJDEP soil cleanup criteria. In general, metal contamination in excess of either the RDCSCC or NRDCSCC extends to the limits of current sampling. Based on current data, and as presented on Figure 22, the horizontal extent of metals contamination possibly emanating from the site has not been delineated to the west, north, east, south or southeast. When compared to NJDEP NRDCSCC, the extent of near surface and subsurface metal contamination is relatively unchanged. However, the extent of contamination above the NRDCSCC was found to be disproportionately attributed to high levels of arsenic and lead (over 150 and 51 surface and subsurface samples, respectively) with levels of other constituents found at concentrations above the NRDCSCC in only a fraction of the samples submitted (beryllium-14 samples, cadmium-1 sample, chromium-13 samples, copper-4 samples, thallium-4 samples, and zinc-31 samples).

Results indicate that the metal contamination may be associated with the observed fill (combustion by-products, ash and cinders) observed in soil borings and test pits across the site. This scenario is supported by the apparent lack of metal contamination at concentrations above NJDEP soil cleanup criteria, besides arsenic, identified beneath the southern portions of the former Martin Aaron building. With the exception of a few outlying analytes (barium and beryllium), contamination observed beneath the former Martin Aaron building generally consists of arsenic while contamination beneath the yard areas north of the building consists of a range of analytes including arsenic, barium, cadmium, lead, antimony, beryllium and chromium. The apparent lack of contamination, other than arsenic, beneath the building and the similarity of the distribution of the other analytes to the distribution of observed semi-volatile contamination may indicate the metals are associated with the fill material.

Figure 31 Arsenic Distribution - Surface Soil, and Figure 32 Arsenic Distribution - Subsurface Soil, present the distribution of arsenic identified by increasing symbol size. As shown on these figures, the distribution of arsenic relative to all sample locations indicates the highest concentrations in both the surface and subsurface soil are present on the site property extending across the north and east property border. Results indicate the arsenic contamination is site related and not a result of fill material. Shaded areas on Figures 31 and 32 represent the estimated extent of surface and subsurface arsenic contamination in excess of 1000 mg/kg, respectively. This analysis shows that the arsenic contamination is much more prevalent in the subsurface soil with only one sample exceeding 1000 mg/kg in the surface soil.

6.5.6 Dioxin/Furan

No Dioxin/Furan analytes were detected at or above one mg/kg in soil samples submitted. Figure 23, Dioxin/Furan Total Toxic Equivalent Results, presents the sample locations and total toxic equivalent values for samples collected.

6.5.7 Tentatively Identified Compounds (TIC)

Tentatively Identified Compounds (TIC) were reported for the volatile and semi-volatile fractions of soil samples submitted for analysis. Table 29 – Volatile TIC Frequency and Table 30 – Volatile TIC Maximum Concentrations, present the most frequently observed and the maximum concentrations of soil volatile fraction TICs, respectively. Likewise, Table 31 – Semi-Volatile TIC Frequency and Table 32 – Semi-Volatile TIC Maximum Concentrations, present the most frequently observed and the maximum concentrations of soil semi-volatile fraction TICs, respectively.

In general, the most frequently reported TICs at the highest concentrations in the volatile fraction were unknown hydrocarbons, unknown aromatic hydrocarbons and ethyl-methyl-, trimethyl-, and dichlorobenzene isomers. The maximum TIC concentrations were generally found in soil samples collected in the former UST area north of the Martin Aaron building, the former processing areas of the building, and immediately north of the former Rhodes building.

The most frequently reported and highest concentrations in the semi-volatile fraction were unknown PAHs, unknown hydrocarbons, and various PAH isomers such as anthracene, naphthalene, and phenanthrene. The maximum TIC concentrations were generally found in the northeast portion of the South Jersey Port property and along the eastern border of the site.

6.6 Type and Distribution of Groundwater Contamination

Groundwater contamination was detected in both shallow (water table) and deep monitoring wells installed at the Martin Aaron site. Based on sampling results, groundwater contamination appears to be more prevalent in the shallow zone near the water table surface as opposed to deeper zones of the aquifer. Contaminant parameters detected in the shallow groundwater at concentrations above NJDEP Groundwater Quality Standards (GQS) include: chlorinated and aromatic volatile compounds; semi-volatile compounds; pesticides/PCBs and metals. Contaminant parameters detected in the deeper groundwater include chlorinated hydrocarbons, semi-volatiles and metals but with much fewer compounds and analytes at concentrations above GQS. Contaminants detected in the site groundwater generally correspond to but are not totally representative of the identified soil contaminants.

6.6.1 Volatile Organics

Volatile contamination within the shallow portion of the aquifer consists of a combination of aromatic compounds (benzene and xylene) and chlorinated hydrocarbons (tetrachloroethene and trichloroethene, and 1,2-dichloroethene) and is present to at least the west, east, and south property boundaries with low levels of chlorinated hydrocarbons found in downgradient well MW9S. It should be noted that more recent Phase III sampling of well MW9S did not identify any volatile compounds above NJDEP GQS. Aromatic compounds were found at highest levels in hydropunch sample location SB07 and monitoring wells MW5S, MW7S, and MW2S while the highest level of chlorinated hydrocarbons were again detected in hydropunch sample location SB07 and monitoring wells MW7S and MW5S. Although high levels were detected in hydropunch SB07, the results from new near-by monitoring well MW5S are considered more representative of site groundwater. Although a high concentration of vinyl chloride (13 ug/l) was detected in well MW3S, previous sampling of this well did not identify vinyl chloride above method detection limits and the results is considered suspect. No volatile compounds at concentrations above GQS were identified in apparent upgradient well MW1S, down-gradient well MW1S, or wells installed on the South Jersey Port Corp. property (MW4S and MW8S).

Results indicate a source of aromatic hydrocarbon contamination in the vicinity of shallow wells MW7S, MW5S, and MW6S, probably the underground tanks located just north of the former Martin Aaron building. Aromatic hydrocarbon contamination at concentrations above GQS was not identified in down-gradient wells MW10S, MW9S, MW3S or MW11S. Aromatic contamination in the site groundwater has not migrated to the off-site wells. Aromatic contamination identified in monitoring well MW2S may be the result of a secondary source given its distance from the underground tank area and presence of aromatic contamination in the near-by soil described in the previous sections.

Chlorinated hydrocarbon contamination identified in site wells MW7S and MW6S may be migrating south and southeast beyond the site borders as evidenced by contamination identified in monitoring wells MW3S and MW9S.

Only one volatile organic compound (tetrachloroethene) at a concentration above NJDEP GQS was identified in the deeper groundwater samples. Tetrachloroethene was detected in one sample (MW1M-2) from apparent upgradient monitoring well MW1M at an estimated concentration of 8 ug/l. This result is considered suspect due to the fact that results of analysis of a duplicate sample (MW1M-1) reported no tetrachloroethene above the method detection limit. Also, subsequent Phase III sampling results report no volatile compounds in excess of the NJDEP GQS. Results of analysis indicate detectable concentrations of cis-1,2-dichloroethene at levels below the current NJDEP GQS in wells MW1M, MW2M, MW3M and at hydropunch sample locations SB08 and SB09. Results indicate volatile concentrations are consistent across the site in the direction of apparent groundwater flow (northwest to southeast), suggesting the observed concentrations of cis-1,2-dichloroethene represent background conditions and/or a distant up-gradient source. This conclusion may be further justified by the fact that 1,2-dichloroethene represents a degradation product of tetrachloroethene. No volatile compounds at concentrations above GQS were detected in samples collected from monitoring well MW3M or hydropunch location SB29 located on the South Jersey Port Corp. property or from monitoring wells MW9D and MW11M located southeast of the property in the down-gradient direction.

Figure 25, Groundwater Results Above GQS - Organics, present sample locations and results of analysis above NJDEP GQS for all sampling events.

6.6.2 Semi-Volatile Organics

Semi-volatile contamination detected in the shallow groundwater consists mainly of naphthalene detected in up-gradient site well MW1S and down-gradient site well MW2S. Although naphthalene is present within the site soils, the fact that only these two wells contain this compound at levels above GQS and the wells are located at the western and eastern site property boundaries, respectively, no conclusions are drawn as to the relation of the observed contamination. Because the wells are separated by over 400 feet, the data indicate separate source areas. Naphthalene was also detected in well MW2M but at levels below GQS. The presence of the naphthalene may be an explanation of observed odor in both wells described in Section 5.0 above.

Only one semi-volatile compound was detected above GQS in the deeper groundwater samples. Downgradient well MW11M was found to contain bis(2-ethylhexyl)phthalate at concentrations above the NJDEP GQS during the 2/17/00 sampling event. No other deep monitoring wells, including MW11M in the 1/18/00 sampling event, were found to contain semi-volatiles at concentrations above the NJDEP GQS. Figure 25, presents sample locations and results of analysis above NJDEP GQS.

6.6.3 Metals

Consistent with findings of the soil investigation, metals at concentrations above GQS were detected in each monitoring well sampled (shallow and deep) during each sampling round. In general, metals at concentrations above GQS were found to be more prevalent and at higher concentrations in the shallow groundwater zone. The most common analytes detected above GQS include aluminum, arsenic, iron, lead and manganese. Each of these analytes were found to be wide spread in the site surface and

subsurface soil. Results indicate the highest levels of individual metals in the shallow groundwater are within site wells MW1S, MW5S, MW7S, MW6S, and MW2S with lesser concentrations in apparent up-gradient wells MW8S and MW4S indicating an on-site source of contamination. Concentrations are also lower in down-gradient monitoring wells MW3S, MW9S and MW11S with concentrations of arsenic in wells MW9S and MW11S below the method detection limit. Results from down-gradient well MW10S indicate migration of contamination off-site to the east in the direction of apparent groundwater flow.

Analytes detected above GQS in the deeper groundwater zone consist of aluminum, arsenic, iron manganese and lead. Arsenic levels are highest in well MW2M (down-gradient) and is also present in well MW1M but at lesser levels indicating an on-site source of arsenic contamination. Arsenic was not detected above GQS in wells MW3M, MW9D and MW11M. Lead at concentrations above GQS was also detected in down-gradient wells MW2M and MW9D during the 11/10/98 sampling event, possibly indicating an on-site source. However, during the most recent Phase III sampling, lead was not detected above GQS in either well.

Figure 26, Groundwater Results Above GQS - Inorganics, presents sample locations and results of analysis above NJDEP GQS for all sampling events.

6.6.4 Pesticides/PCB

Pesticide and PCB contamination in the site shallow groundwater is limited to one occurrence of aldrin in well MW6S, one occurrence of dieldrin in down-gradient well MW11S, and one occurrence of total PCBs in well MW6S. Pesticide and PCB contamination identified during the Phase III sampling of site well MW6S could represent a mobilization of these contaminants as no other occurrences have been identified during the RI. The well is located along the east side of the former Martin Aaron building and near an identified area of elevated total PCB and pesticide soil contamination. Because of the wells location southeast of the site, the pesticide contamination identified in one of two sampling rounds of well MW11S is interpreted as being non-site related. Figure 25, presents sample locations and results of analysis above NJDEP GQS.

No pesticide/PCB compounds were detected above GQS in the site or off-site deep groundwater.

6.6.5 Off-site Production Well

Analytical results of samples collected from Camden City Well No. 7 found no volatile, semi-volatile, or pesticide/PCB compounds above GQS. Metals detected at concentrations above GQS include Iron and Manganese. Although these analytes are present in site soil and at concentrations above GQS in shallow and deep groundwater beneath the site, the distance between the City Well and the site prohibits the development of a relationship between observed contamination and site contamination at this time.

6.6.6 Tentatively Identified Compounds (TIC)

Tentatively Identified Compounds (TIC) were reported for the volatile and semi-volatile fractions of groundwater samples submitted for analysis. Table 33 – Volatile TIC Frequency and Table 34 – Volatile TIC Maximum Concentrations, present the most frequently observed and the maximum concentrations of groundwater volatile fraction TICs, respectively. Likewise, Table 35 – Semi-Volatile TIC Frequency and Table 36 – Semi-Volatile TIC Maximum Concentrations, present the most

frequently observed and the maximum concentrations of groundwater semi-volatile fraction TICs, respectively.

In general, the most frequently reported TICs at the highest concentrations in the volatile fraction were unknown oxygenated hydrocarbons, naphthalene isomers, butylbenzene isomers and chloro-, dichloro- and trimethyl benzene isomers. The maximum TIC concentrations were generally found in shallow groundwater samples collected along the east property border (MW2S) and in areas east and north of the former Martin Aaron building (MW5S and MW6S).

The most frequently reported and highest concentrations in the semi-volatile fraction were unknown oxygenated hydrocarbons, unknown carboxylic acids, and trimethyl benzene isomers. The maximum TIC concentrations were generally found near the east property border (MW2S) and in well MW8S on the South Jersey Port property.

6.7 Areas of Concern

Based on the findings discussed in Section 5.0 and the analyses of the nature and extent of contamination above, Kimball has identified areas of environmental concern for the Martin Aaron site.

1. Martin Aaron Property

This Area of Concern (AOC) includes the entire yard area of the Martin Aaron property, the remaining site buildings and other structures remaining. Near surface and subsurface soils throughout the vard area and extending beyond the site property borders contain organic and inorganic contamination in excess of NJDEP soil cleanup criteria. Contaminant concentrations vary greatly across the site with the areas of highest concentrations located near the site processing areas (buildings and former underground The nature and extent of contamination across the site indicate possible sources may include migration from former site processes within the buildings, migration from source areas near and beneath the buildings, fill material (combustion by-products) apparently used across the property, and/or past surface and subsurface disposal practices (especially along the north and east property borders). Intrusive activities identified possible former disposal areas throughout the yard area of the site containing drum liners, drum rings, partial drums, used protective equipment, 5-gallon buckets, and skimmer belts. Former disposal areas were confirmed along the north and east property borders at sample locations TP08, TP09, TP11, TP21 and TP24. One additional disposal area was identified near magnetic anomaly M3 between the former Rhodes and Martin Aaron buildings where buried containerized wastes were confirmed by the NJDEP. Extensive drum burial, as previously reported, was not evidenced in current excavations.

Results indicate organic constituents in the site near surface and subsurface soil at concentrations in excess of NJDEP soil cleanup criteria extend at least to the property borders and across property borders to the east, northeast, and probably south. Organic contaminants found at concentrations in excess of NJDEP soil cleanup criteria include chlorinated and aromatic volatile compounds, semi volatile compounds consisting of polyaromatic hydrocarbons (PAH), pesticides, and PCBs. The site property is evaluated as high environmental concern due to the extent of identified contamination.

Inorganic contamination in the near and subsurface soil at concentrations above NJDEP soil cleanup criteria extends to the limit of current sampling completed to date. However, results indicate that the apparent extent of contamination is disproportionately attributable to arsenic at concentrations above the

NRDCSCC. This fact is also evident beneath the former Martin Aaron building and south where the majority of the inorganic contamination is the result of arsenic.

Based on the results of the RI, the following specific Areas of Concern within the Martin Aaron property AOC have been identified:

- a. Volatile Organic Hot Spots This area of concern includes the shaded areas shown on Figures 27 and 28 which represent the estimated extent of total volatile organic contamination in excess of 1000 mg/kg in site surface and subsurface soil, respectively. These areas are of high concern in regard to possible source areas for continued groundwater contamination. A portion of this area has already been addressed as part of UST removal actions completed by the NJDEP in the summer of 1999.
- b. Semi-Volatile Organic Hot Spots This area of concern includes the hatched areas on Figure 19 which represents the estimated extent of surface and subsurface semi-volatile contamination in excess of the NJDEP IGWSCC. These areas are of high concern in regard to possible source areas for continued groundwater contamination.
- c. **Pesticide Hot Spots** This area of concern includes surface and subsurface soil in the immediate vicinity of soil borings SB04, SB05 and SB08 where pesticide concentrations exceed 100 times the current RDCSCC.
- d. PCB Hot Spots This area of concern includes the hatched areas on Figure 21which represent the estimated extent of surface and subsurface soil total PCB contamination in excess of 50 mg/kg. Total PCB concentrations in excess of 50 mg/kg represent Toxic Substance Control Act [TSCA] regulated waste.
- e. Inorganic Hot Spots This area of concern includes the shaded areas shown on Figure 32 which represents the estimated extent of arsenic contamination at concentrations above 1000 mg/kg. These areas are of high concern in regard to possible source areas for continued groundwater contamination and also as an indicator of the most highly contaminated areas of the site with regard to inorganic parameters.
- f. Test Pit 24 This area of concern is represented by test pit 24 (TP24) located west of the former UST area and north of the former Martin Aaron building. A vertical 8-inch diameter pipe (possible former well) was identified during the test pit excavation. This structure is of high concern with regard to vertical migration of site contamination.
- g. Buried Containerized Waste This area of concern is located between the former Rhodes and Martin Aaron buildings within magnetic anomaly M3. Some buried containers were discovered during the NJDEP UST removal actions in 1999. This area is considered a high concern in as a continuing source of soil and groundwater contamination.

2. South Jersey Port Corporation Property

This area of concern includes the South Jersey Port Corporation property (Block 458, Lot 15) located west of the Martin Aaron property on the west side of Broadway. Soil sampling completed on this property has identified soil contamination thought to representative of former drum handling activities by the Martin Aaron operations. Organic contamination consists mainly of semi-volatile compounds similar to those identified on the Martin Aaron property (PAH). Inorganic contamination in the area soil is similar to contamination identified on the Martin Aaron property consisting of arsenic barium, cadmium and lead at concentrations above NJDEP cleanup criteria. Analysis of the total semivolatile concentrations and individual metal concentrations indicate higher contamination levels are more frequently observed in the northern portions of the property. The South Jersey Port Corporation

property is evaluated as high concern with respect to the contamination identified in the northern portions of the site and the extent of contamination on the property due to past drum storage and drum transfer use. Of particular concern is the area of semi-volatile contamination at concentrations in excess of the IGWSCC. This area is represented by the hatched pattern presented on **Figure 19**.

3. Study Area Groundwater

Shallow groundwater contamination identified at the Martin Aaron site extends across the property and beyond the property borders to the east, south, and west. Based on sampling results, groundwater contamination is more prevalent in the shallow zone near the water table surface as opposed to deeper zones of the aquifer. Contaminant parameters detected in the shallow groundwater at concentrations above NJDEP Groundwater Quality Standards (GQS) include: chlorinated and aromatic volatile compounds; semi-volatile compounds; and metals. Both semi-volatile compounds and metals were detected in apparent up-gradient well MW1S indicating a possible off-site source or local point source of contamination in this well. Contaminants detected in the site shallow groundwater generally correspond to but are not totally representative of the identified soil contaminants. The shallow groundwater is evaluated as medium concern based on the limited down-gradient migration of observed contamination and as a possible mechanism for site contamination horizontal migration and vertical migration to deeper groundwater.

Contaminant parameters detected in the deeper groundwater include chlorinated hydrocarbons and metals but with much fewer compounds and analytes at concentrations above GQS. Deep groundwater beneath the site is evaluated as low environmental concern because impacts of site contamination (except for metals) are not readily apparent.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

Based on the findings presented in Section 5.0 and the analyses of the nature and extent of contamination presented in Section 6.0, Kimball has developed the following conclusions:

A. Site Geology/Hydrogeology

The majority of the top and subsoils on the Martin Aaron property have been removed and replaced with various fill materials including construction debris, ashes and cinders, slag type material, and in some cases, wood and other refuse.

The unconsolidated sediments immediately beneath the fill consist primarily of sands and gravels with intervals of silts and clay (Magothy Formation). On-site borings evidence the existence of this formation, which was initially encountered at an approximate depth of ten (10) feet, and ranged in thickness from fifty (50) to fifty two (52) feet.

Shallow groundwater flow within the upper aquifer is believed to be to the east and southeast. However, building foundations and subsurface structures are believed to influence the movement of on-site shallow water. Secondary flow patterns may exist within the site boundaries resulting in migration (horizontal and/or vertical) pathways and/or velocities different than predicted from static water elevation measurements. Deeper groundwater flow within the upper aquifer appears to be to the southeast along the dip of the local formations. Static groundwater elevations indicate the potential for vertical groundwater migration beneath the site.

B. Former Disposal Practices

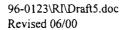
Test pits excavated at interpreted geophysical anomalies generally encountered fill consisting of ash, cinders, brick, concrete, scrap metal, etc., at all excavation locations. Several excavations confirmed historical reports of former buildings with the discovery of subsurface footings, pipe runs, and other subsurface structures including a subsurface concrete pad or possible vault and vertical 8- inch diameter pipe (possible former well) at test pit TP24. The majority of test pits revealed the probable cause of observed geophysical anomalies. Subsurface disposal areas were confirmed at test pit locations TP08 located in the north central portion of the yard area, TP11 located in the northeast portion of the property and TP21 located just east of the Rhodes operations with the discovery of buried drum rings, boots, and gloves in test pit TP08, drum liners, gloves and drum rings in test pit TP11 and skimmer belts, drum liners, buckets, and solid product (white solid) in test pits TP21 and TP23.

Results of the test pit excavation activities and recent removal activities conducted by the NJDEP indicate that past subsurface disposal practices are evident and containerized wastes are buried at the site. Some drums were excavated by the NJDEP in the vicinity of geophysical anomaly M3 in the summer of 1999. However, findings of the intrusive investigation do not support reports of widespread drum burial.

C. Sewer Basins

Except for some loose bricks encountered near the top of sewer basin 4, both basins appeared to be competent and intact to the depth excavated. No leaks were evident from the piping exposed. Soil adjacent to basin 2 was observed to be stained and exhibited a strong odor. It is uncertain whether observed staining is the direct result of discharges from the basin or general site operations. Results of soil samples from the excavation adjacent to sewer basin 2 indicates chlorinated hydrocarbons and aromatics at concentrations in excess of the IGWSCC. These results are similar to results found in soil beneath the entire processing area of the former Martin Aaron building complex.

Sediment samples collected from former basin numbers 1 (within the former Martin Aaron building) and 4 were found to contain chlorinated and aromatic volatile compounds, and metals at concentrations above NJDEP soil cleanup criteria. Compounds and analytes detected are consistent with constituents found in the site soil and groundwater. As mentioned above, chlorinated and aromatic volatile compounds and metals have been identified throughout the property. Results of soil sampling adjacent to Basins 2 and 4 do not indicate that the basins are major sources of the site contamination, relative to results of sampling within the process areas, but probably are contributing.


D. Underground Storage Tanks

Soil and groundwater investigations conducted in the vicinity of the underground storage tanks (USTs) located immediately north (three known USTs) and east (one UST) of the former Martin Aaron building found evidence of impacts attributable to past leaks and spills. During the Summer of 1999, the NJDEP completed a removal action of all on-site USTs and associated soil. The following assessment is based on data collected prior to the removal actions.

Investigations around the three former USTs located north of the Martin Aaron building evidenced strong fuel odors from two to three feet below ground surface up to a maximum depth of sixteen feet below ground surface. At depths between six and eight feet below ground surface, an oily sheen was observed in the site soil. Based on the investigation activities, the impacts from the USTs located north of the building extend north to at least boring VOA1, to the west no further than boring SB02, and to the south no further than boring SB112. To the east, aromatic hydrocarbons are present above NJDEP soil cleanup criteria in borings SB33 and SB31 advanced within the former building, SB05 and SB08 advanced just north of the building, and SB12, SE01, and TP01 located east of the building. This trend in contamination, which corresponds closely to the shallow groundwater gradient, probably indicates the extent of impacts attributable to the USTs.

Aromatic compounds were detected at concentrations above NJDEP GQS in shallow groundwater monitoring wells MW7S (formerly located adjacent to the USTs), MW6S located east of the tank area, MW5S located northeast of the tank area, and ***W2S located along ... Last property border. Based on the current data, contamination in wells MW5S, MW7S and MW6s is interpreted as being attributable to the UST area. Contamination found in well MW2S is probably due to a more local source as described in subsequent Sections below.

Investigations completed around the one UST formerly located east of the former Martin Aaron building found no evidence of impacts attributable to the UST.

E. Soil Contamination

1. Volatile Organics

Volatile organic contamination is widespread across the Martin Aaron property and was found to extend beyond the property borders to the northeast, east and possibly to the southeast. Seventeen volatile organic compounds were detected in site surface and/or subsurface soil at concentrations in excess of at least one of the three NJDEP soil cleanup criteria. Volatile compounds of concern include 1,2-dichloroethane, 1,2-dichloroethene (total), 1,2-dichloropropane, benzene, styrene, tetrachloroethene, toluene, trichloroethene, vinyl chloride and xylene (total) found in site surface and/or subsurface soil at concentrations in excess of the NJDEP RDCSCC. Volatile compounds detected at concentrations in excess of the NJDEP NRDCSCC include 1,2-dichloroethane, 1,2-dichloropropane, benzene, tetrachloroethene, toluene, trichloroethene, vinyl chloride and xylene (total). In general, volatile compound concentrations in site soil were found to decrease with depth across the site. However, the frequency of occurrence and number of compounds detected generally increase with depth.

Based on sampling results, chlorinated volatile compounds detected at concentrations in excess of either the IGWSCC, RDCSCC or NRDCSCC are present across the entire Martin Aaron property and extend beyond the property boundaries to the northeast, east, and possibly south. Aromatic hydrocarbon compounds detected at concentrations in excess of NJDEP soil cleanup criteria are generally located in two areas: around the former underground storage tanks immediately north of the former Martin Aaron building extending east beneath the processing area of the building and an area northeast of the Rhodes Drum building. Aromatic hydrocarbon soil contamination does not extend beyond the property borders.

Total volatile concentrations in excess of NJDEP criteria for total volatile compounds (1000 ppm) were identified in surface and subsurface soil beneath the northern portions of the Martin Aaron building (processing area) and the yard area just north of the building, and in subsurface soil immediately north and east of the former Rhodes building. The eastern most sample containing total volatiles above 1000 mg/kg was collected along the south property border.

2. Semi-Volatile Organics

Semi-volatile organic contamination appears to be widespread across the Martin Aaron property and extends beyond the property boundaries to the north, east, southeast, and west. Twelve semi-volatile organic compounds were detected in site surface and/or subsurface soil at concentrations in excess of one or more of the three NJDEP soil cleanup criteria. Semi-volatile compounds of concern generally include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, chrysene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene and naphthalene detected at concentrations above the RDCSCC. Each of these nine compounds, excluding naphthalene, were also detected above the NRDCSCC. Five compounds (acenaphthalene, benzo(b)fluoranthene, fluoranthene naphthalene, and pyrene) were detected at concentrations above IGWSCC.

The horizontal extent of semi-volatile organic contamination at concentrations in excess of both the RDCSCC and NRDCSCC possibly emanating from the site extends to the limit of current sampling. Semi-volatile contamination at concentrations in excess of the NJDEP IGWSCC was identified in the northeast corner of the South Jersey Port Corp. property, north of the site along Everett Street, in the former one-story brick structure of the Martin Aaron building complex, on the property along the east border and at one off-site location located southeast of the property along sixth street.

Semi-volatile compounds detected at concentrations in excess of the most stringent NJDEP cleanup criteria within the site surface and subsurface soil consists mainly of polyaromatic hydrocarbons (PAH) which are generally associated with combustion and combustion by-products. Results indicate that the PAH contamination may be associated with the observed combustion by-products (ash and cinders) apparently used as fill across the site. This scenario is supported by the apparent lack of contamination identified beneath the southern portions of the former Martin Aaron building and southern portions of the South Jersey Port Corp. property where less combustion by-products were observed in the subsurface. The lack of contamination beneath the older (southern) portions of the former building may indicate the placement of the combustion products was probably after the original site buildings were constructed. Intrusive activities conducted as part of this investigation indicate the observed combustion product fill extends beyond the property borders in all directions. Past operations at the site may be the source of the combustion product. Several large smoke stacks were once located on the property as evidenced in historical aerial photos and Sanborne maps.

The majority of total semivolatile results in excess of 150 mg/kg were identified on the Martin Aaron property extending beyond the property border to the northeast, and in the northern portions of the South Jersey Port Corp. property. This distribution of semivolatile contamination supports the former use of the property for contaminant disposal and former use of the South Jersey Port Corp. Property.

3. Pesticides

Pesticide contamination, relative to semi-volatile and volatile contamination described above, appears to be less widespread across the Martin Aaron property. Four pesticide compounds were detected in site surface and/or subsurface soil at concentrations in excess of either the IGWSCC, RDCSCC or NRDCSCC. Pesticide compounds of concern include aldrin, dieldrin and heptachlor found in site surface and subsurface soil at concentrations in excess of NJDEP NRDCSCC. No pesticide compounds were detected at concentrations above IGWSCC.

Pesticides detected at concentrations in excess of the RDCSCC are generally confined to the site with the exception of surface and subsurface soil just across the north property border, and subsurface soil located in the northern portions of the South Jersey Port property. The highest pesticide concentrations were identified in soil borings located immediately north and east of the former Martin Aaron building and immediately north of the Rhodes building with contamination in excess of 100 times the current RDCSCC.

When compared to the NRDCSCC, pesticide contamination is completely within the site property borders with the highest frequency of positive concentrations associated with the former buildings. Away from the buildings, pesticides in excess of the NRDCSCC are generally confined to surface soil.

4. PCB

Total PCB contamination within the site surface and subsurface soil extends across the Martin Aaron site. The horizontal extent of contamination is similar to the extent described for the pesticide contamination above

Total PCB contamination in excess of the RDCSCC extends from beneath the former processing areas of the former building north to the northern property line, northeast and east to the east and northeast

property borders, and southeast to the southeast property border. Results indicate total PCB contamination in excess of the RDCSCC extends across the east and northeast property borders (surface soil) to at least the east side of Sixth Street.

When compared to the NRDCSCC, the extent of total PCB contamination in the site surface and subsurface soil is generally confined to the Martin Aaron property with the exception of one soil boring location just beyond the east property border. Total PCB contamination at concentrations in excess of the NRDCSCC was most frequently identified adjacent to and north of the former and existing site structures

Total PCB concentrations in excess of the IGWSCC were detected at three sampling locations on the Martin Aaron property. The distribution of total PCB contamination suggests site process operations and past surface and subsurface disposal practices are the source. The distribution of observed concentrations away from the processing areas of the building suggest a combination of contaminant migration, filling operations and possible isolated disposal areas (north and east property borders) as the source of contamination across the site.

Total PCB concentrations in excess of the NJDEP soil cleanup criteria were not detected in samples collected from the South Jersey Port Corp. property.

5. Metals

Metals contamination is widespread across the Martin Aaron property extending beyond the property boundaries to the north, south, east, southeast, and west. The most common analytes detected above the RDCSCC, include arsenic, barium, cadmium, lead, antimony, beryllium and chromium. Analytes of additional concern include arsenic, beryllium, cadmium, chromium, copper, lead, thallium and zinc found in site and off-site surface and subsurface soil at concentrations in excess of NJDEP NRDCSCC.

Metal contamination in excess of either the RDCSCC or NRDCSCC extends to the limits of current sampling. The horizontal extent of metals contamination possibly emanating from the site has not been delineated to the west, north, east, south or southeast. When compared to NJDEP NRDCSCC, the extent of near surface and subsurface metal contamination is relatively unchanged. However, the extent of contamination above the NRDCSCC was found to be disproportionately attributed to high levels of arsenic and lead (over 150 and 51 surface and subsurface samples, respectively) with levels of other constituents found at concentrations above the NRDCSCC in only a fraction of the samples submitted.

Results indicate that the metal contamination may be associated with the observed fill (combustion by-products, ash and cinders) observed in soil borings and test pits across the site. This scenario is supported by the apparent lack of metal contamination at concentrations above NJDEP soil cleanup criteria, besides arsenic, identified beneath the southern portions of the former Martin Aaron building. The distribution of arsenic relative to all sample locations indicates the highest concentrations in both the surface and subsurface soil are present on the site property extending across the north and east property border. Results indicate the arsenic contamination is site related and not a result of fill material.

6. Dioxin/Furan

No Dioxin/Furan analytes were detected at or above one mg/kg in soil samples submitted

F. Groundwater Contamination

1. Volatile Organics

Volatile contamination within the shallow portion of the aquifer consists of a combination of aromatic compounds (benzene and xylene) and chlorinated hydrocarbons (tetrachloroethene and trichloroethene, and 1,2-dichloroethene) and is present to at least the west, east, and south property boundaries with low levels of chlorinated hydrocarbons found in downgradient well MW9S. Aromatic compounds were found at highest levels in monitoring wells MW5S, MW7S, and MW2S while the highest level of chlorinated hydrocarbons were detected in monitoring wells MW7S and MW5S. No volatile compounds at concentrations above GQS were identified in apparent upgradient well MW1S, downgradient well MW1S, or wells installed on the South Jersey Port Corp. property (MW4S and MW8S).

Results indicate a source of aromatic hydrocarbon contamination in the vicinity of shallow wells MW7S, MW5S, and MW6S, probably the former underground tanks located just north of the former Martin Aaron building. Aromatic hydrocarbon contamination at concentrations above GQS was not identified in down-gradient wells MW10S, MW9S, MW3S or MW11S. Aromatic contamination in the site groundwater has not migrated to the off-site wells. Aromatic contamination identified in monitoring well MW2S may be the result of a secondary source given its distance from the underground tank area and presence of aromatic contamination in the near-by soil described in the previous sections.

Chlorinated hydrocarbon contamination identified in site wells MW7S and MW6S may be migrating south and southeast beyond the site borders as evidenced by contamination identified in monitoring wells MW3S and MW9S.

Only one volatile organic compound (tetrachloroethene) at a concentration above NJDEP GQS was identified in the deeper groundwater samples. No volatile compounds at concentrations above GQS were detected in samples collected from down-gradient monitoring wells MW3M, MW9D and MW11M.

2. Semi-Volatile Organics

Semi-volatile contamination detected in the shallow groundwater consists mainly of naphthalene detected in up-gradient site well MW1S and down-gradient site well MW2S. Although naphthalene is present within the site soils, the fact that only these two wells contain this compound at levels above GQS and the wells are located at the western and eastern site property boundaries, respectively, no conclusions are drawn as to the relation of the observed contamination. Because the wells are separated by over 400 feet, the data indicate separate source areas.

Only one semi-volatile compound was detected above GQS in the deeper groundwater samples. Downgradient well MW11M was found to contain bis(2-ethylhexyl)phthalate at concentrations above the NJDEP GQS during the 2/17/00 sampling event. No other deep monitoring wells, including MW11M in the 1/18/00 sampling event, were found to contain semi-volatiles at concentrations above the NJDEP GQS.

3. Metals

Consistent with findings of the soil investigation, metals at concentrations above GQS were detected in each monitoring well sampled (shallow and deep) during each sampling round. In general, metals at concentrations above GQS were found to be more prevalent and at higher concentrations in the shallow groundwater zone. The most common analytes detected above GQS include aluminum, arsenic, iron, lead and manganese. Each of these analytes were found to be wide spread in the site surface and subsurface soil. Results indicate the highest levels of individual metals in the shallow groundwater are within site wells MW1S, MW5S, MW7S, MW6S, and MW2S with lesser concentrations in apparent up-gradient wells MW8S and MW4S indicating an on-site source of contamination. Concentrations are also lower in down-gradient monitoring wells MW3S, MW9S and MW11S with concentrations of arsenic in wells MW9S and MW11S below the method detection limit. Results from down-gradient well MW10S indicate migration of contamination off-site to the east in the direction of apparent groundwater flow.

Analytes detected above GQS in the deeper groundwater zone consist of aluminum, arsenic, iron manganese and lead. Arsenic levels are highest in well MW2M (down-gradient) and is also present in well MW1M but at lesser levels indicating an on-site source of arsenic contamination. Arsenic was not detected above GQS in wells MW3M, MW9D and MW11M. Lead at concentrations above GQS was also detected in down-gradient wells MW2M and MW9D during the 11/10/98 sampling event, possibly indicating an on-site source.

4. Pesticides/PCB

Pesticide and PCB contamination in the site shallow groundwater is limited to one occurrence of aldrin in well MW6S, one occurrence of dieldrin in down-gradient well MW11S, and one occurrence of total PCBs in well MW6S.

No pesticide/PCB compounds were detected above GQS in the site or off-site deep groundwater.

5. Off-site Production Well

Analytical results of samples collected from Camden City Well No. 7 found no volatile, semi-volatile, or pesticide/PCB compounds above GQS

G. Areas of Concern

1. Martin Aaron Property

This Area of Concern (AOC) includes the entire yard area of the first Aaron property, the remaining site buildings and other structures remaining. Near surface and subsurface soils throughout the yard area and extending beyond the site property borders contain organic and inorganic contamination in excess of NJDEP soil cleanup criteria

Based on the results of the RI, the following specific Areas of Concern within the Martin Aaron property AOC have been identified:

- a. Volatile Organic Hot Spots This area of concern includes the estimated extent of total volatile organic contamination in excess of 1000 mg/kg in site surface and subsurface soil, respectively.
- b. Semi-Volatile Organic Hot Spots This area of concern includes the estimated extent of surface and subsurface semi-volatile contamination in excess of the NJDEP IGWSCC.
- c. **Pesticide Hot Spots** This area of concern includes surface and subsurface soil in the immediate vicinity of soil borings SB04, SB05 and SB08 where pesticide concentrations exceed 100 times the current RDCSCC.
- d. **PCB Hot Spots** This area of concern includes the estimated extent of surface and subsurface soil total PCB contamination in excess of 50 mg/kg.
- e. **Inorganic Hot Spots** This area of concern includes the estimated extent of arsenic contamination at concentrations above 1000 mg/kg.
- f. Test Pit 24 This area of concern is represented by a vertical 8-inch diameter pipe (possible former well) identified during the test pit excavation.
- g. **Buried Containerized Waste** This area of concern is consists of some buried containers e discovered during the NJDEP UST removal actions in 1999.

2. South Jersey Port Corporation Property

This area of concern includes the South Jersey Port Corporation property (Block 458, Lot 15) located west of the Martin Aaron property on the west side of Broadway. Soil contamination thought to representative of former drum handling activities by the Martin Aaron operations is present on the property. Organic contamination consist mainly of semi-volatile compounds and inorganic contamination is similar to contamination identified on the Martin Aaron property consisting of arsenic barium, cadmium and lead. Of particular concern is the area of semi-volatile contamination at concentrations in excess of the IGWSCC.

3. Study Area Groundwater

Shallow groundwater contamination identified at the Martin Aaron site extends across the property and beyond the property borders to the east, south, and west. The shallow groundwater is evaluated as medium concern based on the limited down-gradient migration of observed contamination and as a possible mechanism for site contamination horizontal migration and vertical migration to deeper groundwater.

Contaminant parameters detected in the deeper groundwater include chlorinated hydrocarbons and metals but with much fewer compounds and analytes at concentrations above GQS. Deep groundwater beneath the site is evaluated as low environmental concern because impacts of site contamination (except for metals) are not readily apparent.

7.2 Recommendations

Based on the conclusions of this investigation, the following recommendations are presented for the Martin Aaron site:

Soil

1. Because inorganic and organic contamination has not been delineated across the south property border, an additional five soil borings should be advanced on the property south of the former Rhodes building (Block 460, Lot 29) as originally planned during the second investigation phase. Two samples should be collected from each boring and submitted for analysis of TCL volatiles +10, TCL semi-volatiles+20, pesticide/PCB, and TAL metals.

This additional investigation is required to fully delineate the extent of contamination migrating beyond the property borders to the south. The additional investigation should take place prior to final selection of a Remedial Alternative for the Martin Aaron site. However, based on current sampling and contamination delineation, delays in the performance of this sampling should not delay the evaluation of site remedies.

- 2. Because the extent of site soil contamination has generally been delineated (except as described above) and hot spots identified, no further site soil investigations are recommended at this time.
- 3. Remedial alternative should be evaluated for the site soil contamination with emphasis on the identified hot spots.

Groundwater

- 1. Because identified site groundwater contamination is generally contained to the on-site wells, with the exception of low level organics and metals, no further groundwater investigations are recommended at this time. Monitoring wells MW11S and MW11M should be used as future sentinel wells for the evaluation of possible contaminant migration and monitoring of remediation activities.
- 2. Remedial alternatives should be evaluated for the site shallow groundwater contamination with emphasis on the remediation of soil hot spots evaluated as continuing sources of groundwater contamination.

8.0 REFERENCES

- 1. Aerial Viewpoint, 1996, New Jersey Photo No. 605, 2/12/40, Houston, TX.
- 2. City of Camden, 1995, City of Camden Zoning Map, Division of Engineering and Construction Management, Camden, NJ.
- 3. City of Camden, 1989, <u>Flood Insurance Rate Map</u>, prepared by the Department of Utilities, Camden, NJ.
- 4. Farlekas, G.M. Nemickas, Bronius, and Gill, H.E., 1976, <u>Geology and Groundwater Resources of Camden County New Jersey</u>. U.S. Geological Survey Water-Resources Investigations.
- 5. Gill, H. E. and Farlekas, G.M., 1976, <u>Geohydrologic Maps of the Potomac-Raritan-Magothy</u>
 <u>Aquifer System in the New Jersey Coastal Plain</u>. USGS Hydrologic Investigations Atlas HA557.
- 6. Kummel, Henry B., 1940, <u>The Geology of New Jersey</u>. State of New Jersey Department of Conservation and Economic Development, Bulletin 50.
- 7. Langmuir, Donald, 1969, <u>Iron in Ground Waters of the Magothy and Raritan Formations in Camden and Burlington Counties</u>, New Jersey. USGS Water Resources Circular No. 19.
- 8. NJDEP, 1988, <u>Case History-Drum Services of Camden</u>, submitted by Clare P. Sullivan, Bureau of Planning and Assessment, May.
- 9. NJDEP, 1995, Known Contaminated Sites in New Jersey. Trenton, NJ.
- 10. NJDEP, 1992, New Jersey Leaking Underground Storage Tank Report, Division of Responsible Party Site Remediation, Trenton, NJ..
- 11. NJDEP, 1992, New Jersey Underground Storage Tank Report, Site Remediation Program, Trenton, NJ.
- 12. Robinson Aerial Surveys, Inc., 1996, New Jersey Photo CAM-3-159 9/25/63, Newton, NJ.

- 13. Robinson Aerial Surveys, Inc., 1996, New Jersey Photo 24-1914 10/27/82, Newton, NJ.
- 14. Sanborne Mapping and Geographic Information Service, Sanborne Fire Insurance Maps, 1886, 1891, 1902, 1906, 1921, 1926, 1950, and 1982.
- 15. U.S. Department of Agriculture, 1966, Soil Survey of Camden County, New Jersey.
- 16. US Department of the Interior, 1977, <u>National Wetlands Inventory</u>, <u>Camden</u>, <u>NJ</u>, Fish and Wildlife Service, prepared by Office of Biological Services.
- 17. US Department of the Interior, 1977, National Wetlands Inventory, Camden, NJ, Fish and Wildlife Service, prepared by Office of Biological Services.
- 18. USEPA, 1995, <u>Comprehensive Environmental Response</u>, <u>Compensation</u>, <u>and Liability Information System</u>, Office of Solid Waste and Emergency Response.
- 19. USEPA, 1993, Martin Aaron Inc. Site Inspection Prioritization Evaluation, Report No. 8003-258, Submitted by Cory T. Platt, John D. Rieckhoff, John L. Splendore, PE.
- Zapecza, Otto S., 1984, <u>Hydrogeologic Framework of the New Jersey Coastal Plain</u>. USGS Open File Report 84-730.

							_				
M	7/1	L. RC	BER	T KI	MBAL	L & A	SSOCIATES INC.	BORING NO SB01			
		615 k	HI(SHLA	ND A	VE P	.O. BOX 1000	PROJECT MARTIN AARON	RI/RAA		
		EBENS	BURO	S PA	159	31		PROJECT NO 96-1322-A	124		
	—	TELEP	HONE	Ξ: (814)	472-	7700				
LOC	CATI	ON : Ma	 rtin	Aaro	on Si	ite	CO	ORD EAST -	NORTH: -		
								WEATHER Dvercost,			
1				-				ban LRK INSP			
l.								RIG TYPE Fai			
DATE STARTED: 07/10/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A COMPLETED: 07/10/97 N/A FT; TIME: N/A DATE: N/A											
COMPLETED 07/10/97 N/A FT; TIME N/A DATE N/A ELEV DEPTH SAMPLE SPT REC FID PROF DESCRIPTION REMARKS											
FLFV	D EPTH	SAMPL F	007	RFC	FTD	2225	2500	ODIDITON.	DEMARKO		
(FT)	(FT)	NO	SPT	(FT)	(PPH)	PRUF	DESC	CRIPIIUN	REMARKS		
	9.0		27 30		<u> </u>		0.0'-2.0' FILL: dark	brawn, sand, cinders,			
		S-1	32	0.9	7.9		brick chips, pebbles,	angular			
200 18 0.0'-0.5' \$801-1 2.0'-4.0' FILL brick, cinders, slag, dark 0.0'-0.5' \$801-1 0.0'PSV, TAL, ON PEST/PC8											
		S-2		0.5	0.0		brown sond		01.7-2.07 SB01-2 CLPVOA		
	5.0	S-3 (6)	100	1	0.0		4.0'-6.0' FILL: brick brown sand, conc.	, cinders, slog, dark	4.0'-6.0' \$801-3		
			7 8				6.0'-8.0' SAND: dark		CLPSV, TAL, CN, PEST/PC8 TOX, TOC, porticle size		
195		S-4	8 10	1.3	597		slag, gravel, brick p	reces	7.0'-7.5' S801-4		
							Hydropunch		CLPVOA		
							TOTAL DEPTH = 9.0 FEE	T	5.0'-9.0' S801-5		
	10.0								VO (8240)		
100						}					
190							,				
	<u> </u>										
	15.0										
.~						<u> </u>					
185											
									·		
	20.0										
100					-						

W	7/1	L. RO	OBER	T KI	MBAL	L & A	SSOCIATES INC.	BORING NO: SB2	
		615 k	IH L	GHLA	ND A	NE. P	.O. BOX 1000	PROJECT: MARTIN AARON	RI/RAA
	7	EBENS	124						
	=					472-			
LOC	ATI	ON Ma	rtin	Aaro	on S	te	. 00	ORD EAST: -	NORTH: -
SUF	RFAC	E ELE	V : 2	01.7	8	_ TOP	OF CASING :	WEATHER Sunny, hot	, 100 degs. F.
DRI	LLI	NG CO) : JC	<u> </u>			DRILLER: J Ur	ban LRK INSP	ECTOR: W. Stenger
DRI	LLI	NG ME	THO	D Ho	llow	Stem	Auger	RIG TYPE Foi	ling
DAT	E S	TARTE	:D:	7/10	6/97		WATER LEVEL DE	PTH:N/A FT: TIME:	N/A DATE : N/A
	C	OMPLE	TED	7/16	5/97			N/A FT; TIME:	N/A DATE: N/A
ELEV	DEPTH	SAMPLE	CDI	REC	FID	חחחר	מרכני	RIPTION	REMARKS
(FT)	(FT)	NO	13F 1	(FT)	(PPM)	PRUF	DESC	MIPITUN	ענווחתים
	9.8	<u> </u>	25				0.0'-0.3' CONCRETE		
		S-1	10	0.8	0.0		0.3'-1.5' SAND: fine.	_green-gray, pebbles	0.3'-1.0' \$82-1
200		<u>{</u>	4				small to large rounde 1.5'-2.0' SAND: coars	a e, gray, conc.	CLPSY, TAL, CN, PEST/PCB dioxin/furon 1.5'-2.0' S82-2 CLPYOA
		S-2	3	0.3	0.0		\	coarse, black to gray	
			17					e-medium, black, cinders,	·
	- 5.0	S-3	7	0.5	0.0		pebbles - angular dam		
			6				6.0'-7.5' SAND: coars	e-medium black	·
155		S-4	1	1.0	1.8		cinders, pebbles	gray, saturated	6.5'-7.5' \$82-3
	;		7.				(7,5°-8,0° SANUT CLAT:	gray, saturated	CLPSV, TAL, CN, PEST/PCB CLPVOA
							TOTAL DEPTH = 8.0 FEE	T	
	- 10.0								
		j]					
190	,								
	1								
	- 15.0		1						
]					
185									
									,
	- 20.0	ļ							
								·	
		1	1	i	İ	I			į.

1/2	7/1	L. RO	BER	T KI	MBAL	L & A	SSOCIATES INC.	BORING NO	SB03				
		615 k	ı HI	SHLA	ND A	VE. P	.O. BOX 1000	PROJECT : MA	ARTIN AARON R	[/RAA			
	Ī	EBENS	BUR	G PA	159	131	. •	PROJECT NO	96-1322-A12	4			
	<u> </u>	TELEF	HON	Ξ: (814)	472-	7700			٠.			
LOC	CATI	ON : Ma	rtin	Aaro	on Si	te	C0	ORD EAST : -		NORTH -			
SUF	SURFACE ELEV: 201.82 TOP OF CASING: WEATHER: Overcost, worm												
DRI	DRILLING CO: JCA DRILLER: J. Urban LRK INSPECTOR: W. Stenger DRILLING METHOD: Hollow Stem Auger RIG TYPE: Failing												
DR	DRILLING METHOD: Hollow Stem Auger RIG TYPE: Failing												
DAT	DATE STARTED: 07/10/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A												
	COMPLETED 07/10/97 N/A FT, TIME N/A DATE N/A												
ELEY (FT)	ELEV DEPTH SAMPLE SPT REC FID (FT) (PPM) PROF DESCRIPTION REMARKS 0.0 0.0'-2.0' FILL sand, medium, tan to dark brown, pebbles, angular, cinders, slag												
- 200	8.8			0.8	0.0		0.0'-2.0' FILL: sand, brown, pebbles, angul	medium, ton to or, cinders, slo	9	0.0'0.5' \$803-1			
200 17 0.0 CLF 0.5 C								Cl.PSV, TAL, CN, PEST/PC8 0.5'-2.0' \$803-2 Cl.PVOA					
	- 5.0	S-3	8 6 4 3	1.3	114		4.0'-6.0' SAND: coars ash, green granular m pieces, Wet © 6.0' (w	e, black, cinder aterial, brick, ater in holel		4.0'-6.0' 9803-3 Cl.PSV, Tal., CN, PEST/PCB, Cl.PVOA			
195							TOTAL DEPTH = 6.0 FEE	T		TOX, TOC, PART .			
	10.0							·					
190													
	15.0					-							
- 185													
	20.0									,			

300102

							DOMENTO LO	_		
W		L. RO	OBER	T ĶI	MBAL	L & A9	SSOCIATES INC	BORING NO: SB4		
								PROJECT MARTIN AARO	N RI/RAA	
		EBENS	SBUR	G PA	159	31	0 BOX 1000	PROJECT NO 96-1322	-A124	
=		TELEF	PHON	E: (814)	472-7	700			
LOC	CATI	ON : Ma	rtin	Aano	on Si	te	CO	ORD EAST: -	NORTH	
SUF	RFAC	E ELE	V :_2	02.1	3	_ TOP	OF CASING	WEATHER Sunny, ho	ot, 100 degs. F	_
DRI	LLI	NG CO) :_JC	4			DRILLER: J. Ur	ban LRK INS	SPECTOR: W. Stenger	
DR]	LLI	NG ME	THO	D <u>: Ho</u>	llow	Stem	Auger	RIG TYPE Fo	ailing	_
DAT	E S	TARTE	.D:	7/10	5/97	···	WATER LEVEL DE	PTH: N/A FT; TIME	N/A DATE N/A	_
	CI	OMPLE	TED	7/10	5/97			N/A FT; TIME	N/A DATE N/A	_
ELEV	DEPTH	SAMPLE	CDT	REC	FID	DDOE	DESC	POTOTTON	REMARKS	
(FT)	(FT)	NO	JOF 1	(FT)	(PPH)	FRUF	DESC	LTE LTON	NETINNS	
	0.0		63				0.0'-1.5' FILL: sand,	stones		\dashv
		S-1		2.0			1.5'-2.0' SAND fine,	tight, green-gray, brick pieces	0.0'-0.5' \$84-1	
200			81 15 17	-			2.0'-4.0' SAND mediu	m-fine mottled	CLPSY, TAL, CN, PEST/PC8 dioxin/Furon 1.5'-2.0' \$84-2	
		S-2	17		1648		brown/green/gray/tan, tan sand	last 0.3' coarse	CLPYON 3.0'-4.0' \$84-3	
			6	2 ***** Q (\$\frac{1}{2} \cdot \)				m-fine, mottled, green	CLPSV, TAL, CN, PEST/PCB	
	5.0	S-3	2 12 25	1.0	168		and tan, cinders, 5.0	1'-6.0' wood pieces	arron	
			5				6.0'-8.0' SAND: mediu	m-coarse, black with		
195		S-4	9 18	0.8	528		lenses of green sand bottom, wet © 7.5'	© 7.5′, wood ♥		
			10				TOTAL DEPTH = 8.0 FEE			
				'						
	10.0									
190										
٠										
	- 15.0									١
185										
				J 			÷.			
			á	>						
	20.0									
					ŧ					

							DOUTING FOR	PR6L Ur			
LOC SUF	CATI RFAC	EBENS TELEP ON Ma	HICE BURCE HONE TIN V 2	GHLAI G PA E: (1 Aard 02.3.	ND A 159 814) on Si	VE P 31 472- te TOP	BORING NO SB05 O BOX 1000 PROJECT MARTIN AARON F PROJECT NO 96-1322-A1 COORD EAST:- OF CASING: WEATHER Overcast, WE	24NORTH:- prm CTOR:W. Stenger			
DATE STARTED: 07/10/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A											
COMPLETED: 07/10/97 N/A FT; TIME: N/A DATE: N/A											
ELEV DEPTH SAMPLE SPT REC FID PROF DESCRIPTION REMARKS (FT) (FT) NO 12 O 0'-0 4" CONCRETE											
200	- 0.0	S-1	12 18 30	0.8	427		0 0'-0 4" CONCRETE 0 4"-2 0' SAND: black, coarse, cinders, slag, gray, pebbles, angular, strong odor, degraded asphalt	Augered through 4" of concrete prior to spooning S-1			
aw .		S-2	15 6 6 5	0.9	68		2.0'-4.0' SAND coarse-medium, black-green cobbles, angular, gray, odor	0.4*-1.0′ S805-1			
- 195	- 5.0	S-3	6 12 11	1.3	487		4.0'-5.0' SAND: medium, green/black, pebbles, angular ador 5.0'-6.0' SAND: wet, black, coarse, cinders, slag, pebbles, wood chips, product odor (fuel) TOTAL DEPTH = 6.0 FEET	CLPSV, TAL, CN, PEST/PCB 1.0'-2.0' \$805-2 CLPVOA 4.0'-6.0' \$805-3 CLPSV, TAL, CN, PEST/PCB, CLPVOA TOX, TOC, PART			
	- 10.0										
- 190	15.0										
185	- 20.0										

					_		ROKTING FOR	<u> </u>	PNGT1 0F1
		615 L EBENS	N HIO SBURI	GHLA G PA	ND A	NE. P	.O. BOX 1000	BORING NO SB6 PROJECT MARTIN AARC PROJECT NO 96-1322	
LOCA	TIO	N : Mo	rtin	Aaro	on S	ite	CC	ORD EAST: 1873067.496	NORTH 398386 882
								WEATHER Sunny, ho	
DRIL	IN	G CO	_JC/	A			DRILLER J. Ur	<u>ban</u> LRK INS	SPECTOR: W. Stenger
DRIL	_IN	G ME	THO	D : Ho	llow	Stem	Auger	RIG TYPE F	ailing
DATE	ST	ARTE	D :	7/1	5/97		WATER LEVEL DE	PTH: N/A FT; TIME	N/A DATE N/A
	CO	MPLE	TED	7/1	5/97			N/A FT; TIME	N/A DATE N/A
ELEV DEF	PTH S	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESC	CRIPTION	REMARKS
- 200	.8	S-1	9 19 29	0.7	0.0		0.0'-2.0' FILL: sand, pieces of cardboard p Fibre drum @ 1.5'	dark brown, pebbles, resumed to be old	0.0'-0.5' \$86-1 Clpsv, Tal, CN,
aw j		S-2	12 10 8 5	1.2	16		2.0'-4.0' FILL: sond, brown, pieces brick,	PEST/PCB, dioxin/funon 0.0'-0.5' \$86-2 Dup. dioxin/funon 1.5'-2.0' \$86-3	
5.	.0	S-3	5	1.3	891		4.0'-6.0' SILTY SAND tiny pieces coal, wet	CLPYOA 5. 0'-6. 0' \$86-4	
155		S-4	व 10 ? 10	0.6	2437		6 0'-8.0' SILTY SAND: saturated	CLPSV, TAL, CN, PEST/PCB, CLPVDA 6.0'-11.0' S86-5 VOL 8240	
 - 10.	0	HP-1			•		8.0'-11.0' Hydropunch	ı	
190							TOTAL DEPTH = 11.0 FE	ET	
15.	0			-					
185									
- 20.	0 -								
190							IG		,

							20112110 200						
N	<u></u>	L. RO	BER	T KI	MBAL	L & A:	SSOCIATES INC.	BORING	NO <u>SB07</u>				
		615 k	1 HI8	GHLA	ND A	IVE. P	O. BOX 1000		MARTIN AARON R				
	7	EBENS	BURG	3 PA	159	131		PROJECT	NO: 96-1322-A12	24			
=	TELEPHONE: (814) 472-7700 LOCATION Martin Aaron Site COORD EAST: - NORTH: - SURFACE ELEV: 202.62 TOP OF CASING: WEATHER: Overcast, warm												
LOC	CATI	ON Ma	rtin	Aaro	on Si	ite	CO	ORD EAST	-	NORTH: -			
1			CTOR W Stenger										
DR:	[LLI	NG ME	ing										
DATE STARTED 07/10/97 WATER LEVEL DEPTH N/A FT; TIME N/A DATE N/A COMPLETED 07/10/97 N/A FT; TIME N/A DATE N/A ELEV DEPTH SAMPLE SPT REC FID PROF DESCRIPTION REMARKS													
ELEV	DEPTH	SAMPLE	CDT	REC	FID	חחחר	DECC	POTESTON		DEMARKS			
(FT)	(FT)	NO	1251	(FT)	(PPM)	PRUF	DESC	MILITON		REMARKS			
	0.0		25				0 0'-2 0' SAMD: coars	e-medium br	ick nebbles				
		S-1	37 56	1.3	0.0	1	angular, fill, rock	1.5' - appea	ors to	0.0'-0.5' \$807-1			
	S-1 56 1.3 0.0												
200		S-2	25 30 24	1.3	39		angular, brick, produ	ct odor	C0001C3,	CLPVOA			
			5 7				4.0'-6.0' SAND: silty	, greenish gr	`ay	5.0'-6.0' \$807-3			
ļ	5.0	S-3	9	0.9	883		with black mottling '			CLPYOA 5.0'-8.0' \$807-3			
			I				6.0'-8.0' SAND: mediu black, large cobbles,	m-coarse, gre	ee n to	CLPSV, TAL, CN, PEST/PCB, TOX, TOC, PART			
195		S-4	15 11	1.2	2116		black, large cobbles,	saturated		6.0'-10'.0' S807-4 VO (8240)			
			10				Hydropunch			6.0'-10.0' SB07-5 VO (8240) duplicate			
	10.0						TOTAL DEPTH = 10.0 FE	ET					
				1									
- 190				}	<u> </u>								
1			<u> </u>										
			Ì	}	}								
	- 15.0												
,,,,													
185													
	20.0								•				

		,							· · · · · · · · · · · · · · · · · · ·			
	7/1	L. RO	BER	T KI	MBAL	L & A	SSOCIATES INC.	BORING NO SB8				
		615 L	1 HI	SHLA	ND A	IVE. P	.O. BOX 1000	PROJECT MARTIN AARON R	RI/RAA			
		615 N EBENS TELEF	BURO	S PA	159	31		PROJECT NO 96-1322-A1	24			
		TELEF	HONE	Ξ: (814)	472-	7700					
LOC	CATI	ON _Ma	rtin	Aaro	on Si	te	CO	ORD EAST: -	NORTH: -			
SUF	RFAC	E ELE	100 degs. F.									
DR)	CTOR: W. Stenger											
DRILLING METHOD Hollow Stem Auger/Mud Rotary RIG TYPE Failing												
DATE STARTED: 7/16/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A												
COMPLETED: 7/16/97 N/A FT: TIME: N/A DATE: N/A												
ELEV	LEV DEPTH SAMPLE SPT REC FID PROF DESCRIPTION REMARKS											
(FT) (FT) NO (FT) (PPM) DESCRIPTION REMARKS												
	0.0		20				0.0'-0.4" CONCRETE					
		S-1	20 25	0.9	326		0.4"-2.0' FILL: black	cinders, coal pieces, ieces concrete	0.4"-1.0" S88-1 CLPSV, TAL,			
· 200			10					m-fine, black, cinders,	CYN PEST/PCB, dioxin/furon 1.5'-2.0' S88-2			
w		S-2	9	1:5	740		slag, ash, pebbles -	angular, odor unknown	CLPVOA			
	,		2	2			4.0'-6.0' Same as abo	ve, with silty layer	3.01-4.01 S88-3 Clpsy, Tal, Cyn, Pest/PC8			
	5.0	S-3	24 51	2.0	420		from 5.0'-5.5' - gree	n gray	CLPVOA			
			2				6.0'-6.5' SAND: mediu	m-fine, mottled	Used to supplement \$88-3			
- 195		S-4	233	1.7	634		green/gray and tan 6.5'-7.5' SAND wet,	course oreen/oray				
120			۲		<u> </u>		(pebbles					
							7.5'-8.0'SAND medium	-t ine, black, odor-tuel				
	10.0						8.0'-17.0' Mud Rotary					
							,					
- 190												
								•				
						1 						
	- 15.0											
185			8				17.0'-19.0' STLT: tio	ht sandy fine clavev	_			
		S-5	7 5	0.7	0.2	<u> </u>	with pebbles and grav wet	ht, sandy, fine, clayey el, rounded, dark gray,				
		-	 				19 0'-29 0' Mid rotor	v - Insino mud fost				

L ROBERT KIMBALL & ASSOCIATES INC.

615 W HIGHLAND AVE. P.O. BOX 1000

EBENSBURG PA 15931

TELEPHONE: (814) 472-7700

BORING NO SB8

PROJECT: MARTIN AARON RI/RAA

PROJECT NO 96-1322-A124

CLIENT NUDEP

EV de FT) (1	EPTH FT)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESCRI		REMARKS
	20 0						so drilled to 32 0' to get mud completely	post lost	
- 2	50								
								e e	
- 3	000								·
		S-6 ·	28 24 36 45	1 3	0 0		32 D'-34 D' SAND gray, co angular	arse, with pebbles	
} 3	35 0	HP-1					34 0'-37 5' Hydropunch		34 0'-37 5' SBB-4 VOL 8240
							TOTAL DEPTH = 37 5 FEET		

_							BOUTING FOR	J	PHGE OF
1/2	- <u>-</u> -	L. Ri	OBER	T KI	MBAL	L & A	SSOCIATES INC.	BORING NO SB9	
								PROJECT MARTIN AARON	
	Ī	EBENS	SBUR	124					
		TELER	PHON	E: (814)	472-	7700	PROJECT NO 96-1322-6	
LOC	CATI	ON Mo	ntin	NORTH: -					
SUF	RFAC	E ELE	V : 2	, 100 degs F					
DR]	[LLI	NG CC	ECTOR: W. Stenger						
DRI	[LLI	NG ME	ling						
DAT	re s	TARTE	N/A DATE N/A						
	CI	OMPLE	N/A DATE N/A						
(FT)	(FT)	i	REMARKS						
200	0.0	S-1	27 13 11 13	1.0	32.1		0.0'-2.0' FILL sand, dark brown, cinders,	pieces concrete, to cobbles, angular	0.0'-0.5' \$89-1
		S-2	7 5 4 25	0.9	549		2.0'-4.0' SAND mediu ash, stag	m, block, cinders,	CLPYCA
- 155	- 5.0	S-3	5 2 1 3	0.8	183		4.0'-6.0' SAND: medic ash, slag, wet • 5.5'	m-fine, black, cinders,	3.0'-5.0' \$89-3 CLPSY, TAL, CN, PEST/PC8 CLPYOA, TOX, TOC, pont. size
133							TOTAL DEPTH = 6.0 FEE		TOC, port size Used top 1' to supplement S89-3
	10.0								
190		<u>.</u>]	1						
	- 15.0		 						
185									
ı									
	20.0								
180	20.0								
		1		}					

								·					
	L. ROBERT KIMBALL & ASSOCIATES INC. BORING NO SB10												
		615 k	1 HI	GHLA	ND A	NE. P	.0. BOX 1000	PROJECT	MARTIN AARON R	I/RAA			
	<u></u>	EBENS	BUR	G PA	159	331		PROJECT	NO 96-1322-A12	24			
	=	TELEF	PHON	E: (814)	472-	7700						
LOC	CATI	 ON : Ma	rtin	Aaro	on S	ite	. CO	ORD EAST:	1873142.425	NORTH 398358 988			
1				IR Sunny, hot,									
1			CTOR: W. Stenger										
1			ng										
1													
	DATE STARTED: 7/15/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A COMPLETED: 7/15/97 N/A FT; TIME: N/A DATE: N/A												
FLEV	DEPTH	SAMPLE		RFC	£TD	PROF	5505	DISTION		DEMARKO			
(FT)	(FT)	NO	SPI	(FT)	(PPM)	PRUF	DESC	RIPTION	•	REMARKS			
-	6.6		-14	ļ	<u> </u>		D D'-2 D' FTILL sand	medium-fine	stones				
		S-1	24 24	1.6	10		0 0'-2 0' FILL sand, yellowish discolorati	on in 0.0'-0.	5' intervals	0.0'-0.5' \$810-1			
200			20 10	-			pices brick, cinders 2.0'-4.0' SAND dork	honun-hlack	rinders	CLPSV, TAL, CN, PEST/PC8 diaxin/furan			
		S-2	11 8	0.9	102		ash, bits coal, brick	3.0'-3.5'	Ciridot 5,	1.5'-2.0' S810-2 CLPVOA			
	1		12	-	-		4.0'-6.0' CINDERS: as	h black sand					
	5,0	S-3	8 10 11	1.7	964		pebbles - angular	n, brack Jane	,	4.0'-6.0' S810-3 CLPSV, TAL, CN, PEST/PCB, CLPVOA			
- 195			6 2			1	6.0'-8.0' CINDERS: as		ļ,	6.0'-11.0' SB-4			
In		S-4	4	0.2	0.0		pebbles - angular, не	t		VOL 8240			
							0.07.11.07.11.4	τ,					
		HP-1					8.0'-11.0' Hydropunch						
	10.0												
ım						1	TOTAL DEPTH = 11.0 FE	ET					
190							Į						
										·			
	15.0												
185				<u> </u>									
							,						

											_			
		L RO 615 L EBENS TELEF	N HÍ	O SB11 MARTIN AARON F NO 96-1322-A1										
LOCATION: Martin Aaron Site COORD EAST: - NORTH: - SURFACE ELEV: 203 TOP OF CASING: WEATHER: Hot, Humid, 80 degs. F. DRILLING CO: JCA DRILLER: J. Urban LRK INSPECTOR: E. Sciulli DRILLING METHOD: Mud Rotory RIG TYPE: Failing DATE STARTED: 6/24/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A COMPLETED: 6/24/97 N/A FT; TIME: N/A DATE: N/A														
ELEV (FT)	(FT)	SAMPLE NO		REC (FT)		PROF	DESC	CRIPTION		REMARKS				
700	- 5.0 - 10.0	S-1 S-2 S-3 S-4	189. 9 7 3 11 7 18 3 2 3 1	1.0	265		0.0'-0.5' SILT trace very tight, dry 0.5'-1.5' As above, docasional cinders 1.5'-2.0' BRICK 2.0'-4.0' SAND s. si some cinders, ash, very 4.0'-6.0' As above, some cinders; combustion possell, wet	iry, black, no lt, black, loo ry domp Ф 3.5 me orange brон product, very e silt, medium	ose, n oxidation damp to wet -fine, black	0.0'-0.5' \$811-1 CLPSV, TAL, CN, PEST/PCB 1.0'-1.5' \$811-2 CLP VOA 3.0'-3.5' \$811-3 CLPSV, TAL, CN, PEST/PCB CLP VOA				
190	- 15.0	S-6 S-7	2112	1.5	79		10.0'-12.0' CLAYEY SI gray to grayish green 12.0'-14.0' As above 13.5'-14.0' Organic m silt, dark gray, medi No recovery	to 13.5' natter, sand, uma-fine, loose	trace e					
185		S-8	5 10	i 0	12		(medium), poorly sorted, occasional medium quartz gravel, rounded							

L ROBERT KIMBALL & ASSOCIATES INC. 615 W HIGHLAND AVE P O BOX 1000 EBENSBURG PA 15931

TELEPHONE: (814) 472-7700

BORING NO SB11

PROJECT: MARTIN AARON RI/RAA

PROJECT NO 96-1322-A124

CLIENT: NJDEP

LEV (FT)	(FT)	SAMPLE NO			FID (PPM)	DESCRIPTION	REMARKS
	20.0					No recovery	
	ja	S-9	4555	1.8	0 02	22 0'-24 0' SILT trace fine-very fine sand, brown to orange brown At 23 0' grading to silty clay, light gray to white, cohesive, plastic	
	25 0					No recovery	
٠		S-10	2 3 15 16		1.8	27 D'-29 D' SILT orange brown to brown, grading to sand, brown, medium-fine, well sorted, clay stringer approx 15", light gray to white, mottled, cohesive	
	300					No recovery	
		S-11	15 20 47 52		0 0	32 O'-34 O'SAND's silt, brown to orange brown fine-very fine, well sorted, tight	
	- 35 ()					No recovery .	
		S-12	22 50 39 49		15	37 O'-39 O' SAND medium-coarse, poorly sorted loose, light tan to white, angular clay stringer at 38 S' (approx 1")	

L. ROBERT KIMBALL & ASSOCIATES INC

615 W HIGHLAND AVE. P.O. BOX 1000

EBENSBURG PA 15931

BORING NO SB11

PROJECT MARTIN AARON RI/RAA

PROJECT NO 96-1322-A124

	TELEPHONE			E: (814)		472-7	2700 CLIENT NJDEP	
ELEV (FT)	(FT)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESCRIPTION	REMARKS
	100			,				
		S-13	7 25 37 50	0 8	16		42 D'-44 D' SAND s silt, fine-medium, poor sorted, brown to orange brown	У
	-450						No recovery	
		S-14	5 18 49 55	0 5	0 0	•	47 D'-49 D'SAND trace silt, fine-medium, brown turning orange brown	
	- 50 0 -	S-15	5 11 15 22	0 5	0 0		49 O'-51 O' As above, brown to tan	
		S-16	12 17 36 39				51 0'-53 0' As above, medium-coarse, some small gravel, brown to orange brown	
	- 55 ()						No recovery	
	JJV						56 N'-50 N' MAY white plantic deces	
		S-17	15 17 17 18	13	00		56 0'-59 0' CLAY white, plastic, dense	
	ro n						No recovery	

L ROBERT KIMBALL & ASSOCIATES INC 615 W HIGHLAND AVE P.O. BOX 1000

EBENSBURG PA 15931

TELEPHONE: (814) 472-7700

BORING NO SB11

PROJECT: MARTIN AARON RI/RAA

PROJECT NO 96-1322-A124

CLIENT NJDEP

			110110	• •	<u> </u>			OLIENI MODE:	
ELEV (FT)	 (FT)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESC	RIPTION	REMARKS
	600	•							
		S-18**	15 22 29 36	05	0 0		61 D'-63 D' SAND trac to tan, some clay adhei		·
						:	TOTAL DEPTH = 63 O FEE		
	-650								
									·
	- 70 0	,							
	100							•	
					:				
			}				·	,	
	750								
									·
								•	
	ng g								

M	7/1	L. RC	BER	T_KI	MBAL	L & A	SSOCIATES INC.	BORING NO S	B12					
			,	6			0 BOX 1000	PROJECT MART	IN AARON R	I/RAA				
		EBENS	BUR	G PA	159	331		PROJECT NO:	96-1322-A1	24				
	_	TELEP	HONE	Ξ: {	814)	472-7	7700							
LOC	ATI	ON Ma	rtin	Aaro	on Si	ite	CO	ORD EAST -		NORTH: -				
SURI	SURFACE ELEV 203.05 TOP OF CASING WEATHER Overcost, worm													
DRILLING CO: JCA DRILLER: J. Urban LRK INSPECTOR: W. Stenger														
DRI	DRILLING METHOD Hollow Stem Auger RIG TYPE Failing													
DATI	DATE STARTED: 07/10/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A													
	COMPLETED 07/10/97 N/A FT; TIME N/A DATE N/A													
ELEV I	EPT H	SAMPLE	SPT	REC	FID	PROF	DESC	RTPTTON		REMARKS				
(FT)	(FT)	NO		(FT)	(PPM)	11101	DEGC	INTI TON		TIETH HILLS				
	0.0		6		! !		0.0'-2.0' FILL: sand,			_	\dashv			
	;	S-1	12	1.7	25		to dark brown, cinder	s, ash, cobbl <i>e</i> s		0.0'-0.5' \$812-1 Clpsy, Tal, CN, Pest/PC8				
			5				2.0'-3.0' CINDERS: os	h, pebbles, dork		0.5'-2.0' \$812-2				
200		S-2	8 12	1.7	564		brown sand 3.0'-3.5' COAL			CLPVOA				
		·	7]4	i		3.5'-4.0' CINDERS: as	h, pebbles, block	sand	4.0'-6.0' S812-3				
	5.0	S-3	9	1.8	685		4.0'-6.0' CINDERS: as	h, coal, black to		CLPSV, TAL, CN, PEST/PCB, CLPVOA				
			8				brown sand, slag 6.0'-8.0' CINDERS: as	h coal black can	<u></u>	TOX, TOC, PART				
100		S-4	11 10	2.0	127		coarse, odor, wet © ?	.0'	u, 					
195							TOTAL DEPTH = 8.0 FEE	1						
	10.0		,											
	10.0									<u> </u>				
- 190		-												
ן ענו								*						
	15.0								•					
						Ì								
								·						
- 185							,							
				,, 3**·· (
	20.0		,	2 -		1								
										·				
. 1		i	I	i .	į	1	i			i	- 1			

							DONAINO LOC	, 						
[W	L. ROBERT KIMBALL & ASSOCIATES INC. BORING NO SB13													
		615 k	HI(GHLA	ND A	VE. P	0 BOX 1000	PROJECT	MARTIN AARON R	I/RAA				
	7	EBENS	BUR	G PA	159	31		PROJECT	NO 96-1322-A1	24				
=		TELEF	PHONE	E: (814)	472-	7700							
LOC	CATI	ON: Ma	rtin	Aar	on Si	ite	C0	ORD EAST	-	NORTH: -				
SURFACE ELEV: 203.28 TOP OF CASING: WEATHER: Sunny, hot, 100 degs. F.														
1							DRILLER: J. Ur							
DR1	[LLI	NG ME	THO	D : Ho	llow	Stem	Auger	R	IG TYPE Fail	ing				
i	DRILLING METHOD: Hollow Stem Auger RIG TYPE: Failing DATE STARTED: 7/15/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A													
	C	OMPLE	TED.	: 7/1	5/97			N/A	_FT; TIME N	/A DATE N/A				
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PROF	DE00	OTOTTON		DEMARKO				
(FT)	(FT)	NO	151	(FT)	(PPH)	PRUF	DESC	KIPIIUN		REMARKS				
-	0.0		13		-		0.0'-2.0' SAND: Fine-	medium, brown	n to					
		S-1	16 21 26	1.0	0.0	. :	orangish brown, dry,	pieces brick		0.0'-0.5' \$813-1 Clpsv, Tal, Cn, pest/pc8				
			9				2.0'-4.0' FILL: brick	s. sand. medi	iuna-fine.	dioxin/furon 1.5'-2.0' \$813-2				
200		S-2	6 7	1.2	0.0		light brown-gray, sto	nes - angular	,	CLPYOA				
			10				4.0'-6.0' FILL: sand,	dark brown,	ash					
	5.0	S-3	.7	1.5	0.0		cinders, brick, tan, then brick	silty sand o	5.0'-5.5'					
			1				6.0'-8.0' FILL: sand, dark brown, wet © 7.0	silty, pebbl	es-round,	CLPSV, TAL, CN, PEST/PC8, CLPVOA, TOX, TOC, Pont				
		S-4	1	1.0	0.0		dark brown, wet 🛭 7.0	', clay at bo	ottom	6.0'-11.0' \$813-4				
195			1	 			8.0'-15.0' Hydropunch	- 1,		VOL 8240				
							, ,							
	10.0													
		HP-1				<u> </u>								
	· ·	,					}							
190								•						
						!								
	15.0			ļ. —			TOTAL DEPTH = 15.0 FE	EI						
								•						
185							,							
	20.0		-											

1/2		L. RO	OBER	T KI	MBAL	L & A	SSOCIATES INC.	BORING NO SB14				
		615 k	1 HI	GHLA	ND P	NE. P	.O. BOX 1000	PROJECT MARTIN AARON R	I/RAA			
	-	EBENS	BUR	G PA	159	331		PROJECT NO 96-1322-A12	24			
		TELER	PHON	E: (814)	472-	7700					
LO	CATI	ON Ma	rtin	Aaro	on S	ite	CC	ORD EAST: -	NORTH: -			
SUF	RFAC	E ELE	V <u>2</u>	100 degs. F:								
DR:	[LLI	NG CO	I JC	CTOR: W. Stenger								
DR)	[LLI	NG ME	THO	D : Ho	llow	Stem	Auger	RIG TYPE Faili	ing			
DA	re s	TARTE	D :	7/1	5/97		WATER LEVEL DE	PTH:N/A FT: TIME:N/	/A DATE N/A			
DATE STARTED: 7/15/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A COMPLETED: 7/15/97 N/A FT; TIME: N/A DATE: N/A												
ELEV	DEPTH	SAMPLE	007	REC	FTD	DDOE	DESC	POTOTTON	DEMARKO			
(FT)	(FT)	NO	SPI	(FT)	(PPH)	PRUF	l DESC	RIPIIUN	REMARKS			
	0.0		20				0.0'-2.0' FILL: sand,	modula-fino Light				
		S-1	16 14	1.0	0.0		brown, brick, stones	medium i ine, Tigin	0.0'-0.5' \$814-1			
			11				0.07.4.07.5711) C' 1 1	CLPSV, TAL, CN, PEST/PCB			
200		S-2	6	13	0.0		2.0'-4.0' FILL sand, brown, brick, stones	medium-tine, dork	1.5'-2.0' S814-2 ICLPVOA			
w			4						Used to supplement SB14-1			
	- 5.0 ·	, ,	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1			4.0'-6.0' FILL sand,	dark brown, cinders,	Used to supplement S814-3			
	3.0	S-3	2	1.0	0.0		ash, wood chips, pebb dense Ф 5.5', 1" thic	rk				
			I				6.0'-8.0' SAND: domk	brown, medium-fine, clay,	5 0'-8 0' \$814-3			
		S-4		0.7	444		gray with black strea	IKS ♥ 1.3 ~8.0 , Wet	CLPSV, TAL, CN, PEST/PCB, CLPVOA, TOX, TOC, Point			
195							8.0'-10.0' Hydropunch	1	5.0'-10.0' S814-4			
		HP-1							VOL 8240			
	10.0						TOTAL DEPTH = 10.0 FE	ET	1			
								·				
190												
	- 15.0		ĺ						· .			
185								•				
IØ												
				84								
	20.0		·									
	1				ļ			,				

	DOMINO LOO													
1/2	L ROBERT KIMBALL & ASSOCIATES INC BORING NO SB15													
		615 k	I HI	GHLA	ND A	VE. P	.O BOX 1000	PROJECT MARTIN AARON R	I/RAA					
	7	615 K	BUR	G PA	159	131		PROJECT NO: 96-1322-A1	24					
	=					472-	7700		·					
LOC	CATI	ON : Ma	rtin	Aaro	on Si	te	C0	ORD EAST: -	NORTH: -					
SUF	RFAC	E ELE	100 degs. F.											
1			CTOR: W. Stenger											
DR]	LLI	ing												
DRILLING METHOD: Hollow Stem Auger RIG TYPE: Failing DATE STARTED: 7/14/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A														
COMPLETED: 7/14/97 N/A FT; TIME: N/A DATE: N/A														
ELEV (FT)	(FT)	NO	SPT	REC (FT)	FID (PPH)	PROF	DESC	CRIPTION	REMARKS					
	9.8	S-1	20 14 33 33	0.1	0.0		0.0'-2.0' SAND: mediu ben. pebbles, angular	m-fine, grayish brоwn , dry	0.0'-0.5' \$815-1 CLPSV, Tal., CN, PEST/PC8 1.5'-2.0' \$815-2					
200		S-2	3 2 2 2	0.5	315			2.0'-4.0' SAND: coarse, brown, stag, cinders, cobbles, dry						
	- 5.0	S-3	2 2 3 5	0.8	120		4.0'-6.0' SAND: coars cinders, slag, dry	e-medium, gray-black,	3,51-6,01 \$815-3 Clpsy, Tal, DN, Pest/PC8					
195		S-4	2 3 4 4	1.0	1565		6 0'-8.0' SAND: coars many pebbles, angular wet • 6.5'	e, brown-gray black, , cinders, slag,	6.0'-6.5' \$815-4 CLPYOA					
	- 10.0	HP-1					8.0'-10.0' Hydropunch TOTAL DEPTH = 10.0 FE		S. 0'-10.0' S815-5 VOL 8240					
190														
	- 15.0					,	·							
- 185														
	- 20.0													

							ROKTNO FOR	<u> </u>	PNGE1_ OF1_		
M	<u></u>	L. RO	OBER	Į KI	MBAL	L & A	SSOCIATES INC.	BORING NO SB16			
		615	1 HI	GHLA	ND A	VE. P	.O. BOX 1000	PROJECT MARTIN AARON	N RI/RAA		
	Ī	EBENS	BUR	G PA	159	131		PROJECT NO: 96-1322-	A124		
==		TELEF	PHON	E: (814)	472-	7700	·			
LOC	CATI	ON : Ma	rtin	Aaro	on Si	te	CC	ORD EAST: -	NORTH: -		
SUR	RFAC	E ELE	t, 100 degs. F.								
DRI	LLI	NG CO	JC	A			DRILLER J. Ur	ban LRK INSI	PECTOR W. Stenger		
DRILLING CO: JCA DRILLER: J. Urban LRK INSPECTOR: W. Stenger DRILLING METHOD: Hollow Stem Auger RIG TYPE: Failing											
								PTH: N/A FT: TIME			
		OMPLE							N/A DATE N/A		
FI FV	пертн	CAMPLE	T .	BEC	ETD	<u> </u>					
(FT)	(FT)	NO	SPT	(FT)	(PPH)	PROF	DESC	CRIPTION	REMARKS		
	8.8		30				0.04.0.04.5711	1: 6:			
		S-1	29	1.5	13.8		UU-ZU FILL SONO, yellowish green sond)	medium-fine, gravel, / material with quartz	0.0'-0.5' \$816-1		
			23	ļ					CLPSV, TAL, CN, PEST/PC8 diaxin/Furan		
200		S-2	7	1.3	128		2.0′-9.0′FILL sond, brick pieces	medium, ash cinders,	1.5'-2.0' \$816-2 CLPYOA		
ωυ			9	-	100		'				
	- 5,0	S-3	6 1	1.3	258		4.0'-6.0' SAND: black	sand at bottom of			
		0.3	1_	1.3			brick pieces, green s spoon was not SPCT				
		S-4	2 6 5	1.5	รกว		60'-80' SAND greer fine=wet@70'	nish black, medium to	6.0'-7.0' \$816-3		
HEC			4	1.3	303				CLPSV, TAL, CN, PEST/PCB CLPVOA, TOX, TOC, Part		
155				}			8.0′-11.0′ Hydropunch	1	6.0'-11.0' \$816-4 VOL 8240		
	10.0	HP-1									
	10.0										
							TOTAL DEPTH = 11.0 FE	ET			
				į							
190											
						1					
	15.0						·		·		
185											
			1								
	20.0		-		-	1					
	1	I	1	1	1						

	DON'1110 E00													
	— 7/1	L. RO	OBER	I KI	MBAL	L & A	SSOCIATES INC.	BORING NO: SB17						
		615 N	1 HI	GHLA	ND A	NE P	.0 BOX 1000	PROJECT MARTIN AARON R	I/RAA					
	7	EBENS	BUR	G PA	159	31		PROJECT NO: 96-1322-A1	24					
=		TELEF	PHON	E - (814)	472-	7700							
LOC	CATI	ON Mo	rtin	Aar	on S	ite	CO	ORD EAST -	NORTH: -					
SUF	SURFACE ELEV 201.41 TOP OF CASING WEATHER Sunny, hot, 95 degs F.													
DR	DRILLING CO: JCA DRILLER: J. Urban LRK INSPECTOR: W. Stenger													
DR)	DRILLING METHOD Mud Rotary RIG TYPE Failing													
DAT	DATE STARTED: 7/17/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A													
	COMPLETED: 7/17/97 N/A FT; TIME: N/A DATE: N/A													
ELEV	DEPTH	SAMPLE	SPT	REC	FID	PROF	DESC	RIPTION	REMARKS					
(FT)	(FT)	NO		(FT)	(PPM)									
	8.8		20 19 13				0 0'-2 0' FILL sand,	medium, dark brown,						
200		S-1	13	1.0	1.2		pebbles, pieces brick							
			4 7				2.0'-4.0' Same as abo	ve	0.0'-0.5' \$817-1 Clpsv, Tal, Cn, pest/pcb					
		S-2	4 7 2 2	U.6	0.0				1.5'-2.0' S817-2 CLPVOA					
	- 5.0	S-3	1 2				4.0'-6.0' SILT with damp, odor, wet • 5.5	fine sand, granular,	Poor recovery, somple					
	J.U	5-3	Ž 1 1	1.0	100		<u> </u>		saturated by drill mod					
195		S-4	7 20	1.0	874	<u> </u>	6.0'-6.5' SILT: with 6.5'-7.0' SAND: mediu	fine sand, granular m. blue/oreen	5.0'-6.0' S 817-3					
		J ,	20 16 10	1.0	011		7.07-8.07 SANU: mediu	m, black, odor, saturated	Clpsv, tal, Cn, pest/pcb Clpvoa					
							Rotary to 17.0'							
	 - 10.0													
190														
	15.0					:								
			ļ											
185							17.04.10.04.00400							
		S-5	10 14 7	0.8	196		17.0°-19.0° SAND: coa pebbles, saturated, q	rse with large 1/4 - 1/2" ray						
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9					,						
	1 1		1				Rotary to 30.0"		· .					

		615 k	I HI(BUR(SHLA S PA	N D A	VE. P	SSOCIATES INC O BOX 1000	BORING NO SB17 PROJECT MARTIN AARON RI/RAA PROJECT NO 96-1322-A124 CLIENT NUDEP		
[EV DEPTH SAMPLE SPT REC FID PROF DES						DESC	CRIPTION	REMARKS	
	- 25 ()									
	30.0	S-6	16 15 13 10	08	0		30 0'-32 0' SAND coar to 1/2" pebbles, satur Rotary to 37 0'	se, with large 1/4" ated, gray		
	350	S-7	125	10	0		37 O'-37 S' Some as ab 37 S'-38 O' SAND medi tan, saturated Rotary to 43 O'	oove um-fine, grayish		

							DOLLTING FOR	J		
M	7/1	L RO	BER	T KI	MBAL	L & A	SSOCIATES INC.	BORING NO SB17		
		615 k	I HI	SHLA	ND A	VE. P	.O. BOX 1000	PROJECT MARTIN AARON	RI/RAA	
	7	EBENS	SBURO	3 PA	159	31	PROJECT NO: 96-1322-A	NO : 96-1322-A124		
	=					472-	7700			
ł	(FT)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PR0F	DESC	CRIPTION	REMARKS	
	10.0	S-8	27 103	1 0	0		43 O'-44 5' SAND medi small rounded, white-t Rotary to 48 O'	um-fine, pebbles, an		
	500	HP-1		_	-		48 0'-51 0' Hydropunch TOTAL DEPTH = 51.0 FEE		48 0'-51 0' SB17-4 VOL 8240	
	550									

L ROBERT_KIMBALL & ASSOCIATES INC 615 W HIGHLAND AVE P 0 BOX 1000 FEBENSBURG PA 15931 TELEPHONE: (814) 472-7700 LOCATION_Mortin_Aaron Site COORD EAST - NORTH - SURFACE ELEV 203 77 TOP 0F CASINS - WEATHER Sunny, hot, 100 degs F ORILLING CO: JCA ORILLING METHOD Hollow Stem Auger OATE STARTED 7/14/97 WATER LEVEL DEPTH N/A FT; TIME N/A DATE N/A COMPLETED 7/14/97 WATER LEVEL DEPTH N/A FT; TIME N/A DATE N/A COMPLETED 7/14/97 DESCRIPTION REMARKS OF RC FID PROF DESCRIPTION REMARKS OF JC FID PROF ORGAND: nedium-town of the properties of the pro														
EBENSBURG PA 15931			L. RO	OBER	Ţ _ω KI	MBAL	L & A	SSOCIATES INC	BORING NO SB18					
TELEPHONE			615	1 HĮ	GHLA	ND A	NE. P	.O. BOX 1000	PROJECT MARTIN AAR	ON RI/RAA	_			
CORT			EBENS	BUR	G PA	159	931		PROJECT NO: 96-1322	2-A124				
SURFACE ELEV 203 77 TOP OF CASING WEATHER Sunny, hot, 100 degs F		=	TELEF	PHON	E: (814)	472-	7700		·				
DRILLING CO_UCA	L0(CATI	ON Mo	rtin	Aar	on S	ite	CO	ORD EAST: -	NORTH: -				
DRILLING METHOD	SUF	RFAC	E ELE	V : 2	03.7	7	_ TOP	OF CASING	WEATHER Sunny, h	not, 100 degs. F.	_			
DATE STARTED	DR:	ILLI	NG CO	JC	A			DRILLER:J. Ur	ban LRK IN	SPECTOR W. Stenger	_			
COMPLETED 7/14/97 N/A FT: TIME N/A DATE N/A	DR:													
Second S	DA	TE S	TARTE	D :	7/1	4/97		WATER LEVEL DE	PTH N/A FT, TIME	E <u>N/A</u> DATE <u>N/A</u>	_			
10		C	OMPLE	TED	7/1	4/97			N/A FT; TIME	DATE N/A				
S-2 32 1.7 0.0	ELEV	DEPTH (FT)	SAMPLE	SPT	REC	FID	PROF	DESC	CRIPTION	REMARKS				
S-2 20 1.7 0.0 fine, pebbles - angular, light brown-brown 0.0'-0.5' \$818-1 1.289, link, OH, PEST/POS 0.0'-0.5' \$818-2 1.2 1.0 9.9 2.0'-4.0' \$AND medium-coarse, pebbles, angular, pieces brick 1.5'-2.0' \$818-3 1.5'-2.0' \$818-3 1.5'-2.0' \$818-3 1.5'-2.0' \$818-3 1.5'-2.0' \$818-3 1.5'-2.0' \$818-3 1.5'-2.0' \$818-3 1.5'-2.0' \$818-3 1.5'-2.0' \$818-3 1.5'-2.0' \$818-4 dup. 1.5'-2.0' \$818-4 dup. 1.5'-2.0' \$818-4 dup. 1.5'-2.0' \$818-6		1	110			111111		0.07.0.07.5711			-			
S-2 16 10 9.9 angular, pieces brick 1.5-2.0 S918-3 CLPYON 1.5-2.0 S918-4 dup CLPYON 1.5-2.0 S918-4 dup CLPYON 1.5-2.0 S918-4 dup CLPYON 1.5-2.0 S918-5 dup CLPYON 1.5-2.0 S918-6 dup CLPYON 1.5-2.0 S918			S-2	20 32	1.7	0.0		fine, pebbles - angul	sand, medium to ar, light brown-brown	CLPSV, TAL, CN, PEST/PCB				
Solution 11 15 15 18 18			S-2	16 12	1.0	9.9		2.0'-4.0' SAND: mediu angular, pieces brick	m-coorse, pebbles,	1.5'-2.0' \$818-3				
S-4 4 1.2 331	ZW	5.0	S-3	11 \ 3	٠.	l		4.0'-6.0' SAND: coars slag, brown, angular,	e, pebbles, cinders, dry	1.5'-2.0' \$818-4 dup.				
S-4 3 1.2 331 Slog, brick pieces, silty near top 6.0"-7.0" S818-5 CLPSV IAL ON PEST/POB 7.0"-7.5" S818-6 CLPVOA Slog Slo			ļ		ļ	ļ			· ·	Used to supplement S010-5				
100 100 15.0 15.0 TOTAL DEPTH = 8.0 FEET			S-4	3	1.2	331		16.0°-8.0° SANO: medio slog, brick pieces, s wet ♥ 7.5°	m-rine, ash cinders, ilty near top	CLPSV, TAL, CN, PEST/PCB 7.0"-7.5" S818-6				
15.0	- 195							_ Total Depth = 8.0 Fee	Ţ	urrun				
15.0		10.0												
15.0		10.0												
15.0											ļ			
15.0														
185	190													
185		15.0					,							
								·						
			j]								
20.0	185				F 4				·					
		20.0		 										

1/2	7/1	L RC	BER	r KI	MBAL	L & AS	SSOCIATES INC	BORING NO SB19					
		615 k	HI(SHLAI	ND A	WE. P	0 BOX 1000	PROJECT: MARTIN AARON R	I/RAA				
_	7	EBENS	BURO	S PA	159	131		PROJECT NO: 96-1322-A12	24				
	=	TELEP	HONE	<u> </u>	814)	472-	7700						
LOC	CATI							ORD EAST -	NORTH: -				
1								WEATHER Sunny, hot,					
								ban LRK INSPE					
1								RIG TYPE Faili					
	DATE STARTED: 7/17/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A COMPLETED: 7/17/97 N/A FT; TIME: N/A DATE: N/A												
FIFV	n FPTH	CAMPI F		RFC	FTN	PROF							
(FT)	(FT)	NO	SPT	(FT)	(PPM)	PR0F	DESC 	CRIPTION	REMARKS				
_	0.0	.,	4				0-0'-2'0' SAND mediu	m to fine black					
		S-1	4 5 15 17	1.2	0		O.O E.O OTTO		·				
200			17 8				2 0'-4 0' SAND: mediu	m-coarse, ash, cinders,	0.0'-0.5' \$819-1 CLPSV, TAL, CN, PEST/PC8				
		S-2	34	1.0	0		slag	002 00, 001, 011,001 0,	1.5'-2.0' \$819-2 CLPYOA				
	- 5.0	S-3	4 8 10	10	1121		4.0'-6.0' SAND mediu odor, pebbles, angula	m-coorse, cinders, strong					
			8										
195		S-4	1	0.2	0		6.0°-8.0° GRAVLL: pie 1/2° - prob. water	ces brick, 1/4" to	5.0'-6.0' \$819-3 Clpsy, Tal, CN, Pest/PC8 Clpyca, Tox, Toc,				
			_			Na C	Rotary to 17.0'		Port size				
							Major mud loss - mud of ground © 6.0' from	is coming out					
	10.0						lor grouno € 6.0 rromi	i TUD					
								•					
190													
						-							
	15.0												
185			6				17.0'-19.0' CLAY: sil	ty, tan to aray					
		S - 5	6 8 9 10	1.0	0		mostly gray	,, <u>, , , , , , , , , , , , , , , , , ,</u>					
						1,,,,	Rotary to 30.0'						

L ROBERT KIMBALL & ASSOCIATES INC.

615 W HIGHLAND AVE. P.O. BOX 1000

EBENSBURG PA 15931

TELEPHONE: (814) 472-7700

BORING NO: SB19

PROJECT: MARTIN AARON RI/RAA

PROJECT NO: 96-1322-A124

CLIENT: NUDEP

(FT)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESCRIPTION	REMARKS
20.0							
- 25 0							
				, valid		·	
300		_			700	20 D/ 20 E/ CDAVEL 1/9" L 1"	
	S-6	7 10 11 10	11	5 8		30.0'-30.5' GRAVEL 1/2" to 1" size, little sand matrix 30.5'-32.0' SAND medium, brown to tan, little gravel, 1/8" to 1/4" size	
	,					Rotary to 37 O'	
- 35 ()						·	
	S-7	25 37 50 66	10	0		37 O'-39 O' SAND medium-coarse, pebbles, small angular, white	
40 D						Rotary to 47 5'	

						DAUTING FAC)		PA6L3 U
N 7/1	L R	OBER	T KI	MBAL	L & AS	SSOCIATES INC.	BORING I	NO : SB19	
	615 I	IJ HI	GHLA	ND A	VE. P	.O. BOX 1000	PROJECT	: MARTIN AARON R	I/RAA
	EBENS							NO : 96-1322-A12	
						77nn	CLIENT		- 1
- 1	ILLE	THUN		ובדם	472-1	1100	CLICINI -	NJUEF	
LEV <mark>dept</mark> i ft) (ft)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESC	CRIPTION		REMARKS
40.0		-	<u> </u>	-					
						·			
- 45.0									
13.0									
							٤		
						47 S'-52 N' Attempted	hydronunch		,
						47.5′-52 O'Attempted Failed © 15 15, No sam	ple		
	HP-1								
- 50.0	HP-1		-	-					
		-				Rotary to 55 O'			
						,			 Obstruction in rods will not
									allow bailer to decend
55 0		-				55 N' 50 N' 11d			Hydropunch was apparently assembled wrong
						55 0'-58 0' Hydropunch			
	HP-1		-	-				.*	55 0'-58 0' SB19-4 VOL 8240
						TOTAL DEPTH = 58 O FEE	Ţ · · · · ·		
							Ÿ		

							56. II. 6 200				_
1/2	7/1	L. RO	DBER	T KI	MBAL	 .L & A!	SSOCIATES INC.	BORING N	D: SB20 (MW-1S)		
		615 N	1 HI	GHLA	ND A	NE. P	.O. BOX 1000	PROJECT :_	MARTIN AARON R	I/RAA	_ (
	7	EBENS	BURG	S PA	159	331	·	PROJECT I	NO : 96-1322-A12	24	
		TELEF	PHONE	Ξ: (814)	472-	7700			• ***	
LOC	ATI	ON : Ma	rtin	Aano	on Si	ite	CO	ORD EAST	_	NORTH: -	_
SUF	RFAC	E ELE	V _2	01.6	1	_ TOP	OF CASING	WEATHER	R: Hot, Humid,	80 degs. F.	_
DR]	LLI	NG CO	: JC	4		v	DRILLER: J. Ur	ban	_ LRK INSPEC	CTOR W Stenger	_
DR)	LLI	NG ME	THO) <u>Ho</u>	llow	Stem	Auger	RI	G TYPE Faili	ng	_
DAI	E S	TARTE	D	07/0	08/97	<u>?</u>	WATER LEVEL DE	PTH: 9.01	FT: TIME 9	00 DATE 7/16/97	_
	С	OMPLE	TED	07/0	08/97	7		5.90	FT; TIME 13	3 30 DATE 9/16/97	
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PPOE	DESC	ואחדדמאי		REMARKS	
(FT)	(FT)	NO.	JOF 1	(FT)	(PPH)	Rur	ָטבאָנ	MIL I TOM		REHINKS	
	0.0	<u> </u>	8		<u> </u>	<u> </u>	0.0'-2.0' FILL: sand,	silty medium	-fine		┪
200		S-1	14 28	1.3	0.0		orange-medium brown, pieces of concrete Ф	with pebbles r	ounded,		
ш			5				2.0'-4.0' SAND: coars				
		S-2	5 5 5	1.8	0.0		gravel, slag, dry		·	0.01-0.51 S820-1 CLPSV, TAL, CN, PEST/PCB	
			2 2	erenen.			4.0'-6.0' SAND: coars	e, dark brонп,	cinders,	0 5 -2 0 9820-2	
	- 5.0	S-3	1		0.0	. :	gravel, slog			CLP VOA	
195			-							14.01-6.01 S820-3 CLPSV, TAL, CN,	
•]					PEST/PCB, CLP VOA	
								•			
	- 10.0										
190											
•-									•		
						ļ					
					_		TOTAL DEPTH = 14.0 FE	EI		Auger to 14' to set Hell	
	15.0				l F						
185						:					
						<u> </u>	·				
			1		,						
	20.0										
ıan		[•			

1/2	7/1	L. RO	DBER	T KI	MBAL	.L & A	SSOCIATES INC.	BORING NO SB22 (MW-1M)						
		615 L	I HI	SHLA	ND A	WE. P	0 BOX 1000	PROJECT MARTIN AARON R	I/RAA					
	7	EBENS TELER	BUR	3 PA	159	131		PROJECT NO 96-1322-A12	<u> </u>					
		TELEF	PHONE	Ξ: (814)	472-	7700							
LOC	CATI	ON : Ma	rtin	Aaro	on Si	te	C0	ORD EAST: -	NORTH: -					
SUF	RFAC	E ELE	V <u>2</u>	01.6.	1	_ TOP	OF CASING	WEATHER Hot, Humid,	80 degs. F.					
DRI	DRILLING CO JCA DRILLER J Urban LRK INSPECTOR W Stenger													
DRI	DRILLING METHOD Mud Rotary RIG TYPE Failing													
DAT	DATE STARTED 6/25/97 WATER LEVEL DEPTH 13.92 FT, TIME 9:00 DATE 7/16/97													
	COMPLETED 6/25/97 13.83 FT; TIME 13:50 DATE 9/16/97													
ELEV DEPTH SAMPLE SPT REC FID PROF DESCRIPTION REMARKS														
(FT)	(EJ)	NO) '	(FT)	(PPM)	1 1101	DEGC	MII TION	·					
	8.8	<u> </u>	9		<u> </u>		0.0'-0.8' SAND: light	brown, with silt						
200		S-1	10	0.9	0.0		and pebbles 0.8'-2.0' SAND: dark	hroun-hlack with						
<u>س</u>			-				cinders and slag	a one order, with						
							2.0'-5.0' No recovery							
								•						
	5.0		3				5.0'-7.0' SAND: black	, with cinders,						
195		S-2	32 12	0.4	0.0		ash and slag							
~~					-	<u> </u>	7.0'-10.0' No recover	у						
	10.0		9				10 0'-12 0' SAND w/SI	LT: gray,						
190		S-3	9863	0.6	166		medium-fine, odor, we	†						
	1		-				12.0'-15.0' No recove	ry						
		,						1						
	15.0		ļ				15.0'-17.0' SILT gra	y, saturated						
185		S-4		1.3	9.0	<u></u>								
			<u> </u>				17.0'-20.0' No recove	ry						
				!										

1/2	/ /1	L. RC	BER1	ΚĪ	MBAL	L &	ASS	OCIA	TES	INC
		615 k	HIG	HLA	ND A	VE.	P.0	BC	X 1	000
	Ī	EBENS	BURG	S PA	159	31				
		TELEP	HONE	: ({	314)	478	2-77	00		
ELEV	D EPTH	SAMPLE	CDT	REC	FID	חחר	,_			

BORING NO SB22 (MW-1M)
PROJECT: MARTIN AARON RI/RAA
PROJECT NO 96-1322-A124
CLIENT NJDEP

ELEV) (FT) NO (FT		SPT REC FID PROF				DESCRIPTION	REMARKS
	20.0	Rod Sank					20 0'-22.0' Rod sank, no spoon	
		S-5	14 32 32 36	1 2	101		22 O'-23 S' SAND brown, medium, with trace clay, pebbles 23 S'-24 O' SAND light tan to white,	•
	25.0	S-6	5553 553 553 553 553 553	0,5	6 3		medium-coarse 24 0'-25 0' No recovery 25 0'-27 0' SAND light tan to white, medium-coarse, little pebbles	
							27 O'-30 O'Possible white sandy clay stringers	Chips observed in mud cuttings 28 0'-30 0'
	- 30.0	S-7	20 40 44 45	1 3	15 0		30 O'-31 5' SAND light tan to white, coarse-medium 31 5'-32 O' SAND light brown-orange, coarse, with small pebbles, angular	FID hit at top of spoon
							32 O'-35 O' No recovery	
	- 35 () -	S-8	18 36 52 80	1 3	3 3		35 O'-37 O' SAND light tan to light brown, medium to coarse, pebbles, angular dark brown bands 1/8" thick - 3 @ 35 5' 1/2" spacing	
	AO O			. 6 1			37 0'-40 0' No recovery	

L. ROBERT KIMBALL & ASSOCIATES INC 615 W HIGHLAND AVE. P.O. BOX 1000

EBENSBURG PA 15931

TELEPHONE: (814) 472-7700

BORING NO SB22 (MW-1M)

PROJECT: MARTIN AARON RI/RAA

PROJECT NO 96-1322-A124

CLIENT : NJDEP

	(FT)	SAMPLE . NO	SPT	REC (FT)	FIO (PPM)	PROF	DESCRIPTION	REMARKS
	10 0	S-9	30 72 100	09	0 3		40 O'-42 O' SAND light tan to white, medium-fine	
							42 0'-45 0' No recovery	
	- 45.0		32 100				45 O'-47 O' SAND orangish brown, medium-fine	
		S-10	100	05	00	,	47 O'-50 O' No recovery	
	כח מ							
	- 50.0	S-11	22 55 100	·09	0.0		50 0'-52 0' SAND orangish brown, medium-fine	
		S-12	75 100	09	0 0		52 D'-54 O' SAND orangish brown, medium-fine	
	- 55 0	S-13	31 67 68 73	10	.0 0		54 O'-56 O'SAND orangish brown, medium-coarse	
							56 O'-58 O' No recovery	
~		S-14	29 35 31 27	1 0	0 0		58 O'-60 O'SAND orangish brown, medium-coarse, with trace clay, light tan	

Γ—		·							
1/2	7 1	L. RO	BER'	i ki	MBAL	L & AS	SSOCIATES INC.	BORING NO SB22 (MW-	- <u>1</u> M)
		615 k	I HI	GHLA	N D A	VE. P	.O. BOX 1000	PROJECT MARTIN AARO	N RI/RAA
	Ī	EBENS	BURO	3 PA	159	131		-A124	
		TELEF	HONE	E: (814)	472-7	7700	CLIENT : NJDEP	
	DEPTH (FT)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESC	RIPTION	REMARKS
-	60-0						60 0'-61 0' Hit top of	clay	· ·
		<u> [-1</u>		15		77		:	
		S-15	31 39 100	10	0.0		61.0'-61.5' CLAY Ligh in end and then refusa	t tan, silty observed I orangish brown, fine,	Driller could "feel it" and clay in mud cuttings
							with clay stringers, d	Γγ	
	-650	S-16	31 45 27 41	1-8			63 5'-65 O' No recover 65 O'-67 O' CLAY slig white, tight and dry;	y htly sandy, light tan- interbedded silt at top	
			11				TOTAL DEPTH = 67.0 FEE	Ī	
	- 70.0								
									·
	- 75.0						·		
								·	
	1 80.0 -								

							BAKTNA FAC		PAGE1_ 0F1		
			I HI	GHLA	ND A	VE P	i	BORING NO SB23 (MW-2S PROJECT MARTIN AARON F PROJECT NO 96-1322-A1	RI/RAA		
						472-7	1	11103[61 110] 10 1322 111	<u>C 1</u>		
nc	ATT							ORD EAST: -	NORTH: -		
								WEATHER Hot, Humid,	•		
						_		ban LRK INSPE			
								RIG TYPE Fail			
DATE STARTED 07/08/97 WATER LEVEL DEPTH 13.68 FT; TIME 9:00 DATE 7/16/97											
COMPLETED 07/08/97 13.65 FT; TIME 10:50 DATE 9/16/97											
EV (DEPTH (FT)	sample No	SPT	REC (FT)	FID (PPM)	PROF	DESC	RIPTION	REMARKS		
00	- 0.0	S-1	3 6 7 6	1.3	1.6		0.0'-0.75' SAND coars tan to light gray 0.75'-1.5' BRICK piece	se, gravel, es, dark brown, cinders			
	- 5.0	S-2	1 1 3 3	1.5	357		Tover 1.5'-2.0' SAND: silty, brown, dry 2.0'-4.0' SILTY SAND:	medium to fine, fine, dark brown-black	0.0'-0.5' \$823-1 CLPSY, TAL, CN, PEST/PC8 -0.0'-0.5' \$823-2 Duplicate of \$823-1		
<u>.</u>		S-3	4 4 3	2.9	238		ouor present	e-medium, bright green near bottom, odor	0.5'-2.0' \$823-3 CLP YOA 0.5'-2.0' \$823-4 Duplicate of \$823-3 2.0'-4.0' \$823-5		
In		S-4	5 4 5	2.0	129		· · · · · · · · · · · · · · · · · · ·	n-fine, green-dark gray,	_12.0′-4.0′		
	10.0	S-5	8 3 4 5	2.0	256	i Tag	8.0'-10.0' SAND: coars very silty, odor, wet	se-medium, green to black © 8.0'	PEST/PC8, CLP VOA		
190	10.0										
	15.0										
185							TOTAL DEPTH = 16.0 FEE		Auger to 16.0° to set well		
180	20.0			,							

W	<u></u>	L. RO	DBER	T KI	MBAL	L & A!	SSOCIATES INC.	BORING NO SB24 (ML	J-2M)				
		615 L	1 HI	GHLA	ND A	NE. P	.O. BOX 1000	PROJECT MARTIN AAR	ON RI/RAA				
		EBENS	BUR	G PA	159	31		PROJECT NO <u>96-1322</u>	2-A124				
	_	TELEF	PHONE	E: (814)	472-	7700						
LOC	CATI	ON No	rtin	Aor	on S	ite	CO	ORD EAST: -	NORTH: -				
								WEATHER Hot, Hur					
DRI	LLI	NG CO	JC/	A			DRILLER: J. Ur	ban LRK IN	SPECTOR W. Stenger				
DRILLING METHOD: Mud Rotary RIG TYPE: Failing													
DAT	DATE STARTED: 6/26/97 WATER LEVEL DEPTH: 14:13 FT; TIME: 9:00 DATE: 7/16/97												
l	C	OMPLE	TED	6/2	6/97	<u>.</u>	e s		E : 11:20 DATE : 9/16/97				
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PROF	DESC	יחדדתמ	REMARKS				
(FT)	(FT)	NO	ו אכן	(FT)	(PPH)	FRUF	ווייי	CUTL : TOIN	REITHNS				
	8.8		15				0.0'-0.5' SILT: trace	medium-fine sand, brown					
200		S-1	15 15 19	1.6	0.0		some m-1 gravel tight	some m-1 gravel tight, dry 0.5'-2.0' SILT as above, stained black					
			-	-	_		SAND s silt clay st						
								·					
					August .	<u> </u> 	4.0'-5.0' No recovery	1					
	5.0		1										
155		S-2		2.0	35.6		dry, noticable odor,	race sand, greenish black slightly clayey					
							7.0'-10.0' No recover	y ·					
		. 						•					
	10.0		2		 	<u> </u>	10.0'-11.5' ORGANICS,	SILT - dark brown,					
190		S-3	2355	1.8	10.5		meodow mat type mater 11.5'-12.0' SAND: dar	rial Konav saturated					
			-				11.0 10.0 Grad GG	J. 01, 00 to. 0 to0					
							12.0'-15.0' No recove	ry					
		 											
	15.0		10				15.0'-17.0' SAND cod	orse-medium, gray with					
185		S-4	10 12 14 14	0.8	618		black staining, small	pebbles					
			111				17 0'-20 0' No recove	ery					
					2, 3								
		i .	1	i .	ł	I	I	•	l .				

\mathbb{Z}
了

L ROBERT KIMBALL & ASSOCIATES INC. 615 W HIGHLAND AVE P.O. BOX 1000

EBENSBURG PA 15931

TELEPHONE (814) 472-7700

BORING NO SB24 (MW-2M)

PROJECT: MARTIN AARON RI/RAA

PROJECT NO: 96-1322-A124

CLIENT: NJDEP

	TELETHONE (OI I)			OLILIVI NODE			
ELEV D EPTH (FT) (FT)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESCRIPTION	REMARKS
20 0	S-5	11 11 12 11	10	97		20 O'-21 5' SAND coarse, black, product with gravel, angular 21 5'-22 O' SAND silty, fine, black, oc	odor or
9						22 0'-30 0' No recovery	
25.0							
- 30 0	S-6	8 9 10	0 6	0 0		30 0'-32 0' SAND coarse, gray with grav and quartz, rounded pebbles, trace shell fragments, large fragments, looks like	el
						colcite	
- 35 () -						32 O'-40 O' No recovery	
- A0 0							

							DOLLTING FOR	J .		
	7/1	L. RO	OBER	T:KI	MBAL	L & A	SSOCIATES INC	BORING NO SB2	24 (MW-2M)	
		615 k	ı HI	GHLA	ND A	VE. P	.O. BOX 1000	PROJECT: MARTI	N AARON RI	Z/RAA
	<u></u>	EBENS	BURI	G PA	159	131		PROJECT NO 9	6-1322-A12	9
TELEPHONE (814) 472-7700 CLIENT NJDEP										
	(FT)	sample NO	SPT	REC (FT)	FIO (PPM)	PROF	DESC	CRIPTION		REMARKS
	10.0	S-7	14 28 31 28	1.8	0 0		40.0'-42.0' SILT with brown/mottled gray, li 41.5' to mottled clay	sand, fine, light ght gray, sand © © 41.75°		
							42 D'-50 O' No recover	у		
	- 45.0				- 				·	
			,	đ Ç						
	50.0	S-8	32 48 53	0.8	0 0		50.0'-52.0' SAND: coar brown, gravel, large t	rse-medium, orangish ro small, rounded		
							52 0'-55 0' No recover	·y		
	rro									
	- 55.0 :	S-9	35 36 17 22	10	0.0		55 O'-57 O' SAND coar with gravel, large to	se, orangish brown small, rounded		
							57 0'-60 0' No recover	`y		

L. ROBERT KIMBALL & ASSOCIATES INC. 615 W HIGHLAND AVE. P.O. BOX 1000

EBENSBURG PA 15931

TELEPHONE: (814) 472-7700

BORING NO SB24 (MW-2M)

PROJECT: MARTIN AARON RI/RAA.

PROJECT NO 96-1322-A124

CLIENT NUDEP

(FT)	(FT)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESCRIPTION	REMARKS
	68-0-	S-10	17 36 52 61	0 8	0 0		60 O'-62 O' SAND silty, medium-fine, orangish brown, with trace clay stringers	
		S-11	48 53 61 78	1.2	0.0		62 O'-64 O'SAND coarse-medium, orangish brown	
	· 65,0 ·						64.0'-67.0' No recovery	
		S-12	21 26 24 24	1 3	0 0		67 O'-68 5' SAND coarse-medium, light tan to orangish brown 68 5'-69 O' CLAY sandy, mottled gray and	
	· 70 0 ·	S-13	20 25 30 46	15	0 0	777	orangish brown, dry 69 O'-71 O' SILTY CLAY light tan, dry TOTAL DEPTH = 71 O FEET	
							יייייייייייייייייייייייייייייייייייייי	
	. 75 ()							·
	60.0						••• ••••••••••••••••••••••••••••••••••	

1/2	7/											
716		615 k	ı HI	GHLA	ND A	VE. P.	0. BOX 1000	PROJECT MARTIN AARON R	I/RAA			
		EBENS	BURO	S PA	159	31		PROJECT NO: 96-1322-A12	24	: [
		TELEP	HONE	<u> </u>	814)	472-7	7700					
LOC	CATI	ON : Ma	rtin	Aaro	on Si	te	co	ORD EAST -	NORTH: -			
SUF	RFAC	E ELE	V : 2	02.2	<u> </u>	_ TOP	OF CASING	WEATHER Sunny, warm				
DRILLING CO JCA DRILLER J. Urban LRK INSPECTOR W. Stenger												
DR]	DRILLING METHOD: Hollow Stem Auger RIG TYPE Failing											
DAT	DATE STARTED: 07/07/97 WATER LEVEL DEPTH: 11.65 FT; TIME: 9:00 DATE: 7/16/97											
	COMPLETED 07/07/97 11.64 FT; TIME 9:00 DATE 9/16/97											
ELEV	DEPTH	SAMPLE	CDT	REC	FID	סטר	DESC	POTOTTON	REMARKS			
(FT)	(FT)	NO ·	OF 1	(FT)	(PPH)	rnur	DESC	UTL LTON	TETHINKS			
	8.8		10				0.0'-2.0' FILL: dark	brown sand cinders				
		S-1	20 11	1.1	0.0		cobbles, large pieces	of concrete, dry	0.0'-0.5' \$826-1			
200			19 5				2.0'-4.0' FILL: dark	brown, sand, cinders,	CLPSV, TAL, CN, PEST/PCB 0.5'-2.0' S826-2			
		S-2	1	1.2	0.0		cobbles, dry	, ,,	CLP VOA			
			36 30 10	1			4.0'-6.0' FILL: dark	brown, sand, cinders,				
	5.0	S-3	11 11 11	0.5	.0.0		cobbles, dry, concret	e plug in bottom				
			5 7				6.07-8.07 SAND: mediu dork brown, silty 7.5	m to fine, brown to				
195		S-4	5 14	1.2	0.0		dark brown, silty 7.5	·'-8.0'	6.01-8.01 S826-3 Clpsy, Tal, CN, Pest/PC8	1		
		_	2				8.0'-10.0' SAND: medi	uma dark broнn to gray	CLPVOA	İ		
		S-5	2 5 7	1.5	0.0		saturated		·			
	10.0		<u> </u>						·			
			·									
190	'											
	15.0							,				
							TOTAL DEPTH = 16.0 FE	ET	-			
185									Auger to 16.0' to set well			
			# E									
	20.0											

							DO:: 11:10							
	L ROBERT KIMBALL & ASSOCIATES INC BORING NO SB27 (MW-3M)													
		615 k	1 HI	GHLA	ND A	WE. P	0 BOX 1000	PROJECT MARTIN AARON F	RI/RAA					
	<u></u>	EBENS	SBUR	G PA	159	131		PROJECT NO 96-1322-A1	24					
		TELEF	PHON	Ξ: (814)	472-	7700							
L00	CATI	ON : Ma	ntin	Aar	on S	ite_	CO	ORD EAST -	NORTH -					
SUF	SURFACE ELEV: 202.21 TOP OF CASING: WEATHER: Partly cloudy, warm													
DR1	DRILLING CO: JCA DRILLER: J. Urban LRK INSPECTOR: W. Stenger													
DRILLING METHOD: Hollow Stem Auger/Mud Rotary RIG TYPE: Failing														
DAT	E S	TARTE	.D:	07/	01/9	7	WATER LEVEL DE	PTH 15.36 FT; TIME 9	:00 DATE 7/16/9?					
	CI	OMPLE	TED	: 07/1	01/9	7		15.38 FT: TIME: 9	:40 DATE : 9/16/97					
ELEV	DEPTH	SAMPLE	SPT	REC	FID	PROF	DESC	PRIPTION	REMARKS					
(FT)	(FT)	NO	31 1	(FT)	(PPM)	1 1101	DESC	. ·	METHING					
	0.0		10				0.0'-2.0' FILL dark	brown sand, cinders,						
		S-1		0.7	0.0		small pebbles - angul	or ·	Auger					
200			<u></u>			!	2.0'-0.5' Debris and	cinders are coming up	Spoon kicked sideway					
							in moud	· ·	while driving refusal					
									Augen					
	5.0		6				5.0'-6.5' FILL: large	cobbles, cinders, ash m grain, broмп, мет						
		S-2	6 8 10 10	1.0	0.0	!	6.5°-7.0° SAND: mediu 	m grain, broнп, wet	Mud Rotary					
155														
		,												
							9.5' Cuttings coming	up, black silt	-					
	10.0		5				10 0'-12 0' SAND med	ium-fine, trace round						
		\$-3	5534	1.5	63		pebbles, gray, wet							
- 190									7					
1,														
•	(r.a													
	15.0		5				15.0'-17.0' SAND coorse, gray, poorly sorted with pebbles/quartz, rounded							
		S-4	6 10 13	1.0	0.0		sorted with pebbles/quartz, rounded							
185														
							,							

L ROBERT SIMBALL & ASSOCIATES INC

615 W HIGHLAND AVE. P.O. BOX 1000

EBENSBURG PA 15931

BORING NO SB27 (MW-3M)

PROJECT: MARTIN AARON RI/RAA

PROJECT NO 96-1322-A124

CI TENT - N IDED

		TELEP	HONE	: (;	814)	472-	7700	CLIENT NUDEP		
ELEV (FT)	(FT)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESCRIPTION			REMARKS
	20.0	S-5	6887	1:3	0.0		20.0'-22 O' SAND medil less pebbles, 1-2" layi gray to light gray in i	um to coarse, gray, er of silty clay, color		
	- 25 0							•		
				A Paris						
	- 30.0	S-6	67 16 18	0 7	0.0		30 0'-32 0' SAND coar pebbles and gravel, me	se, orangish brown, dium rounded	many	
		·	18						-	
•	- 35 0								•	·
								·		
	40 ()		* 7.2 ju						·	

								BORING LOO)]	
)	1/	7/1	L., RO	BER1	[KII	MBAL	L & AS	SSOCIATES INC.	BORIN	
			615 W HIGHLAND AVE. P.O. BOX 1000							
			EBENS	BURG	S PA	159	31		PROJE	
			TELEP	HONE	<u>:</u> {{	314)	472-7	?700	CLIEN	
	ELEV (FT)	(FT)	SAMPLE NO	SPT	REC (FT)	FID (PPM)	PROF	DESC	CRIPTIC	
		10 0	S-7	12 16 16 17	07	0 0		40 O'-42 O' SAND coar pebbles, small-large,		
								•		
		- 45 0								

F 50 0

- 55 0

45

S-9

S-8

			DON'THO LOC	·	11 0				
KIM	BALI	_ & AS	SSOCIATES INC.	BORING NO SB27 (MW-3M)					
HLAN	D A	VE. P	.O. BOX 1000	PROJECT MARTIN AARON RI/RAA					
PA.	1593	31		PROJECT NO: 96-1322-A124					
: (8	14)	472-7	7700	CLIENT: NUDEP					
REC F	TIO (PPM)	PROF	DESC	RIPTION	REMARKS				
07	0 0		40 0'-42 0' SAND coars pebbles, small-large,	se, whitish tan, with round					
					1				
			·						
			50.0'-52.0' GRAVEL poo	orly sorted, medium-					
1 3	00		large, angular, with si	ome round					
-									
16	0 0		55 O'-56 O' SANDY SILT	fine, trace clay,					
10	0 0	77	orangish brown, mottle 56 0'-57 O' SILTY CLAY orangish brown to tan,	fine, trace sand, ·					
				·					
			59 0'-61 0' SANDY CLAY	orangish brown to tan,					
		1 1		• 1					

 						DOLLTING FOR		
				Q.A.		SSOCIATES INC .O. BOX 1000	BORING NO: SB27 (MW-3M) PROJECT: MARTIN AARON RI	/RAA
7	EBENS	BURO	3 PA	159	31		PROJECT NO: 96-1322-A124	
TELEPHONE: (814) 472-7700 CLIENT NUDEP								
D EPTH (FT)	SAMPLE NO	SPT	REC	FID (PPM)	PROF	DESC	CRIPTION	REMARKS
 60.0	S-10	J	1		1	 mottled; very fine		
00.0	2-10	72 100	10	00		illottred, very rine		
		39				63 0'-65 0' SAND: coar	se to medium,	
	S-11	39 45 70 56	12	00		light brown		
- 65 <u>.</u> 0								
				الله يكا				
					,			
700						TOTAL DEPTH = 70.0 FEE	Ţ	
								,
					,			
			,					
- 75 0								
	:							
				ž.				
				15 Age				

L ROBERT KIMBALL & ASSOCIATES INC. BORING NO SB29												
		615 h	HI(GHLA	ND A	VE. P	MARTIN AARON RI/RAA					
EBENSBURG PA 15931							PROJECT NO 96-1322-A124			24		
TELEPHONE: (814) 472-7700												
LOC	LOCATION Martin Aaron Site COORD EAST - NORTH: -											
SURFACE ELEV 200.97 TOP OF CASING WEATHER Overcost, hot												
DRILLING CO JCA DRILLER J Urban LRK INSPECTOR W Stenger												
DRILLING METHOD Hollow Stem Auger RIG TYPE Failing												
DATE STARTED 07/09/97 WATER LEVEL DEPTH N/A FT; TIME N/A DATE N/A												
	CI	OMPLE	TED	07/	09/97	7		N/A	_FT; TIME N/	A DATE N/A		
ELEV	LEV DEPTH SAMPLE SPT REC FID PROF DESCRIPTION							 REMARKS				
(FT)	(FT)	NO		(FT)	(PPM)							
	0.0		20				0.0'-2.0' FILL: coarse	sand, cinde	rs,			
200		S-1	20 22 11 13	0.8	1.2	-	slag, brown sand, pos shingle			0.0'-0.5' \$829-1 		
		S-2	7 2 3 6		0.5 0.0		2.0'-4.0' FILL: dark brown sand, cinders, pebbles, angular					
	5.0			0.5								
			$\frac{2}{1}$ 1.1 0.6				4.0'-6.0' FILL cinders, slag, dark brown sand, wet • 6.0'			4.0'-6.0' \$829-3		
- 195		S-3 (2)	1 1 1	1.1	О.Б		SUND, HELV BU			(CLPSV, TAL, CN, PEST/PCB CLPVOA		
110		S-4	2				No recovery					
							Rotary to 47 O' since we could not get recovery, we decided to drill to 47.0'					
190							take our hydropunch, on at an adjacent location					
						ļ	lat an adjacent location to get samples.					
						}			;			
	- 15.0								l			
185		,										
					ļ							
				1								

ROBERT KIMBALL & ASSOCIATES INC BORING NO: SB29 PROJECT : MARTIN AARON RI/RAA 615 W HIGHLAND AVE. P.O. BOX 1000 PROJECT NO: 96-1322-A124 EBENSBURG PA 15931 TELEPHONE: (814) 472-7700 CLIENT: NUDEP SPT REC FID elev **D**epth **Sam**ple PROF DESCRIPTION REMARKS (FT) (FT) NO (FT) (PPM) 25 0 - 30 0 - 35 0

L ROBERT KIMBALL & ASSOCIATES INC BORING NO: SB29 615 W HIGHLAND AVE. P.O. BOX 1000 PROJECT: MARTIN AARON RI/RAA PROJECT NO: 96-1322-A124 EBENSBURG PA 15931 TELEPHONE: (814) 472-7700 CLIENT: NUDEP SPT REC FID ELEV DEPTH SAMPLE PROF DESCRIPTION **REMARKS** (FT) (FT) NO (ET) (PPM) - 45.0 Hydropunch 47 0'-50 0' SB29-4 VO (8240) - 50 O TOTAL DEPTH = 50 O FEET - 55 0

	_									_
\[\big \]	7/1	L. R	OBER	<u>I</u> KI	MBAL	L & A	SSOCIATES INC	BORING NO SB30 (MW-4S)	
	615 W HIGHLAND AVE. P.O. BOX 1000 PROJECT MARTIN AAR							PROJECT MARTIN AARON R	ri/RAA	
	Ī	EBENS	SBURI	24						
TELEPHONE: (814) 472-7700										
LO	CATI	NORTH:								
SUF	SURFACE ELEV: 201.08 TOP OF CASING: WEATHER: Hot, Humid, 80 degs. F.									
DR:	ILLI	NG CO) : _JC	A			DRILLER: J. Ur	ban LRK INSPE	CTOR: W. Stenger	
ľ								RIG TYPE Fail		
DAT	TE S	TARTE	:D:	07/0	08/97	7	WATER LEVEL DE	PTH 5.82 FT; TIME 9	:00 DATE : 7/16/97	
	C	OMPLE	TED	07/0	08/97	7		5.58 FT; TIME: 8	:30 DATE 9/16/97	
FIFY	NEPTH	SAMPLE		REC	FTN	PROF				
(FT)	(FT)	NO NO	SPT	(FT)	(PPM)	PROF	DESC	CRIPIIUN	REMARKS	
	8.8	-		-	-		0.0'-2.0' All coarse	ctone 1" mean		\dashv
200		S-1		0.0	N/A		diameter fill	Studie, 1 metal		
		<u> </u>	5				2 0' 4 0' CAMD	-		
		S-2	5	1.3	65.0	-11	2.0'-4.0' SAND: mediu gravel fill, angular	m, Drunn, Gry	0.0.0.5.0000.1	
			۹ - آ	-			A OV C OV DAND	1' 1 1 1	2.0'-2.5' \$830-1 Clpsy, tal, dn, pest/pd8	
	5.0	S-3	l i		16.0	1	40-60 SANU COORS gravel fill, angular,	se-medium, dark brown, damp	2.5'-4.0' \$830-2	
 - 195			5						CLP VOA	
		S-4	S-4 1 0.8 20.0				6 0'-8 0' SILT: fine clayey, organic adar			
									6.0'-8.0' \$830-3 	
		S - 5	i	- 1	122		8.0'-10.0' Meodoн Mat - organics	CLP VOA TCLVOC+10, % solids		
	 - 10.0		i						Spoon taken to gauge if meadow mat is a confining	
190									nedium	
1.0										
- 185								· · · · · · · · · · · · · · · · · · ·		
	- 15.0						TOTAL DEPTH = 14.0 FE	ET	Augered to 14.0' to set well	
	15.0									
		ļ. ļ	ļ							
				×				•		
	20.5		A)	1 1						
	20.0							•		
180	((1	i i	[[•		1	

M	<u></u>	L. RO)BER	T KI	MBAL	L & A	SSOCIATES INC.	BORING	NO_SB31	
		615 k	I HI	SHLA	ND A	VE. P	.O. BOX 1000	PROJECT	MARTIN AARON R	I/RAA
		EBENS	BUR	3 PA	159	31		PROJECT	NO : 96-1322-A1	24
	<u> </u>	TELEF	PHONE	Ξ: (814)	472-	7700			
LO	CATI	ON : Ma	rtin	Aaro	on S	ite	CO	ORD EAST	•	NORTH -
SUF	RFAC	E ELE	V : <u>2</u>	01.6	7	_ TOP	OF CASING	WEATH	R Hot, Humid,	80 degs. F.
DR:	[LLI	NG CO	JC	A			DRILLER: W. Re	eve	LRK INSPE	CTOR E.Sciulli
DR:	[LLI	NG ME	THO	D <u>: G</u> e	eopro	be		R	RIG TYPE Geopr	obe
DA	TE S	TARTE	D :	6/1	7/97		WATER LEVEL DE	PTH: N/A	_FT; TIME:N	<u>/A</u> DATE <u>N/A</u>
	C	OMPLE	TED	6/1	7/97		·	N/A	FT; TIME N	/A DATE N/A
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PROF	DESC	יחדדדמא		REMARKS
(FT)	(FT)	NO	1571	(FT)	(PPH)	PRUF	DESC	RIFIIUN	•	RETINANS
	8.8	<u> </u>	<u> </u>		<u> </u>	<u> </u>	0.0'-1.0' DRAIN and C	ONCRETE	•	
200		S-1		1.7	255		1 0'-3 0' SILT: trace cinders, odor, maist	sand and gro	ovel,	1.0'-1.5' \$831-1 CLPSV, TAL, CN PEST/PC8
<i>a</i>							5			1.0'-1.5' \$831-2 CLPYOA
		<u> </u>					3.0'-5.0' As above, s	trong odor		Jack York
	ı	S-2		1.8	2756					4.0'-5.0' \$831-3 CLPSV, TAL, CN PEST/PC8
	5,0	ļ					5.0'-7.0' As_above, g	ravelly		CLPYOA
- 195		S-3		0.7	2600		Very damp ● 7.0′			
"			<u> </u>				7.0'-9.0' As above, n	ore gravel		
		S-4		0.2	50		Wet ♥ 7.5'			Auger refusal # 7.5"
		-					TOTAL DEPTH = 9.0 FEE	Ţ		
	10.0									
190		<u> </u> 								
""										
		<u> </u> 								
	15.0			ļ	ļ					
lac		İ								
185]		<u> </u>	,			
}										
	20.0		-							
,										

							00112110 200	•	•	
	7/1	L RO	DBER	T KI	MBAL	L & A	SSOCIATES INC	BORING	NO : SB32	_
		615 k	ı HÍ	GHLA	ND A	AVE. P	.O. BOX 1000	PROJECT	MARTIN AARON I	RI/RAA
		EBENS	BUR	G PA	159	331		PROJECT	NO 96-1322-A1	.24
=	=	TELEF	PHON	E: (814)	472-	7700			
LOC	CATI	ON : Ma	rtin	Aar	on S	ite	CO	ORD EAST		NORTH: -
l							OF CASING			
1							DRILLER: W. Re			
1										
i							WATER LEVEL DE			
	C	OMPLE	TED	6/1	7/97			N/A	FT, TIME N	I/A DATE N/A
FLFV	DEP TH	SAMPLE		RFC	FTN					
(FT)	(FT)	NO	ISP I	(FT)	(PPH)	PRUF	DESC	RIPLION		REMARKS
	0.0		_		-		0.0'-1.0' CONCRETE			
						<u> </u>	1 0'-2 0' SAND trace	silt, orang	e brown,	1.0'-1.5' \$832-1
		S-1		I.b	2300		1.0'-2.0' SAND trace medium coarse grained 2.0'-3.0' SILI trace	, 100se sand, black,	gravel.	OLPSV, TAL, CN PEST/PC8 2.5'-3.0' \$832-2
200				<u> </u>	-		loose, strong odor		<i>,</i>	CLPYOA
		S-2		1.8	287		3.0'-4.0' As above, s	Light odor	· · · · · · · · · · · · · · · · · · ·	3.5'-4.0' \$832-3 Clpsy, tal, CN Pest/PC8
	- 5.0		150	ise"			4.0'-5.0' SAND: trace	silt, mediu	n-coarse,	CLPVOA
		\$-3		1.0	162		dark brown, loose, da 5.0'-7.0' As above, m		al gravel	_
						777	Very damp © 7.0°	ore gruver		
195		S-4		1.8	107	777	7 0'-7 5' As above			
,				-		777	7.5'-9.0' SILTY CLAY plastic, saturated	gray, cones	ive,	
	10.0						TOTAL DEPTH = 9.0 FEE	T		
								•		
						1				
190			:							
									•	
	- 15.0									
				:	! 					
			1							
185			}							
			<u>.</u>							
	20.0		*	· -]				
				i .		1	i			

1/2	7/1	L RO	BER"	T KI	MBAL	L & A	SSOCIATES INC	BORING NO SB33	
		615 k	HI(GHLA	ND A	VE. P	.O. BOX 1000	PROJECT MARTIN AARON	RI/RAA
1	7	EBENS	BURO	G PA	159	31	ļ	PROJECT NO: 96-1322-A	124
	<u> </u>					472-	7700		
	CATI							ORD EAST -	NORTH: -
1								WEATHER Hot, Humid	
1							***************************************	eve LRK INSP	
1								RIG TYPE Geo	
1								PTH: N/A FT; TIME:	
		OMPLE						N/A FT; TIME	
EI EV	т—	Ι		T	T	1			
(FT)	(FT)	NO	SPT	(FT)	(PPM)	PR0F	DESC	RIPTION	REMARKS
	8.8		<u> </u>				O O' O E' COMODETE	J CDAVICI	
		S-1		2.0	225		0.0'-0.5' CONCRETE an 0.5'-1.0' SAND: trace	silt, medium-fine,	0.5'-1.0' \$833-1 CLPSV, TAL, CN PEST/PC8
200				_		Ozvo	1.07-1.37 Brick 1.37-2.07 STUT: s. sa	nd, medium-fine gravel,	1.5'-2.0' \$833-2 CLP VOA
		S-2		1.5	310	<u> </u>	dark brown to black,	strong odor	
					<u> </u>		2.0'-4.0' As above, S	ILT: s. sand, medium-fine	
	- 5.0	S-3		1.2	499		gravel, dark brown to 4.0'-6.0' As above, c		
					<u> </u>		combustion by product: Water	s, ash	CLPSV, TAL, CN PEST/PCB CLPVOA
195		S-4		1.0	1700		<u> </u>	inders, ash, slaq, wood	SB33-AB ambient blank
							Saturated • 8.0'	macis, usii, stug, kuda	·
		S-5		1.8	450		8 N'-9 5' STLT trace	sand, clayey, dark brown	
	- 10.0						organic		
							9.5'-10.0' Groding to some slt, brown to do	medium-tine sond, rk brown	
190							TOTAL DEPTH = 12 D FEI		_
							101112 021 111 12:0 12:	Li	
	}				}				
	15.0					,			
) · 					
185		1							
	20.0								
1. 100			i		ı !	l l			į

							DONTING FOR				PNUL UII
1/2	7/1	L. R	DBER	T KI	MBAL	L & AS	SSOCIATES INC.	BORING	NO SB3	15	
		615 k	1 HI	GHLA	ŃD A	NE. P	0. BOX 1000	PROJECT	MARTI	N AARON R	I/RAA
	Ī	EBENS	BUR	G PA	159	31		PROJECT	NO 98	5-1322-A12	<u>?</u> 4
		TELEF	PHON	E: (814)	472-1	7700				
LOC	CATI	ON Ma	rtin	Aaro	on S	ite	co	ORD EAST	-		NORTH: -
SUF	RFAC	E ELE	V : <u>2</u>	01.8	7	_ TOP	OF CASING	WEATH	ER Hot	, Humid,	80 degs. F.
		1					DRILLER W. Re				
							e Hammer				
DAT	E S	TARTE	D :	6/18	8/97		WATER LEVEL DE	PTH: N/A	_ FT;	TIME N/	A DATE N/A
	C	OMPLE	TED	6/18	8/97			N/A	_ FT;	TIME N/	A DATE N/A
ELEV	DEPTH	SAMPLE	 SPT	REC	FID	PROF	DESC	RIPTION			REMARKS
(FT)	(FT)	NO		(FT)	(PPH)		5_50			·	
	0.0	S-1		0.0	N/A	000	0.0'-0.5' CONCRETE on	d GRAVEL		· 	
200		3-1		0.0	N/n	0000	TOTAL DEPTH = 1.5'				1.0'-1.5' \$835-1 CLPSV, TAL, ON PEST/PC8
ш							IUINL UCTIN - 1.J			•	CLPVOA
											Attempted 3 locations All refuse # 1.3'-1.5'
	Ε0			/	inter Oil			·			Hard layer
	5.0										
195											
ın											
	10.0										
	10.0										
190											
	- 15.0										
	15.0										
185											
	20.0										
180											

1/2	71	L. RC	BER	T KI	MBAL	.L & A	SSOCIATES INC.	BORING NO SB36	·
		615 L	I HI	SHLA	ND A	WE. P	0 BOX 1000	PROJECT MARTIN AARON R	I/RAA
	<u></u>	EBENS	BURO	S PA	159	131		PROJECT NO: 96-1322-A12	24
		TELEP	HONE	E: (1	814)	472-	7700	•	
LOC	ATI	ON : Mo	rtin	Aaro	on Si	ite	C0	ORD EAST -	NORTH: -
l.								WEATHER Hot, Humid,	
DRI	LLI	NG CO	: JC	٩			DRILLER W Re	eeve LRK INSPE	CTOR: E.Sciulli
DRI	LLI	NG ME	THO) <u>Ge</u>	opro	be	·	RIG TYPE Geopr	obe
DAT	E S	TARTE	D :	6/19	9/97		WATER LEVEL DE	PTH:N/A FT; TIME:N/	/A DATE N/A
	CO	OMPLE	TED	6/19	9/97			N/A FT, TIME N	/A DATE N/A
ELEV	DEPTH	SAMPLE	COT	REC	FID	PROF	DECC	OTOTTON .	DEMARKO
(FT)	(FT)	NO	571	(FT)	(PPH)	PRUF	DESC	MIPITUN	REMARKS
<u> </u>	8.8				<u> </u>		0.0'-0.5' CONCRETE an	d Gravel	
		S-1		2.0	465		0.5'-2.0' SAND: trace	d GRAVEL silt, medium-coarse, loose dry, strong odor,	0.5'-1.0' \$836-1
200						No C	occasional medium to	small gravel	CLPSV, TAL, CN, PEST/PC8, dioxin, Furan
		S-2		1.0	1400		2.0'-4.0' SAND: s. si	It medium-fine	0.5'-1.0' \$836-2 Duplicate of \$836-1
							occasional gravel, lo	ose, damp, brown to ck staining, damp • 4.0'	1 5'-2 0' \$836-3 CLPYOA 1 5'-2 0' \$836-4
	5.0	S-3		1.7	1700		4.0'-6.0' SILT: s. ne	ck sturring, demp v i.u diuma-fine sond block	Duplicate of S836-3
		· · · · · · · · · · · · · · · · · · ·				= =	occasional gravel, ti		5.5'-6.0' \$836-6
195		S-4		1.7	2047		6.0'-6.5' As above s	ilt, dark brown to black	CLPYOA
							6.5'-8.0' SAND: mediu	m-coarse, loose, abundant l, brown, stained black, y damp Ф 6.0'	
							possible product, ver	y damp • 6.0'	
	- 10.0						saturated 6 6.3	·	-
	ł						TOTAL DEPTH = 8.0 FEE	1	
190							·		
	15.0								
185	1						·		
	- 20.0							•	
	ł								

							DOME.10 201	-				_
1/2	7/1	L. RO	DBER	T KI	MBAL	L & A	SSOCIATES INC.	BORING	NO SB38			
				. •			.O. BOX 1000	PROJEC	T: MARTIN	AARON R	[/RAA	
		EBENS	BUR	G PA	159	31		PROJEC	T NO: 96	1322-A12	4	
	<u> </u>	TELEF	HONE	Ε: (814)	472-	7700					
LOC	TAC	ON Ma	rtin	Aaro	on S	te	CO	ORD EAST	-		NORTH: -	
SUF	RFAC	E ELE	V :_2	01.2	4	_ TOP	OF CASING	WEATI	HER Hot,	Hum i d,	80 degs. F.	_
DR]	LLI	NG CO	JC	4			DRILLER W. Re	eeve	LRK	INSPEC	TOR E Sciulli	_
DR1	LLI	NG ME	THO	D <u>G</u> e	opro	be			RIG TYPE	Geopr	obe	_
DAT	E S	TARTE	D :	6/19	9/97		WATER LEVEL DE	PTH: N/A	FT; T	IME N/	A DATE: N/A	_
	CI	OMPLE	TED	6/19	9/97			N/A	FT; T	IME N/	A DATE N/A	
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PPOE	DESC	מחדדתמ			REMARKS	
(FT)	(FT)	NO	31 1	(FT)	(PPM)	111101	DE30	MII IION			NETH INCO	
	8.8	<u> </u>					0.0'-0.3' CONCRETE					=
200		S-1		1.0	0.0		0.3'-2.0' SAND trace dark brown to orange	silt, medi brown loos	um-coarse, e		1.0'-1.5' \$838-1	
							concrete brick gravel	D. G	·,		CLPSV, TAL, CN PEST/PCB dioxin/furon	
		S-2		1.2	0.0		2.0'-4.0' SAND: trace dark brown, loose, me	silt, medi	um-coarse,	-	1.5'-2.0' \$838-2 CLPYOA	
				4 ·		<u> </u>	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	- 5.0	S-3		1.0	25.0		4.0'-6.0' As above, t black at 5.8'	urning dark	gray to		5.0'-6.0' \$838-3 Clpsy, Tal, on Pest/Pob	
195						777	6.0'-8.0' SILTY CLAY: plastic, strong odor,	dark gray,	cohesive,		CLPYOA, TOX, TOC, Part size Hater • 6.0	
		S-4		1.2	66.0	777	proserc, strong ooor,	Sutur u teu				
							TOTAL DEPTH = 8.0 FEE	Ţ				
	- 10.0											
	10.0											
190					;							
		}		-							·	
	- 15.0											
	13.0							÷				
185												
	·										·	
	-20.0											
	W.V											
190												

								·	
W	7/1	L. RO	DBER'	T KI	MBAL	L & A!	SSOCIATES INC.	BORING NO SB39	
		615 k	HI(SHLA	ND A	NE. P	.O. BOX 1000	PROJECT MARTIN AAROI	N RI/RAA
	Ī	EBENS	BUR	3 PA	159	31		PROJECT NO 96-1322-	A124
	===	TELEF	PHONE	Ξ: (814)	472-	7700 .	•	·
LOC	CATI	ON Mo	rtin	Aaro	on Si	ite	C0	ORD EAST: -	NORTH -
SUF	RFAC	E ELE	V : 2	01.9	4	_ TOP	OF CASING	WEATHER Hot, Humi	d, 80 degs. F.
DR1	LLI	NG CO	:_JC	Ą			DRILLER W Re	eve LRK INS	PECTOR E Sciulli
ORI	ILLI	NG ME	THO	D <u>G</u> e	opro	be		RIG TYPE Ge	oprobe
DAT	E S	TARTE	D :	6/1	9/97		WATER LEVEL DE	PTH: N/A FT; TIME	N/A DATE N/A
	C	OMPLE	TED	6/1	9/97			N/A FT; TIME	N/A DATE N/A
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PROF	DESC	DIDITON	REMARKS
(FT)	(FT)	NO.	JSF 1	(FT)	(PPM)	FRUF	DESC	INTERTION.	NET ITIMIS
	8.0						0.0'-2.0' No recovery	, some brick	
	}	S-1		0.0	0.0		and gravel	:	
200	•						2.0'-4.0' SAND: trace	silt, dark brown, loose,	2.0'-3.0' \$839-1
		S-2	İ	1.8	0.0		dry, medium gravel, s	ome brick, fill	CLPSV, TAL, CN PEST/PC8 CLPVOA, dioxin/furon
l		5-3		0.0	N/A	1	4.0'-4.2' CONCRETE i	n tip of spoon	Auger refusal # 4.2"
	5.0				ŀ		TOTAL DEPTH = 4.2 FEE	T .	
195									
								•	
	1					1			
	10.0								
190									
		:							
	15.0				ĺ				
	}								
185						·			
						:			
					<u> </u>			V*	
	20.0		_						
	Ì								

							DONALIO EO	,			
[VZ	<u></u> 1	L R	OBER	T KI	MBAL	L & A	SSOCIATES INC	BORING NO: SB40			
			2					PROJECT: MARTIN A	ARON RI/	RAA	
		EBENS						PROJECT NO: 96-13			
	=	TELEF	PHONE	E: (814)	472-1	7700				
LO	CATI	ON: Ma	rtin	Aaro	on S	ite	CC	ORD EAST: -		NORTH: -	
ļ.								WEATHER Hot, H			
						_		eeve LRK I			
ĺ		NG ME						RIG TYPE			
DA1	TE S	TARTE	D:	6/10	6/97			PTH:N/A FT; TI	•		
		OMPLE						N/A FT; TI			
FIFV	D FPTH	SAMPLE		REC	FTD					2544.840	
(FT)	(FT)	NO	ISPT	(FT)	(PPH)	PR0F	DESC	CRIPTION		REMARKS	
	0.0		ļ			ļ	O O' D E' COMPOSTS -				\dashv
		S-1		0.0.	31.5		0.0'-0.5' CONCRETE, n 2 attempts at hole	,			
200			<u> </u>		<u> </u>		Material in tip of sp			0′-2.5 ′ \$840 -1	
		S-2		1.2	1.9		2.0'-4.0' SILT brown medium to fine sand,		a	PSV, TAL, CN PEST/PC8 5'-3.0' \$840-2	
							non cohesive			PVOA	
	5.0	S-3	V	12	1.6	}	4.0'-6.0' As above, m brown, very damp, sem	edium-tine sond ii-cohesive			
			ļ								
195		 S-4		1.7	1.8		6.0'-7.5' As above .7.5'-8.0' SILT: trace	sand medium-fine			
			ļ				very damp, semi-cohes	sive		.5′-10.0′ SB40-3	
		S-5		12	150 (ce silt, medium-fine, bro Jomp, non-cohesive	" " [α	.PSV, TAL, CN,	
	 - 10.0	"				1	Water • 10.0'	•		EST/PC8, CLPVOA	
	10.0	S-6			300.0		10.0'-12.0' As above,	SAND trace silt, media wet • 10 0', no sample	וי בע	· ·	
- 190				1.0	300.0		below WT, dark gray 1	to black			
		S-7		ĺ.,	71.0		12.0′-13.7′ As obove, 13.7′-14.0′ SILT: tro	SAND: medium-coarse			
		3-1		1.3	11.0		cohesive, no readings	s in the silty clay			
	15.0]				TOTAL DEPTH = 14.0 FE	ET			.
	13.0										
185		ļ									
				1							
								•			
	20.0						·				
	20.0										
	1			1							

\Z		L. RC	BER	I KI	MBAL	L & AS	SSOCIATES INC	BORING NO SB41		
							ŀ	PROJECT: MARTIN AARON	RI/RAA	
_	<u> </u>	EBENS						PROJECT NO: 96-1322-AJ		
=	=					472-7		-		
LOC	CATI	ON: No	rtin	Aaro	on Si	te	CO	ORD EAST: -	NORTH: -	
								WEATHER Hot, Humid,	4	
DR]	LLI	NG CO	JC/	4			DRILLER W. Re	eeve LRK INSPE	CTOR: E.Sciulli	
DR)	LLI	NG ME	THO) <u>: Ge</u>	opro	be		RIG TYPE Geop	robe	
DATE STARTED: 6/18/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A COMPLETED: 6/18/97 N/A FT; TIME: N/A DATE: N/A										
	C	OMPLE	TED	6/18	3/97			N/A FT; TIME N	I/A DATE: N/A	
ELEV	D EPTH	SAMPLE	CDT	REC	FID	חחחר	DECC	RIPTION	DEMARKO	
(FT)	(FT)	NO	571	(FT)	(PPH)	PRUF	DESC	RIPIIUN	REMARKS	
-	0.0			-			0.0'-1.0' CONCRETE an	d Gravei		
200		S-1		1 5	0.0		1 0'-1 5' BRICK	, loose, medium-coorse	1.5'-2.0' S841-1	
au		3-1		1.5	U.U		cinders, gravel	, TOUSE, MEUTUM-COURSE	CLPSV, TAL, CN PEST/PC8	
						1000	3.0'-4.5' As above		2.0'-2.5' \$941-3 CLPVOA	
		S-2		1.4	0.0	1	4.5'-5.0' SAND: trace	silt, brown	4.5'-5.0' \$841-4	
İ	5.0		-				5.0'-7.0' As above	1.02	olpsv, tal, on pest/pob _olpvoa	
- 195		S-3		1.3	0.0		Water • 6.0'			
120							TOTAL DEPTH = 7.0 FEE	Ţ		
		[
		ļ 								
	10.0									
190	•									
ענו		} 								
		ļ]				}				
	15.0] 		 				
·~		<u> </u>								
185										
]		 								
	20.0									
100										

N	 _/1	L. RO	DB <u>ER</u>	T KI	MBAL	L & A	SSOCIATES INC.	BORING NO SB42					
		615 k	1 HI	GHLA	ND A	NE. P	0 BOX 1000	PROJECT MARTIN AARON F	RI/RAA				
	7	EBENS	BUR	G PA	159	31		PROJECT NO: 96-1322-A1	24				
	=					472-	7700						
LOC	CATI	ON Mo	rtin	Aar	an S	ite	C0	ORD EAST: -	NORTH:				
SUF	RFAC	E ELE	V <u>2</u>	01.4	6	_ TOP	OF CASING	WEATHER Hot, Humid,	80 degs. F.				
DR)	[LLI	NG CO	JC/	A			DRILLER W. Re	eeve LRK INSPE	CTOR E Sciulli				
DR]	LLI	NG ME	THO	D <u>. G</u> ε	eopro	be		RIG TYPE Geop	robe				
DAT	E S	TARTE	D :	6/1	6/97		WATER LEVEL DE	PTH:N/A FT; TIME:N	/A DATE N/A				
	COMPLETED 6/16/97 N/A FT. TIME N/A DATE N/A LEV DEPTH SWIPLE SPT REC FID PROF DESCRIPTION REMARKS												
ELEV	DEPTH	SAMPLE	СВТ	REC	FID	DDUC	חרפר	RIPTION	REMARKS				
(FT)	(FT)	NO	31 1	(FT)	(PPH)	I NOI	DESC	MITTON	NETITINGS .				
	8.8						0.0'-0.5' CONCRETE						
200		S-1		1.5	1.8		0.5'-2.0' SILT: trace	medium-fine sond, brown	0.5′-1.0′ \$842-1				
w		<u> </u>		<u> </u>		<u> </u>	to orange brown, domp, loccas medium gravel,	non-cohesive, loose 2 spoons to get volume	CLPSV, TAL, ON PEST/PCB SB42-2 duplicate				
		S-2		1.0	1.6		2 0'-3 8' As above b	roun to oronne brown] 1.5'-2.0' S842-3 Cl.pyoa				
			. <i>مر</i> در در				2.0'-3.8' As above, b silt, trace medium-fi	ne sand	3.5'-4.0' \$842-5				
	- 5.0	S-3		0.2	N/A		3.8'-9.0' CINULES: b1 4.0'-6.0' No recovery	ock, loose, very domp	CLPSV, TAL, CN PEST/PC8 CLPVOA				
195								m-coorse, trace silt, wet					
מנו		S-4		0.6	1.8		loose, occassional gr	avel, brown to dark brown					
				-			O O'-10 O' CAMD and	un nonnon tanna ailt					
		S-5		1.8	635.0		dark gray to black, I	um-coarse, trace silt, oose, wet, occassional					
	10.0		ļ				graveT, water • 8.0' TOTAL DEPTH = 10.0 FE	<u> </u>					
							וטוחב טברות - 10.0 רב	LI					
190				:				٠.					
			:										
	- 15.0												
185													
	-20.0	,											
	U.U												
100				1									

							J J		
M	7/1	L. RO	DBER1	T KI	MBAL	L & AS	SSOCIATES INC.	BORING NO: SB43	
		615 k	1 HI(SHLA	ND A	IVE. P	0 BOX 1000	PROJECT MARTIN AARON R	I/RAA
_	7	EBENS	BURG	S PA	159	131		PROJECT NO: 96-1322-A1	24
	=	TELEF	PHONE	<u> </u>	814)	472-	7700		
LOC	CATI	ON : Ma	 rtin	Aaro	on Si	ite	CO	ORD EAST: -	NORTH: -
i								WEATHER Hot, Humid,	
1				CTOR E.Sciulli					
		NG ME						RIG TYPE Geopr	
DAT	TE S	TARTE	D:	6/10	6/97			PTH: N/A FT; TIME: N	
	C	OMPLE	TED	6/10	6/97			N/A FT TIME N	/A DATE: N/A
נונע	ncotu	CAMPLE	T	BEC	ETD		<u> </u>		
(FT)	(FT)	NO	SPT	(FT)	(PPH)	PROF	DESC	RIPTION	REMARKS
	0.0	1					0.0'-0.5' CONCRETE		
200		S-1		1.1-	5.3		0.5'-2.0' SAND: mediu	m-fine, s silt, brown	0.5'-1.0' \$843-1
			-		-		to orange brown, dry,	non-cohesive medium-fine sand, brown	CLPSV, TAL, CN PEST/PC8 1.0'-1.5' \$843-2
		S-2		1.5	2.5		to orange brown, mois	t, cohesive	CLPYOA
			-		-		3.5′-4.0′ SANO: mediu block, cinders	m-coanse grained,	3.5'-4.0' \$843-3
	- 5.0	S-3		0.2	N/A		4.0'-6.0' As above, c		CLPSV, TAL, CN PEST/PCB
195							cinders, slag	owedstron by product	
٠.,		S-4		1.1	965.0		L Π'-Q Π' CAMΠ: modius	m-fine, trace silt, dark	
		<u> </u>					argy to block, fuel o 8.0-9.5 As above	dor	
		S-5		1.2	156.0		9.5′-10.0′ SILT: trac	e medium fine sand	 6.5'-7.0' \$843-4
	10.0			-	-		organic, dark gray to 10.0'-11.8' As above,	STIT trace Fine to	CLPYOA
190		S-6		1.3	200.0		very fine sand, dark	brown to black, organic	
ענו							11.8′-12.0′ SAND: wet, Toose	, light gray, medium-fine	
		S-7		1.3	1068				
				ļ 			medium-fine, occasion	ce silt, light gray to gr al small gravel,	·
	15.0						fuel odor, saturated	7	
ım		<u> </u>				•	TOTAL DEPTH = 14.0 FEI	LI	
185									
								•	
	20.0								
180	l i	Ì	1						

S-2 1.0 N/A 10'-2.0' SILT's sand, medium-fine, brown to orange brown, non-cohesive, damp 1.5'-2.0' S844-2 0.7'9.0' SAND trace silt, medium-fine, brown 1.5'-2.0' S844-2 0.7'9.0' SAND medium-coarse, black, cinders, gravel 4.0'-6.0' As above, black cinders, gravel, medium-coarse sand very damp • 6.0' 6.0'-7.5' As above, saturated 7.5'-8.0' SILTY CLAT: dark gray to black, high FID in saturated silt, organic odor TOTAL DEPTH = 8.0 FEET		_					BUKTING LUI	J	PMSE DF
EBENSBURG PA 15931 PROJECT NO 96-1322-A124									
PROJECT NO 96-1322-A124 PROJECT NO 96-1322-A124		615	W HI	GHLA	ND A	AVE. P	0 BOX 1000	PROJECT MARTIN AAF	RON RI/RAA
DCATION Mortin Aoron Site COORD EAST NORTH	_							,	•
REALITING CO		TELE	PHON	E: (814)	472-1	7700		
RILLING CO	LOCAT	ION M	artin	Aar	on S	ite	CC	OORD EAST -	NORTH
RIG TYPE Geoprobe RIG TYPE Geoprobe	SURFA	CE ELE	V : 2	mid, 80 degs F					
NATE STARTED 6/17/97 WATER LEVEL DEPTH N/A FT TIME N/A DATE N/A	DRILL	ING CO	ISPECTOR <u>E.Sciulli</u>						
V DEPTH SMPLE SPT REC FID PROF DESCRIPTION REMARKS	DRILL.	ING ME	THO	D <u>- G</u> ε	eopro	be		RIG TYPE	Geoprobe
V V V V V V V V V V	DATE :	STARTE	D	6/1	7/97		WATER LEVEL DE	PTH: <u>N/A</u> FT; TIM	E N/A DATE N/A
1 1 1 1 1 1 1 1 1	(COMPLE	E N/A DATE N/A						
S-1 1.5 N/A 0.7-0.5' CONCRETE and GRAVEL 0.5'-1.0' SAND: s silt medium-fine, occasional gravel, cinders 1.0'-2.0' SILI: s sond, medium-fine, brown to orange brown, non-cohesive, damp 1.5'-2.0' SBH-2 0.20'-3.0' SAND: medium-fine, brown 1.5'-2.0' SBH-2 0.PVDA 1.6 2.0 3.0'-4.0' SAND: medium-coorse, block, cinders, gravel 4.0'-6.0' As above, block cinders, gravel, cinders, gravel, damp • 6.0' 5.5'-6.0' SBH-3 0.PVDA 1.50' SILIT CLAT: dark gray to black, high FID in soturated 7.5'-8.0' SILIT CLAT: dark gray to black, high FID in soturated silt, organic odor 10TAL DEPTH = 8.0 FEET	LEV DEPT	HSAMPLE	SPT	REC	FID	PROF	DESC	CRIPTION	REMARKS
S-1			ļ	10	(FFII)				
S-2 1.0 N/A to orange brown, non-cohesive, damp 1.5'-2.0' \$844-2 CLPYOA 2.0'-3.0' \$AND: trace silt, medium-fine, brown, loose, brick fragments 3.0'-4.0' \$AND: medium-coarse, black, cinders, gravel, medium-coarse sond Very damp • 6.0' S-4 0.8 550 Ne above, black cinders, gravel, medium-coarse sond Very damp • 6.0' 6.0'-7.5' As above, saturated 7.5'-8.0' \$ILTY CLAY: dark gray to black, high FID in saturated silt, organic ador TOTAL DEPTH = 8.0 FEET	200	S-1		1.5	N/A		0.5′-1.0′SAND s si	lt medium-fine	0.5′-1.5′ \$ 841 -1
S-3 1.6 2.0 Shall trace still, mealum-rine, brown, loose, brick fragments 3.0"-4.0" Shall medium-coarse, black, cinders, gravel 4.0"-6.0" As above, black cinders, gravel, medium-coarse sand Very damp \$6.0" 6.0"-7.5" As above, saturated 7.5"-8.0" SILTY CLAT: dark gray to black, high FID in saturated silt, organic ador TOTAL DEPTH = 8.0 FEET		S-2		1	i		to orange brown, non-	cohesive, domp	1.5'-2.0' S844-2
S-4 0.8 550 1.0 (1.5) As above, black cinders, gravel, medium-coarse sond livery damp • 6.0' 6.0'-7.5' As above, saturated 7.5'-8.0' SILITY CLAY dark gray to black, high FID in saturated silt, organic odor TOTAL DEPTH = 8.0 FEET	- 5.0	S-3		1	1		brown, loose, brick f 3.0'-4.0'SAND: mediu	ragments	ar var
-100 -100	195	S-4		0.8	550		4.0'-6.0' As above, b medium-coarse sand	olack cinders, gravel,	CLPSV, TAL, CN, PEST/PCB
TOTAL DEPTH = 8.0 FEET -15.0						7/7	6.0'-7.5' As above, s 7.5'-8.0' SILTY CLAY	dark gray to black,	
20.0	190								
20.0									
20.0									
- 20.0	15.0 185								
	100								
				p ^{g2-}					
	20.0		-	+ +2	1			•	
	180						·	,	

NZ.		L. RC	BER	l KI	MBAL	L & AS	SSOCIATES INC.	BORING NO SB	45	
		615 k	1 HI(SHLA	ND A	VE. P	.O. BOX 1000	PROJECT: MARTI	n aaron r	I/RAA
<u>ا</u> ا	7	EBENS	BURO	S PA	159	131		PROJECT NO: 9	6-1322-A12	24
=	<u> </u>					472-7	7700			
LOC	ATI	ON : Ma	rtin		NORTH: -					
ı			80 degs F							
DR]	LLI	NG CO	JC	4			DRILLER: W. Re	eve LR	K INSPE	CTOR E Sciulli
DRI	LLI	NG ME	THO) <u> Ge</u>	eopro	be		RIG TY	(PE Geopr	obe
DAT	E S	TARTE	D:	6/10	6/97		WATER LEVEL DE	PTH: N/A FT;	TIME : N	/A DATE : N/A
	C	OMPLE	TED	6/10	6/97			N/A FT;	TIME N	/A DATE N/A
ELEV	DEPTH	SAMPLE	CDT	REC	FID	חחחר	DESC	POTOTTON		REMARKS
(FT)	(FT)	NO	571	(FT)	(PPM)	PRUF	DESC	CRIPTION		מבווחתאס
	8.0		\vdash				0.0'-0.5' CONCRETE			
200		S-1		1.2	2.5		0.5′-2.0′ SAMO: s. si brown, medium=fine, c	It, brown to orange		0.5'-1.0' \$845-1
							2.0'-4.0' As above, S		to	CLPSV, TAL, CN PEST/PC8 1.5'-2.0' S845-2
		S-2		1.0	3.0		orange brown, medium-			CLPVOA
						· ·	4.0'-6.0' As above, b	ottom 2" black sand		
	- 5.0	S-3		0.3	2.5		with cinders, very do	mp, loose, gravelly		
195						000	6.0'-8.0' GRAVEL: coo	rse, black, organic		
		S-4		1.0	50.0		odor, very coarse, ve	ry domp		7.5'-8.0' \$845-3 CLPSV, TAL, ON PEST/PC8
							8.0'-10.0' SAND: troc			18.0'-8.5' \$845-4 OLPYOA
		S-5		1.3	1100		loccasional small grav to dark gray, wet 🕫 8			LET YOU
	10.0						TOTAL DEPTH = 10.0 FE			SB45-AB (Ambient blank)
- 190				!						
i								·		
	i									
	- 15.0									
185										
	20.0									
- 180										

										_
1/2	<u> </u>	L. R	DBER	I KI	MBAL	L & A	SSOCIATES INC.	BORING NO SB46		
		615 I	1 HĮ	GHLA	ND A	PROJECT MARTIN AARON I	RI/RAA			
		EBENS	BUR	G PA	159	331		PROJECT NO 96-1322-A1	24	
		TELER	PHON	E: (814)	472-	7700			
LOC	CATI	ON : Ma	rtin	Aar	on S	ite	co	ORD EAST: -	NORTH -	_
SUF	RFAC	E ELE	V : 2	01.3	2	_ TOP	OF CASING	WEATHER Hot, Humid,	80 degs F	_
DR]	LLI	NG CO	JC	A			DRILLER W. Re	eeve LRK INSPE	CTOR E Sciulli	-
DRI	LLI	NG ME	THO	RIG TYPE Geop	robe	_				
DAT	E S	TARTE	D :	6/1	7/97		WATER LEVEL DE	PTH: N/A FT; TIME: N	/A DATE N/A	_
_	/A DATE N/A	_								
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PROF	DECC	POTOTTON	REMARKS	7
(FT)	(FT)	NO	SPI	(FT)	(PPH)	PRUF	DESC	RIPIIUN	אבווחאיס	
	0.0					2000	0.0'-0.5'	A CDAVEI		-
- 200		S-1		1.8	N/A		0.5'-2.0' SILT: trace	sand, dark brown to	0.5'-1.0' \$846-1	
ш			ļ	<u>.</u>		02/0	black, loose, gravell		_ CLPSV, TAL, CN PEST/PC8 1.5'-2.0' S846-2	Ì
		S-2		0.1	N/A		2.0 == 0 ns ubove, ii	o to little recovery	CLPVOA	
			2# 16.1	75 s 58	<u> </u>		40' (0' 4 - 1	- Lil Comme	_	
	- 5.0	S-3	Ş.,,		N/A	:	19.U-БU hs oddove, v	ery damp, brick frogments		
ım						ļ				
- 15		S-4		 1 N	104		6.07-8.07 SAND: trace Idank onav to black a	esilt, medium-coarse, accasional aravel	CLPSV, TAL, CN PEST/PC8 CLPVOA	
							dark gray to black, a grading to silty clay		u.rvun	
		S-5		1.0	1250		(8.0'-10.0' SAMD: trac dark gray to black, w	e silt, medium-coarse, et odor		
	10.0	33		1.0	1230		Wet 8.0'			
	10.0						TOTAL DEPTH = 10.0 FE	EI	·	
190										Ì
							·			
	15.0									
185				<u> </u>						
]	1							
!	20.0					}				
190										

	7/	L. RO)BER	T KI	MBAL	.L & A	SSOCIATES INC.	BORING NO SB47					
		615 h	ı HI	GHLA	ND A	WE. P	.O. BOX 1000	PROJECT: MARTIN AARON	RI/RAA				
_	7	EBENS	BUR	G PA	159	131		PROJECT NO: 96-1322-6	1124				
	=	TELEP	PHONE	E: (814)	472-	7700						
LOC	CATI	ON : Ma	rtin	Aarı	on Si	ite	CO	ORD EAST :-	NORTH: -				
1									· ·				
SURFACE ELEV 2013 TOP OF CASING WEATHER Hot, Humid, 80 degs F. DRILLING CO JCA DRILLER W Reeve LRK INSPECTOR E Sciuli													
DRILLING METHOD Geoprobe RIG TYPE Geoprobe													
[DATE STARTED: 6/17/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A												
	COMPLETED: 6/17/97 N/A FT; TIME: N/A DATE: N/A												
FLFV	DE PTH	SAMPLE	ODT	REC	FID	DDOE	DESC	OCTOTION	BEMARKO				
(FT)	(FT)	NO	1521	(FT)	(PPH)	PRUF	DESC	RIPIIUN	REMARKS				
	- 8.0						0.0'-0.5' CONCRETE						
- 200		S-1		1.1	2.0	- <u>-</u>	0.5'-2.0' SILT: sandy	, medium-coarse sand, , some cinders, gravel	0.5'-1.0' \$847-1				
				-			2.0'-4.0' As above, n	·	CLPSV, TAL, CN PEST/PCB				
		S-2		0.1	N/A				1.5'-2.0' \$847-2 Clpvoa				
				-			4.0'-6.0' As above, b	rick frooments					
	5.0	S-3		0.4	2.5		,,					
195							6.0'-8.0' SILT: trace	sand, gray to black,	6.5'-7.0' \$847-3				
		S-4		1.1	452.0		cohesive, very damp,	organic	CLPV0A 7.5'-8.5' \$847-4				
							8.0'-10.0' As above,	grading to sand	CT5ACV 2841-4				
		S-5		1.2	-	:	Wet • 9.0'						
	10.0				-		TOTAL DEPTH = 10.0 FE	ET					
190			į										
	,					!		·					
	15.0												
185							·	•					
	201.0							•					
180													

							BOUTING FOR	<u>.</u>								
W	7/1						SSOCIATES INC	BORING NO SB48	·							
		615	A HÉ	GHLA	ND A	AVE. P	.O. BOX 1000	PROJECT MARTIN AARON	RI/RAA							
	Ī	EBENS	SBUR	G PA	159	331 .		PROJECT NO 96-1322-A	124							
	=	TELER	PHON	Ε: (814)	472-	7700									
LOC	ATI	ON : Ma	ntin	Aar	on S	ite	cc	OORD EAST -	NORTH: -							
SUR	RFAC	E ELE	V <u>2</u>	100 degs F												
DRI	LLI	NG CO	ECTOR E Sciulli													
DRI	LLI	NG ME	THO	D <u>: H</u> d	ollow	Stem	Auger	RIG TYPE Fai	ling							
DATE STARTED 7/22/97 WATER LEVEL DEPTH N/A FT; TIME N/A DATE N/																
COMPLETED 7/22/97 N/A FT, TIME N/A DATE N/A																
ELEV	DEPTH	SAMPLE	SPT	REC	FID	 PROF	nesc	CRIPTION	REMARKS							
(FT)	(FT)	NO.	0. 1	(FT)	(PPM)	'	BESC		NETH WINCO							
	- 0.0				<u> </u>		0.0'-2.0' SAND: trace	silt, black with								
		S-1		1.5	10		cinders, ash	•	0.5'-1.0' \$848-1 CLPSV, Tall, CN, PEST/PC8							
200							2.0'-4.0' As above, a	inders, slog, loose,	1.5'-2.0' S848-2 CLPVOA							
		S-2		2.0	48.0	}	no odor, dry	•	in the second							
);			4.0'-6.0' SAND: some	silt, black, slight	S848-3							
	5.0	S-3		1.8	650		fuel odor, some cinde	ers and slag	Not analyzed							
							6.0'-8.0' As above,	ess cinders, sand • 7.5°,								
195		S-4		1.5	2000		green, medium-fine, l	loose, saturated	7.0′-7.5′ \$848-4							
				,			8 0'-10 0' SAND trad	ce silt, brown with green	CLPVOA, TAL, CN, CLPSV, PEST/PCB							
		S-5		1.5	350		streaks, medium-fine, greenish gray, satura	oted								
	10.0						10.0'-12.0' SAND: tro	oce silt, brown, saturated								
ım		S-6		1.0	67.0		oily sheen in spoon,	tuel odor								
190						1	TOTAL DEPTH = 12.0 FE	EI								
		1														
				<u> </u> 												
	15.0]				ļ										
ur					ļ Ī											
- 185																
		1														
	m -		- 20	l Na												
	20.0															
						-										

1/2	L ROBERT KIMBALL & ASSOCIATES INC. BORING NO SB49 615 W HIGHLAND AVE. P.O. BOX 1000 PROJECT MARTIN AARON RI/RAA													
		615 1	I HI	SHLA	ND A	IVE. P	.O. BOX 1000	PROJECT	MARTIN AARON R	I/RAA				
1	7	EBENS	BUR	3 PA	159	131		PROJECT	ND: 96-1322-A12	24				
	=	TELEF	HON	Ξ: (814)	472-7	7700	•						
LOC	CATI	ON: Ma	rtin	Aaro	on Si	te	co	ORD EAST	-	NORTH -				
SUF	RFAC	E ELE	V : 2	01.8	7	_ TOP	OF CASING	WEATHE	R Hot, Humid,	80 degs. F.				
DRI	DRILLING CO JCA DRILLER W. Reeve LRK INSPECTOR E.Sciulii													
DR)	DRILLING METHOD Geoprobe RIG TYPE Geoprobe													
DAT	DATE STARTED: 6/19/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A													
	COMPLETED 6/19/97 N/A FT; TIME N/A DATE N/A													
ELEV	ELEV DEPTH SAMPLE SPT REC FID PROF DESCRIPTION REMARKS													
(FT)	(FT)	NO	or i	(FT)	(PPM)	FNUF	DESC	WILITON		NETITINGS				
	0.0		-			CODO	0.0'-0.5' CONCRETE an	d GRAVEL		0.07.2.07				
		S-1		0.3	0.0		0.0'-0.5' CONCRETE an 0.5'-1.0' FILL 1.0'-1.5' CONCRETE, 9 1.5'-2.0' CINDER ASH	rovel small	vein sonce	0.0'-2.0' Not enought recovery to sample				
200							1.5'-2.0' CINDER ASH	GRAVEL loose	tem space					
		S-2		1.0	35.0		2.0'-4.0' As above, c medium-fine sand, bro	inder, ash ar	avel,	2.0'-3.0' \$849-1				
							medium-fine sand, brow	wn, loose		CLPSV, TAL, CN, PEST/PCB CLPVOA				
	- 5.0	S-3		1.2	0.0		4.0'-6.0' SAND: s. si	It, brown to	dark brown,	5.0'-5.5' \$849-2 CLPSV, TAL, CN PEST/PC8				
ım							some small to medium (• 5.8' cinders and as	gravel, cinde h black	rs, ash	CLPYOA				
195		S-4		1.0	0.01		Wet ♥ 6.0'							
							6.0'-8.0' As above	т						
							TOTAL DEPTH = 8.0 FEE	l						
	10.0		ĺ											
				·										
190										·				
				·										
	15.0													
185														
	20.0							!						

							00	=			
		L. RO	OBER	T KI	MBAL	L & A	SSOCIATES INC.	BORING NO SB50			
								PROJECT MARTIN A		/RAA	
		EBENS	SBUR	G PA	159	331		PROJECT NO: 96-13	322-A12	1	
		TELEF	PHON	E: (814)	472-	7700				-
LOC	CATI	ON : Ma	rtin	Aaro	on S	ite	CO	ORD EAST: -		NORTH -	
SUF	RFAC	E ELE	V = 2	01.5	7	_ TOP	OF CASING	WEATHER Sunny,	hot, 1	.00 degs F	_
DR)	ĹLI	NG CO	JC	A			DRILLER J. Ur	ban LRK I	INSPEC	TOR E Sciulli	_
DR]	LLI	NG ME	THO	D <u>: Ho</u>	llow	Stem	Augers	RIG TYPE	Failir	ng	_ .
DAT	E S	TARTE	.D :	7/2.	1/97		WATER LEVEL DE	PTH: N/A FT; TI	ME <u>N/</u>	DATE N/A	_
	C	OMPLE	TED	7/2	1/97			N/A FT. TI	ME N/	DATE N/A	_
ELEV	DEPTH	SAMPLE	SPT	REC	FID	PRUE	DESC	RTPTTON		REMARKS	
(FT)	(FT)	NO	0, .	(FT)	(PPH)	1 1101	BEGG	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	}	TTET III III III	
_	0.0		5			0000	0.0'-0.5' CONCRETE				
200	•	S-1	6	0.2	471	000	0.0'-0.5' CONCRETE 0.5'-2.0' GRAVEL, cin	ders	}	Not enough recovery	
		l	2			l	2.0'-4.0' SANO: trace	silt, dark brown to		for sample	
		S-2	4	1.3	59		black, •30' light t silt_some_sloo_sloo	esilt, dark brown to an to white clayey ash, cinders 0 3.5'-4.0	n'		
			3 (1. 3/			4.0'-6.0' SAND: trace	silt, reddish brown and	d	·	1
	5.0	S-3	1		2100		green streaks, fuel a	dor		5.51-6.01 \$850-1 Clevoa, teh	
- 195			3				6.0'-7.5' SAND: trace	silt, brown, very		Not enough recovery For full scon	
110		S-4	2 1	1.0	43		domp to wet, © 7.5° c with some black stain	clayey silt, grey			İ
			2	-				clayey silt, saturated			
		S-5	ı -	1.8	115						
	10.0		3 1				10.0'-12.0' As above,	clavey silt some			
- 190		S-6	2	1.3	41		cinders, slag, bottom	of spoon, wet			
130			1	<u> </u> 			12.0'-14.0' Cinders o	is above wet			
		S-7	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	1.0	64		13.5 11.5 01.35.5 0	a asova, mov			
			4				TOTAL DEPTH = 14.0 FE	FI			
	15.0		ĺ				1101112 021111 11.012				
100]				:		
185											
			,	Th.							
	20.0		Ý	전환 12년							
- 1971	1		i	1	I	l					- 1

M	L ROBERT KIMBALL & ASSOCIATES INC. BORING NO SB51 615 W HIGHLAND AVE P.O. BOX 1000 PROJECT: MARTIN AARON RI/RAA													
		615 h	I HI	SHLA	ND A	NE. P	O BOX 1000 PROJECT MARTIN AARON F	I/RAA						
	7	EBENS					PROJECT NO: 96-1322-A1							
=	=======================================	TELEF	PHON	Ξ: (814)	472-	7700							
LOC	CATI	ON : Ma	rtin	Aarı	on Si	ite	COORD EAST: -	NORTH: -						
							OF CASING WEATHER Sunny, hot,							
Į	DRILLING CO: JCA DRILLER: J. Urban LRK INSPECTOR: E. Sciulli													
DRI	DRILLING METHOD: Hollow Stem Auger RIG TYPE: Failing													
DAT	DATE STARTED: 7/21/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A													
	COMPLETED: 7/21/97 WHIER LEVEL DEPTH N/A FT; TIME: N/A DATE: N/A													
ELEV	DEPTH	SAMPLE	CDT	REC	FID	DDOC	DESCRIPTION	REMARKS						
(FT)	(FT)	NO.	SFI	(FT)	(PPH)	FRUF	DESCRIPTION	, VELIDANO						
-	8.8		0				0.0'-0.5' CONCRETE							
200		S-1	11 8	1.3	71		0.5'-2.0' SAND: trace silt, black, tight, turning green • 1.7', ash, cinders 1.7' to 2.0'							
			3				2.0'-4.0' SAND: as above, ash, cinders,							
		S-2	3 7 11	1.5	153	: 	brick at 3.8" to 4.0"							
			5	-		·	4.0'-6.0' As above, cinder, ash, brick,							
	- 5.0	S-3	3	1.0	2100		sand, trace silt, brown with green lenses, fuel odor	Move 2.0' ougen to 4.0'						
195		S-4	-	0.0	N/A		6.0'-8.0' No recovery, refusal • 7.0', scraps of wood, possible RR ballast in cutting	5.5'-6.0' \$851-1 OLPYDA, OLPSV, PEST/POB,						
							scraps of wood, possible KR ballast in cutting	CN, TAL, TPH						
				ŧ			TOTAL DEPTH = 8.0 FEET							
) 	!								
	10.0													
190	•													
į			ļ											
	15.0													
- 185														
								·						
	200		-											
- 180														

							BONENO EGO	_
N/		L. R	OBER	T KI	MBAL	L & A	ASSOCIATES INC BORING NO SB52	
		615 (IH L	GHL	ND A	AVE. P	O BOX 1000 PROJECT MARTIN AARON RI/RAA	
		EBENS	SBUR	G PA	159	931	PROJECT NO 96-1322-A124	
	=	TELER	PHON	E: (814)	472-	7700	
L0(CATI	ON Mo	ntin	Aar	on S	ite	COORD EAST - NORTH -	
l l							OF CASING WEATHER Sunny, hot, 100 degs. F.	
ĺ							DRILLER: J. Urban LRK INSPECTOR: E. Sciulli	
1							Auger RIG TYPE Failing	_
							WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A	
	С	OMPLE	TED	7/2.	1/97		N/A FT; TIME N/A DATE N/A	
ELEV	DEPTH	SAMPLE	007	REC	FID	2005	DESCRIPTION REMARKS	
(FT)	(FT)	NO	SPI	(FT)	(PPH)	PRUF	DESCRIPTION REMARKS	
	0.0	 -	5			ļ	0.0'-0.5' CONCRETE	\dashv
] 	S-1	5 4	1.5	580		0.5'-2.0' SAND: some silt, cinders	
200		<u> </u>	9 71				gravel, black, fuel odor	
		S-2	12 13		119	1	2.0'-3.0' As above, sand, ash, cinders, loose, stained black, fuel odor	
		\$-3	4	1.0	200	,	3.0'-4.0' CINDERS: brick fragments, yellow	
	5.0	S-4	4	1.7	2100		orange stag, ash combustion, by product, hard	
			2				4.0'-5.0' As above -5.0'-6.0' SAND: trace silt, brown, green	
- 155		S-5	1	1.3	55		lenses, stained black, damp, fuel odor [6.0'-9.0' As above, ust 6.7.0' sheep (pilly) 5.0'-5.5' \$852-1	
			<u>Ī</u>	ļ			6.0'-8.0' As above, wet ₱ 7.0', sheen (oily), 5.0'-5.5' \$852-1 CLPVOA, CLPSV, PEST/PCB, TALL CN, TPH	
		S-6		2.0	171		112, 33, 711	
	10.0	<u> </u>	2				8.0'-10.0' SILT dark brown, greenish tint, cohesive, saturated organic material	
- 190			}			}	TOTAL DEPTH = 10.0 FEET	
	 - 15.0							
	10.0							
185								
		ļ						
	20.0			. a [5]	-			
	¥.س							
- 190	1		1		ļ			

							DON'THO LOC			
M	7/1	L. RO	OBER	T KI	MBAL	L & A	SSOCIATES INC.	BORING	NO : SB53	
		615 k	1 HI	GHLA	ND A	NE. P	.O. BOX 1000	PROJECT	MARTIN AARON R	I/RAA
		EBENS	SBUR	G PA	159	331		PROJECT	NO 96-1322-A1	24
	=	TELER	PHON	E: (814)	472-	7700			
LOC	CATI	ON : Mo	rtin	Aar	on S	ite	C0	ORD EAST		NORTH -
Į.							OF CASING			
							DRILLER: J. Ur			
DRI	LLI	NG ME	THO	D : Ho	ollow	Stem	Auger	F	RIG TYPE Fail	ng
DAT	E S	TARTE	:D :	7/2	1/97		WATER LEVEL DE	PTH N/A	_ FT; TIME N	A DATE N/A
	C	OMPLE	TED	: 7/2	1/97			N/A	_FT; TIME:N	/A DATE N/A
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PROF	. חרפני	POTOTTON		DEMARKS
(FT)	(FT)	NO		(FT)			DESC	RIPTION		REMARKS
ļ	8.8		0	-	-		0.0'-0.5' CONCRETE			
200		S-1	7 12	0.7	249		0.5'-2.0' SAND: trace			
			11 5				fuel odor, brick frag 2.0'-4.0' As above, •			
		S-2	3	1.0	1200		loose, brown stained	black, fuel o	odor	3.5'-4.0' \$853-1
			5				4.0'-6.0' As above, n	ore cinders	osh .	CLPVOA, CLPSV, TAL, CN
į	5.0	S-3	9 11	1.0	799		fill material			PEST/PC8, TPH
195			2			ļ	6.0'-8.0' SAND: trace	silt brown.	medium-fine	
12		S-4	3	0.7	228		damp, stained black,	oily, sheen d	on spoon	
j			2	 	 		8.0'-10.0' SILT: troc	e sand, dark	ьгонл	7.5'-8.0' \$853-2
		S-5		0.8	59		organic, saturated, s	tained, black	fuel odor	irn
	10.0		5				TOTAL DEPTH = 10.0 FE	ET	·	
190		ı	İ							
1.2		I								
						 				
	15.0	i								
185										
Im										
]]					
	20.0		-	-	-					
					ĺ					

W	7/1	L R	OBER	I KI	MBAL	L & A	SSOCIATES INC.	BORING NO SB54						
711		615 J	1 HE	GHLA	ND A	NE. P	.O. BOX 1000	PROJECT MARTIN AARON F	RI/RAA					
		EBENS	SBURI	G PA	159	331		PROJECT NO: 96-1322-A1	24					
	=	TELER	PHON	E: (814)	472-	7700							
LOC	CATI	ON Mc	ntin	Aarı	on S	te	CO	ORD EAST: -	NORTH: -					
				100 degs. F.										
DRJ	LLI	NG CC) : JC	CTOR E. Sciulli										
								RIG TYPE Fail						
DAT	DATE STARTED: 7/21/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A													
	COMPLETED: 7/21/97 N/A FT; TIME: N/A DATE: N/A													
LEV	D FPTH	SAMPLE	007	REC	FID	ppor	DESC	POTOTTON	DEMARKO					
(FT)	(FT)	NO	SPI	(FT)	(PPH)	PRUF	UESL	RIPIIUN	REMARKS					
	0.0		0				0.0'-0.5' CONCRETE							
•		S-1	10 9	0.7	893.5	·		nd, silt, odor, loose	1.5'-2.0' \$854-1					
200			14				2.0'-4.0' As above		CLP YOA					
		S-2	3 2	1.0	15		2.0 1.0 15 UDOVE							
			2	8			4 0' = C 0' Ac above 0	5.0' sand, trace silt,	_					
	5.0	S-3	8 Va 15	1.3	144		brown, medium-fine, s	come black staining,						
			24 15		-		C 0'-0 0' CAND: +ngoo	ailt boun modum-fino	_					
195		S-4	15 14	1.0	585		stained black, fuel o	silt, brown, medium-fine dor, damp to wet at 8.0'						
		-	7		-		0 0'-10 0' CTLT +page	o and anananana ta	7.5'-8.0' \$8 54-2					
		S-5	2 .	1.2	28		black, wet 🕈 8.5′, so	e sand, green-gray to iturated some organic	CLPVOA, CLPSV, PEST/PCB, TAL, CN, TPH					
	10.0		2				moterial							
							TOTAL DEPTH = 10.0 FE	LI .						
190														
		}												
			}											
	- 15.0							•						
85														
							}							
	20.0		(SA)	,										
	10.10													
100	I	1	1	1	1	}			1					

W	7/1	L. RO	DBER	T KI	MBAL	L & AS	SSOCIATES INC.	BORING NO SB55					
		615 k	ı HI	GHLA	ND A	VE P	0 BOX 1000	PROJECT: MARTIN AARO	N RI/RAA				
	7	EBENS	BUR	G PA	159	31		PROJECT NO: 96-1322	-A124				
	=	TELEF	PHON	E: (814)	472-	7700						
LOC	ATI	ON : Ma	rtin	Aaro	on Si	ite	CO	ORD EAST -	NORTH: -				
ŀ				ot, 100 degs. F.									
				PECTOR E. Sciulli									
ł													
DRILLING METHOD: Hollow Stem Auger RIG TYPE: Failing DATE STARTED: 7/21/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE:													
COMPLETED: 7/21/97 N/A FT; TIME: N/A DATE: N/A													
ELEV	DEPTH	SAMPLE	COT	REC	FID	PROF	BEOG	POTOTTON	DEMARKO				
	(FT)		SPI	(FT)	(PPH)	PRUF	DESC	KILIION	REMARKS				
-	0.0	<u> </u>	0	-	-		0.0'-0.5' CONCRETE		`				
200		S-1	8	1.0	0		0.5'-2.0' SAND: some	silt, loose, dark					
200			20 10]			brown to black, sligh 2 0'-4 0' SAND: some	silt, as above, cinders,					
		S-2	13 10	1.3	15		osh, loose	orra, do aboro, orrado o,					
			7		 		4 0'-5 0' As above r	efusal • 5 0'	3.5'-4.0' S855-1				
	5.0	S-3	3	0.3	0		wood in spoon, will t	ry to auger 5.0'-6.0'	CLPYOA, CLPSV, PEST/PC8, CN, TAL				
- 195			5	-			6.0'-8.0' SILT: some dark brown to black,	sand, fine-very fine,	· · · · ·				
		S-4	4	0.4	5	<u> </u>	dark brown to black, slight odor	very damp • 5.0',					
			4 3				8.0'-10.0' As above,	saturated • 8.0'					
		S-5	Ž	1.2	38		slight odor						
 .	10.0		<u> </u>		 		TOTAL DEPTH = 10.0 FE	ET					
190				}				,					
						ļ							
								•					
	- 15.0	!											
- 185													
	,							•					
	20.0												

							DOLLTING FOR	,		rnuc v					
N/	7/1	L. RO	OBER	T KI	MBAL	L & A	SSOCIATES INC.	BORING N	NO : SB56						
		615 1	1 HĮ	GHL A	ND A	AVE. P	.O. BOX 1000	PROJECT	MARTIN AARON R	I/RAA ,					
		EBENS	BUR	G PA	159	931		PROJECT	NO: 96-1322-A12	24					
	=					472-	7700								
LOC	CATI	ON: No	rtin	Aar	on S	ite	CO	ORD EAST:	-	NORTH: -					
1				100 degs. F.											
1							DRILLER: J. Ur								
İ							Auger								
1										ŀ					
	DATE STARTED: 7/22/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE: N/A COMPLETED: 7/22/97 N/A FT; TIME: N/A DATE: N/A														
FLFV	ПЕРТН	CAMPLE:		REC	FID										
(FT)	(ET)	NO	SPT	(FT)	(PPM)	PROF	DESC	RIPTION		REMARKS					
	0.0		ļ				O OZ O EZ COMODETE	· · · · · · · · · · · · · · · · · · ·							
		S-1		1.5	0		0.0′-0.5′	_silt, black,	loose						
200			ļ	-	ļ <u>.</u>		grading to brown •1. and slag, no odor	5', some cind	ers						
		S-2		0.3	0		\								
] .						2.0'-4.0' SAND: brown brick in end of spoon	, os obove,							
	5.0 ·	S-3	<i>6</i> 87	13	596		4.0'-6.0' SAND some		inders,	\$856-1					
				-			slag, fuel odor			Not analyzed					
195		S-4		15	1900	777	6.0'-7.0' As above 7.0'-7.5' CLAYEY SILT	white semi	-cohesive	6.5'-7.0' \$856-2					
				1.0		777	7.5′-8.0′ SAND: trace	silt oreen	tint	CLPVDA, CLPSV, PEST/PC8, Tal, CN, TPH					
		S-5	ļ	1 0	48		very damp to wet, str			SB56-AB					
	- 10.0			1.0			8.0'-10.0' SAND: trac	e silt, mediu Los obove we	ma−fine, H	Ambient blank					
ı	10.0	S-6		1.8	52	777	brown with green ting grading to gray-greey			·					
- 190		3 6		1.0	عد	777	10.0'-12.0' SILTY CLA organic matter, satur	Y: brown, sem	ni-cohesive,						
							spoon sand, medium-fi	ne, brown, so	iturated						
		ļ					TOTAL DEPTH = 12.0 FE	FT		·					
	- 15.0	·					751112 521 111 23.0 72	~ .							
	13.0]								·					
- 105		1													
	,]							•						
	20.0					1	· 								
		1 .				i									

								
1/2	7/1	L. RO	BER	T KI	MBAL	L & AS	SSOCIATES INC. BORING NO SB57	
		615 k	HI(SHLA	ND A	VE. P	O. BOX 1000 PROJECT MARTIN AARON R	I/RAA
	7	EBENS	BUR	S PA	159	131	PROJECT NO 96-1322-A12	24
	=	TELEF	HONE	<u> </u>	814)	472-	7700	
LOC	CATI	ON Ma	rtin	Aano	on Si	te	COORD EAST -	NORTH: -
SUF	RFAC	E ELE	V : 2	01.5	4	_ TOP	OF CASING WEATHER Sunny, hot,	100 degs. F.
DRI	[LLI	NG CO	JC	4			DRILLER: J. Urban LRK INSPEC	CTOR: E. Sciulti
DRI	[LLI	NG ME	THO	D : Ho	llow	Stem	Auger RIG TYPE Faili	ng
DAT	re s	TARTE	D :	7/2	2/97		WATER LEVEL DEPTH N/A FT, TIME N	<u>A · DATE N/A</u>
	C	OMPLE	TED _.	7/2	2/97		N/A FT, TIME N	<u>A</u> DATE <u>N/A</u>
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PROF	DESCRIPTION	REMARKS
(FT)	(FT)	NO	31 1	(FT)	(PPM)	l Noi	DESCRIPTION	TILLIII II II II
-	9.6						D.O'-2.O' SAND: some silt, dork	
200		S-1		1.7	1.5		brown to black, loose, some cinders, slag • 1.5'-2.0', dry	
							() () () () () () () () () ()	
		S-2		2.0	119.5		2.0'-4.0' As above, dry turning more brown black \$ 3.75'	
							L	
	- 5.0	S-3		1.7	69.0		4.0'-6.0' As above, black, slight fuel odor, sheen observed at bottom of spoon, very damp	
195		S-4			166.0	777	to wet 6.0'-7.0' As above	
		5-1		1.0	100.U	777	7.0'-7.5' CLAYEY SILT: white, semi-cohesive	6.5'-7.0' \$857-1
		S-5		, ,	120	777	7.5'-8.0' SAND: green, medium-fine, loose, saturated	CLPSV, CLPVOA, PEST/POB, TAL CN, TPH
	- 10.0	3-3		1.3	120	777	8.0'-9.0' SAND: green, as above 9.0'-10.0' CLAYEY SILT: gray green to brown,	SBS7-2 duplicate
	10.0	S-6		1.0	45	777	saturated	
190				1.0		777	10.0'-12.0' CLAYEY SILT: as above, organic matter, saturated, • 12.7' SAND: trace silt, medium-fine, loose, saturated	
							silt, medium-fine, loose, saturated	High PID 191 in saturated sand # 12.0"
							TOTAL DEPTH = 12.0 FEET	25.0
	- 15.0							
185								
							v	
	20.0	,		ļ				,
- 180								
. IW		,						

							20.11.10 E0	•	
\		L RO	OBER	T KI	MBAL	L & A	SSOCIATES INC	BORING NO SB58	
							.O. BOX 1000		
		EBENS	SBUR	G PA	159	31		PROJECT NO 96-1322-A1	24
	=	TELEP	PHON	E: (814)	472-	7700		
LOC	CATI	ON : Ma	rtin	Aaro	on Si	ite	C0	OORD EAST -	NORTH: -
SUF	RFAC	E ELE	V : <u>2</u>	01.5	6	TOP	OF CASING	WEATHER Sunny, hot,	100 degs. F.
DR)	[LLI	NG CO		A			DRILLER J. Ur	rban LRK INSPE	CTOR E Sciulli
DRI	[LLI	NG ME	THO	D : Ho	ollow	Stem	Auger	RIG TYPE Foil	ing
DAT	TE S	TARTE	D	7/2	2/97		WATER LEVEL DE	PTH:N/A FT; TIME:N	DATE N/A
	C	OMPLE	TED	7/2	2/97			N/A FT; TIME:N	/A DATE N/A
ELEV	DEPTH	SAMPLE	CDT	REC	FID	חחפר	DESC	POTOTTON	DEMARKS
(FT)	(FT)	NO	5P I	(FT)	(PPH)	PRUF	DE90	CHIPIIUN	REMARKS
	0.0						O O'-O S' COMPRETE		
- 200		S-1		2.0	8.4		0.5'-2.0' SANO s.sil slog, dry, block turn	t, tight, feн cinders,	
aw				ļ <u>.</u>			2.0'-4.0' As above, m		
		S-2		1.8	650		slog, broken gloss	or Community and	
							4.0'-6.0' As above, c	rinders and sloo	
	5.0	S-3		2:0	2020		fuel odor, domp, oily	sheen	E 54 5 04 0050 1
- 195							6 O'-R O' SANO: troce	e silt, brown with block	5.5'-6.0' \$858-1 CLPYOA, CLPSY, TAL, CN,
מו		S-4		1.0	1300		staining saturated, o	oily sheen in spoon, it bottom 0.3° of spoon	PEST/PCB, TPH
				<u> </u>			growing to clayey sil	IT DOTTOM U.S OF SPOON	
		S-5		0.4	117		8.0'-10.0' SAND: as a	those trace silt	· ·
	10.0		 				brown, saturated		
ım							TOTAL DEPTH = 10.5 FE	ET	
190			İ						
	15.0				ĺ				
- 185									·
			٠,						
	20.0								
						·			

							DO! (I'I''O E O	•		
		L RO	DBER	T KI	MBAL	L & A	SSOCIATES INC	BORING	NO : SB59	
		615 k	ı HI	GHLA	ND A	NE. P	.0		MARTIN AARON R	I/RAA
	<u>₩</u>	EBENS	BUR	G PA	159	331		PROJECT	NO 96-1322-A12	<u> </u>
	=					472-	7700			
LOC	CATI	ON : Ma	rtin	Aar	on S	ite	CO	ORD EAST	-	NORTH: -
							OF CASING			
							DRILLER: J Ur			
							auger			
1							WATER LEVEL DE			
	C	OMPLE	TED	7/2	2/97			N/A	FT; TIME N/	'A DATE N/A
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PROF	DESC	POTOTTON		DEMARKS
(FT)	(FT)	NO	1571	(FT)	(PPM)	PRUF	DESC	KIPIIUN		REMARKS
-	8.8						n n'-n 5' concrete			
		S-1		1.0	1.8		0 0'-0 5' COMORETE 0 5'-2 0' SAND: some black, tight, dry	silt, dark b	rown to	
200	ļ			<u> </u>			2.0'-4.0' SAND: some	silt as above	e, cinders,	
		S-2		1.2	17.0		slag, combustion by p	roducts		
			-	-	-	<u> </u>	4.0'-6.0' As above, c	inders, sloq	oil	
	5.0	S-3		1.5	659		staining fuel odor			
195						<u>;</u>	6.0'-8.0' As above, s	aturated, •		 5.51-6.01 \$859-1
In		S-4		1.0	100		sand, trace silt, bro fuel odor	wn with green	n streaks,	CLPYOA, CLPSY, TAL, CN PEST/PC8, TPH
							8.0'-10.0' SAND: as a streaks, clayey silt	bove, brown i	vith green	
		S-5		1.2	275		streaks, clayey silt	9.5, satur	`0160	
	10.0					FIF	10.0'-10.5' CLAYEY SI	LT: as above,		
190		S-6			200		organic material 10.5'-12.0' SAND: tra	ce silt med	um-fine	
							loose, saturated	cc Siri, wcu	iom i iic,	
							TOTAL DEPTH = 12.5 FE	ET		
	- 15.0									
	13.0									
- 185										
							·			
				,			·			
	20.0								966	
	U.U									
				1						

1/2	7/						SSOCIATES INC.	BORING NO SB60					
		615 k	1 HI	GHLÁ	ND A	VE. P	0. BOX 1000	PROJECT MARTIN AARON R	I/RAA				
		EBENS	BUR	S PA	159	31		PROJECT NO 96-1322-A12	?4				
	_	TELEF	PHONE	<u> </u>	814)	472-7	700						
LOC	CATI	ON : Ma	rtin	Aaro	on Si	te	CO	ORD EAST -	NORTH: -				
SUF	RFAC	E ELE	V : 2	WEATHER Sunny, hot,	100 degs. F.								
DR]	LLI	NG CO	:_JC	CTOR: E. Sciulli									
DRILLING METHOD Hollow Stem Auger RIG TYPE Failing DATE STARTED: 7/21/97 WATER LEVEL DEPTH: N/A FT; TIME: N/A DATE													
COMPLETED: 7/21/97 N/A FT, TIME: N/A DATE: N.													
ELEV DEPTH SAMPLE SPT REC FID PROF DESCRIPTION REMARKS													
(FT)	(FT)	NO	571	(FT)	(PPH)	PRUF	DESC	KIPIIUN	KELIMKV2				
	0.0	- ,,	Б		<u> </u>		O O'-2 O' CINDERS: os	h, gravel, fill, loose					
		S-1	12 11	1.2	18		U.U E.U UTHOLHU US	, graver, 1111, 10050					
200			35				2.0'-4.0' SAND: trace	cilt coop with	·				
		S-2	9 7	1.0	450		black staining, sligh	t odor					
			5 1				A O' C O' CIMPEDO: aa	h annual wood obins	3.5'-4.0' \$860-1				
	- 5.0	S-3	3	0.3	67		wood in end of spoon	h, gravel, wood chips,	CLPVOA, CLPSV, PEST/PCB, Tal, CN, TPH				
			9										
- 195		S-4	2	1.0	136		ъй-ви слискъ as slight fuel odor, woo	h, wood as above, wet, d in end of spoon, wet					
			21										
		S-5	4 3	nn	N/A		No recovery						
	10.0		5										
		S-6	3	0.0	N/A		No recovery						
- 190			1	0.0				·					
130		S-7	1	1.2	181	777	12.0'-14.0' SILTY CLA cohesive, wet	Y greenish gray, semi-					
		J-1	2	1.2	101	777	CONCENTO, NC		·				
	- 15.0 i	S-B	5	1.0	250			lium-fine, some smell, e, saturated, light tan					
	13.0	3-6	7	1.0	350		quai 12 peobles, 10036	, saturatea, Fight tan					
							TOTAL DEPTH = 16.0 FE	ET					
185		!											
					شويت								
	F 20.0												
	u.u												
					1								

					_					
W.	<i>7</i> 1	L. RO	OBER	T KI	MBAL	.L & A:	SSOCIATES INC.	BORING	NO : SB61	
		615 k	I HI	GHLA	ND A	NE. P	.0. BOX 1000	PROJECT	MARTIN AARON R	I/RAA
		EBENS							NO: 96-1322-A12	
=	=					472-				
LO	CATI	ON : Ma	rtin	Aar	on S	ite	C0	ORD EAST	. - .	NORTH
SUF	RFAC	E ELE	V : 2	01.9	6	TOP	OF CASING:	WEATH	ER: Sunny, hot,	100 degs F.
DR:	ILLI	NG CC)	A			DRILLER J. Ur	ban	LRK INSPE	CTOR E. Sciulli
DR	ILLI	NG ME	THO	D : Ho	ollow	Stem	Auger	F	RIG TYPE Fail	ing '
DAT	TE S	TARTE	:D :	7/2	2/97		WATER LEVEL DE	PTH N/A	FT: TIME N	/A DATE N/A
	C	OMPLE	TED	7/2	2/97			N/A	FT; TIME N	/A DA.TE N/A
ELEV	DEPTH	SAMPLE	CDT	REC	FID	PROF	[
(FT)	(FT)	NO.	13P I	(FT)	(PPM)	PRUF	DESC	RIFIIUN		REMARKS
-	9.8						0.0'-0.5' CONCRETE			
		S-1		1.2	354		0.5'-2.0' SAND some black, tight, dry, fu	silt, dork bi elodor	rown to	
200			-				2.0'-4.0' As above s	ome cinders	sl00	
		S-2	·	1.0	794		wood chips in tip of	spoon, fuel (odor	 3.5'-4.0' \$861-1
			 	-	 		4.0'-6.0' SAND: trace	silt brown	with	CLPVOA, CLPSV, TAL, CN, PEST/PCB, TPH
	5.0	S-3		0	N/A		4.0'-6.0' SAND: trace green streaks, loose,	saturated, 1	fuel odor	Augen refusal • 4.5' Move over 1' and restant hale
			<u> </u>		-		6.0'-7.0' Refusal • 7	.0' no recove	ery	2.0'-4.0' S-4 Recovery 1.0', PID 850
155		S-6		0.2	N/A		wood in spoon			4.0'-6.0' S-5 Recovery: 0.5', PID 350
		<u></u> -	 				TOTAL DEPTH = 8.0 FEE	T		1.050707 7 0.0 , 120 330
										•
	10.0	i i								
									•	
190	'									
			ļ							
										,
	- 15.0									
185										
								• •		
	20.0		 							

MARTIN	AARC	N		START DATE: 09/29/98		BOREHOLE No: 96C123_SB62
LOCATIO	N: C	MDEN	, NJ	WEATHER: CLEAR, 70's		Project No: 96-1322-C123
DRILLED	W/C	EOPRO	DBE	DRILLED BY: STEVE MOYLAN, JCA		ELEVATION: 0.000 (ft)
SAMPLE	TYP	E	Shelby Tube Split Spoo	n Roller Bit Drilled Casing	Ш	tollow Stem Core
DEPTH (ft)	SAMPLE NO	SPT(N)	◆% Core Recovery ◆ 20 40 60 80 • RQD • 20 40 60 80 ■% Recovery ■ 20 40 60 80 • N" value ▲ 20 40 60 80	SOIL DESCRIPTION	OSO	FIELD DATA
0.0	S1		O. gr	0'-2.0' SILTY SAND: brown, loose, some avel, cancrete fragments, brick		\$1 Recovery: 1.5'/2.0' PID: 10.5 0.5'-1.0' \$B62-1. \$VOA,Pest/PCB,TAL,CN 1.5'-2.0' \$B62-2 VOA \$2 Recovery: 2.0'/2.0'
-	S2		Si			S2 Recovery: 2.0'/2.0' PID: 10.5
-5.0	S3			0'-7.6' PEAT: possible wood cut fill, ry organic, light spongy		S3 Recovery: PID: 25.0 5.0'-5.5' SB62-3 SVOA, Pest / PCB, TAL, CN, VOA
	S4			6'-8.0' CLAYEY SILT: olive green grading		S4 Recovery: PID: 10.5 PID: >500 in saturated
-10.0			nto TC	very fine silty sand, saturated @ 7.5' TAL DEPTH = 8.0 FEET		-10
				·		
-						
<u> </u>	 Г.) DDI		SSOCIATES LOGGED BY: M.EBEL.		COMPLETION DEPTH: 8.0 ft
L	і. Г	ומט.	ERT KIMBALL & A	SSUCIATES REVIEWED BY: E.SCIULLI		COMPLETE: 09/29/98

LIADE	IN I	MADO				CTART RATE OR (CO	/on		1-	300175	
MART			N MDEN	N.I.		START DATE: 09/29, WEATHER: CLEAR, 70				DREHOLE No: <u>96C123_S</u> oject No: 96—1322—C123	R02
			EOPR(DRILLED BY: STEVE			-	EVATION: 0.000 (ft)	
SAMP		<u> </u>		Shelby Tube	Split Spoor		Drilled Casing			ow Stern Core	- (
O/ (1411	Ī	İ		◆% Core Recove	iry ♦	. Manar Bit					
Œ	YE	9		20 40 60 ● RQD ●	80	SO	11		SYMBOL	FIELD	(E)
оертн (#)	SAMPLE TYPE	SAMPLE NO	SPT(N)	20 40 60	80	٥0	ΙL	OSO	SYM	עונינו ו	ELEVATION
EPI	M M	AMF	S	■% Recovery 20 40 60	80	DESCR	[PTION		SOIL	DATA	¥
	15	5		▲"N" value 20 40 60	80						
0.0)'-0.5' GRAVEL				\$1 Recovery: 1.2'/2.0' PID: 15.1 0.5'-1.0' \$B63-1 \$VOA, Pest/PCB,TAL_CN 0.5'-1.0' \$B63-2 Dup. \$VOA, Pest/PCB,TAL_CN 1.0'-1.5' \$B63-3 VOA	0.0
					0.5	; – Ž.Õ' SĪLTY SĀND: bī	own, loose, brick	-		0.5'-1.0' SB63-1	
	\parallel	51				d concrete fragments	, ,			0.5'-1.0' SB63-2 Dup.	-
										1.0'-1.5' SB63-3	
	L									VOA	
						'-4.0' As above, dark				S2 Recovery: PID: >1000 @ 3.5'-4.0'	
	П				ary ary	, slight odor at 4.0',	stained				
	$\ \ $	S2									-
	$\ $									3.5'-4.0' SB63-4	
	Ĭ.									3.5'-4.0' SB63-4 SVOA, Pest/PCB, TAL, CN, VQA	
		Ī			4.0	'-6.0' Two attempts;	no recovery			S3 Recovery: 0.0'/2.0' PID:	Γ
.0		\$3									-5.0
	/	1									
	1									4 01 /0 01	
		Ì			1 1 1 1 1 1 1 1 1	'-8.0' ORGANIC PĘAT:	dark brown to	1		S4 Recovery: 1.0'/2.0' PID: >1000	
					bla	ck, wet (saturated)					
	1	S4					•				F
	V										
					TO	TAL DEPTH = 8.0 FEE					Γ
											-
							•				
0.0											-10.0
0.0							s				-10.0
											-
											Γ
							•				+
	<u> </u>	<u> </u>		י אינון שיטר	I I O 4/	adodi i mpo	LOGGED BY: M.EBEL	<u> </u>	<u> </u>	COMPLETION DEPTH: 8.0 ft	
	L.	. К	ΛRI	ERT KIMBA			REVIEWED BY: E.SCIULL			COMPLETE: 09/29/98	
				Ebensburg, F	enneulua	nia	Fig. No:				1 of 1

MARTIN AARON		START DATE: 09/29/98		BOREHOLE No: 96C123_SB	364
LOCATION: CAMD	EN, NJ	WEATHER: CLEAR, 70's		Project No: 96-1322-C123	
DRILLED W/GEOF	PROBE	DRILLED BY: STEVE MOYLAN, JCA		ELEVATION: 0.000 (ft)	
AMPLE TYPE	Shelby Tube Split S	poon Roller Bit Drilled Casing	III I	Hollow Stem 🔲 Core	
DEPTH (ft) SAMPLE TYPE SAMPLE NO	◆7. Core Recovery ◆ 20 40 60 80	SOIL DESCRIPTION	nsc	FIELD DATA	ELEVATION (FF)
- S1		0.0'-0.6' GRAVEL 0.6'-2.0' SILTY SAND: dark brown, loose, brick fragments, glass 2.0'-8.0' As above, turning more black, concrete, brick, some cinders @ 4.0', brown, olive green, medium to fine,		S1 Recovery: 2.0'/2.0' PID: 0.0 0.5'-1.0' SB64-1 SVOA,Pest/PCB,TAL,CN 1.0'-1.5' SB64-2 VOA 1.0'-1.5' SB64-3 Dup. VOA S2 Recovery: 1.5'/2.0' PID: 1.4	0.0 - -
-5.0 S2		(becoming more silty with depth)		S3 Recovery: 2.0'/2.0' PID: 143	- 5.
S4		Wet @ 7.5' (saturated) TOTAL DEPTH = 8.0 FEET		S4 Recovery: 1.0'/2.0' PID: 285 6.0'-6.5' SB64-4 VOA,SVOA,Pest/PCB,TAL,CN	-
-10.0					1(1(
					-
L. RO	BERT KIMBALL & Ebensburg, Pennsyl	REVIEWED BT: ESCIUL	Ш	COMPLETION DEPTH: 8.0 ft COMPLETE: 09/29/98 Page 1	

																-		300T		-
MARTIN	AAR	ON							S	START DAT	E: 09/30	0/98				BC	REHOLE	No: 96(C123_S	B65
LOCATIO	N: (ZAMC	EN,	NJ					М	VEATHER:	OVERCAS	T, 70's				Pr	oject No:	96-132	22-C123	
DRILLED	W/	GEO.	PRO	BE					0	RILLED B'	Y: STEVE	MOYLA	N, JCA			EL	EVATION:	0.000 (ft)	
SAMPLE				Shelby	Tube	port.	\square	Split S	oon	⊠ R	oller Bit		Drilled	Casing	П	Holle	w Stem		Core	.:
DEPTH (ft)	SAMPLE NO	SAIMI LE INC	SPI(N)	20 20 20 20	4(RQD • 60 Recover 60 60 1" value) B4) B4) B4)		DE	S(ESCR	OIL RIPT	ION		OSC	SOIL SYMBOL		FIEL		ELEVATION (ft)
- /	s	1							0.0'-2 ash cir	2.0' SAND nders, @	: brown 1.5' whi	and gr ite mat	ay, moist erial	t, and			\$1 Recov PID/FID: 0.0'-1.0' \$VOA,Pes 1.5'-2.0'		•	0.0
-	S	2							2.0'-4 cinders	.Ō'SĀND: s	: gray, n	noist, c	ish and				S2 Recov PID/FID:	rery: 1.0° 23.1/0.0	/2.0'	F
-5.0	Si	3								5.0' SĀND: s, concret			ash and				S3 Recov PID/FID:	rery: 1.5° 100/0.0	/2.0'	-5.0
- -	S ⁴	1							6.0'-8 moist,	i.Ō' SĀNŌ: silty clay	gray, b © 7.5',	rown c	nd black © 7.5'				S4 Recov PID/FID: 6.0'-7.0' VOA,SVOA	ery: 1.5' 100/3.8' SB65-3 Pest/PC	/2.0' S CB,TAL,CN	
-									TOTAL	DEPTH =	8.0 FEE									-
-10.0										·										10.0
-																				
L	. I	R0.							ASS(OCIAT	ES			I.EBEL E.SCIULLI			COMPLET			1 of 1

MARTIN A	ARO	N		START DATE: 09/30/98		BOREHOLE	No: 96C123_S	SB66
LOCATION			, NJ	WEATHER: OVERCAST, 70's	•		: 96-1322-C123	
DRILLED	W/G	EOPRO)BE	DRILLED BY: STEVE MOYLAN, JCA		ELEVATION:	0.000 (ft)	
SAMPLE	TYP	E	Shelby Tube Split Spoor	Roller Bit Drilled Casing		Hollow Stem	Core	
DEPTH (ft) SAMPLE TYPE	SAMPLE NO	SPT(N)	◆% Core Recovery ◆ 20 40 60 80 ■ RQD ● 20 40 60 80 ■% Recovery ■ 20 40 60 80 ■ "N" value ▲ 20 40 60 80	SOIL DESCRIPTION	OSN	SOIL SYMBOL	FIELD DATA	
0.0	S1		0.0	v'-2.0' SILTY SAND: brown, moist, with od and gravel, brick @ 1.6'			overy: 2.0°/2.0° 875/0.0 0° SB66-1 st/PCB,TAL,CN	0.
	S2			'-4.0' SAND: brown, moist, ash and ders		VOA	5' SB66-2 overy: 1.5'/2.0' 315/0.0	-
i.o /	\$3			7-6.0' Ash, cinders and rock fragments, ist	_	S3 Reco PID/FID:	very: 1.5'/2.0' 100/0.0	-
	S4		6.C	'-8.0' SILTY SAND: gray and black, ist, 1.0' of black silty clay	1	6.5'-7.0	very: 2.0'/2.0' 415/0.0 ' SB66-3 A,Pest/PCB,TAL,CN	
	S5			'-10.0' SILTY CLAY: black, moist, light www., medium sand, wet		S5 Reco PID/FID:	very: 2.0'/2.0' 100/0.0	
0.0	S6		10	D'-12.0' SAND: light brown, wet, medium		S6 Reco PID/FID:	very: 1.5'/2.0' 100/0.0'	-
			TO	AL DEPTH = 12.0 FEET			·	
L.	. F	10B	ERT KIMBALL & AS	SSOCIATES LOGGED BY: M.EBEL REVIEWED BY: E.SCIUL	· 		TION DEPTH: 12.0 f TE: 09/30/98	<u>t</u>
			Ebensburg, Pennsylva	nia Fig. No:	-	COMPLE	Page	

		300179
MARTIN AARON	START DATE: 09/29/98	BOREHOLE No: 96C123_SB67
LOCATION: CAMDEN, NJ	WEATHER: CLEAR, 70's	Project No: 96-1322-C123
DRILLED W/GEOPROBE	DRILLED BY: STEVE MOYLAN, JCA	ELEVATION: 0.000 (ft)
SAMPLE TYPE Shelby Tube 2 Split Spoon	Roller Bit Drilled Casing	Hollow Stern Core
CEPTH (##) CAMPLE NO	SOIL DESCRIPTION	OCIT SYMBOL SOIL SYMBOL BLEVATION (ft)
-	'-8.0' SILTY SAND: brown, loose, gravel	\$1 Recovery: 1.0'/2.0' PID: 0.0 0.5'-1.0' \$B67-1 \$VOA,PEST/PCB,TAL,CN 1.5'-2.0' \$B67-2 VOA \$2 Recovery: 1.5'/2.0' PID: 5.5
	'-6.0' Grading to more silt, mottled e green, very damp @ 6.0'	S3 Recovery: 1.5'/2.0' PID: 295
	ne cinder ash @ 7.0', saturated @ 7.0' AL DEPTH = 8.0 FEET	
-10.0		-10.0
L. ROBERT KIMBALL & AS	ike vie weit est ee staut i	COMPLETION DEPTH: 8.0 ft COMPLETE: 09/29/98
Ebensburg, Pennsylvar	nia Fig. No:	Page 1 of 1

	MARTI	N A	ADA	J				START DATE: 09/29/98		D/	DEFINIT No. ORO107 C	DEO
	LOCAT				N.I			WEATHER: CLEAR, 70's			DREHOLE No: 96C123_S oject No: 96-1322-C123	DOO
	DRILL							DRILLED BY: STEVE MOYLAN, JCA			EVATION: 0.000 (ft)	
	SAMP		<u> </u>		Shelby Tu	he 7	Split S		П		ow Stem Core	
	JAMIT	<u></u>	115	-		Core Recovery ◀	_'	poor Notice of Driffed Costing		Limit	T Core	
		TYPE	NO		20	40 60 8	30	COIL		닐	מ ומומ	\equiv
	(£)		E A	②	20_	● RQO ● 40 60 8	30	SOIL .	OSN	SYMBOL	FIELD	NC
	DEPTH	SAMPLE	SAMPLE	SPT(N)	20	% Recovery ■ 40 60 8	30	DESCRIPTION	=====================================	L S	DATA	ELEVATION (ft)
	3	SAI	S			"N" value A		DEDOMI HON		SOIL	DAIA	I.E.
ļ	0.0	\sqcup			20		30	0.0'-0.7' Gravel Fill			\$1 Recovery: 1.8'/2.0'	0.0
Ì	0.0	11						0.0 -0.7 Graver Fill	1		PID: 5 0.0'-1.0' SB68-1 SVOA Past / PCR TALL CAL	0.0
		$ \cdot $						0.7'-2.0' SILTY SAND: brown, loose, brick	-	1	0.0'-1.0' SB68-1 SVOA,Pest/PCB,TAL,CN	
Ì	_	Ш	S1					fragments				·
		$\ \ $									1.5'-2.0' SB68-2	
	_	Ш									VOA 52 Recovent 15'/20'	
		1						2.0'-8.0' SILTY SAND: some cinders and			S2 Recovery: 1.5'/2.0' PID: 42	
		/						gravel, and glass				
}	-		S2		ļļ							-
		$\ \ $										
		1									07.5	
Ì	_										S3 Recovery: 1.0'/2.0' PID: 25	
- {								•				
	-5.0		S3				, .					-5.0
	0.0	I						,				
												1 1
	-	\vdash									S4 Recovery: 1.5'/2.0' PID: 115	- [
		1									PID: 115 6 5'-7 5' SR68-3	
											6.5'-7.5' \$B68-3 \$VOA,Pest/PCB,TAL,CN,VOA	
1	-		S4									
		$\ \ $						Wet @ 7.5'				
	_	Ш									\$5 Recovery 2 01/2 01	
								8.0'-10.0' CLAYEY SILT: black, olive green			\$5 Recovery: 2.0'/2.0' PID: >300	
		/						mottles, saturated				
-	_		\$5					•				-
		$\ \ $										1 1
		1										
	-10.0							TOTAL DEPTH = 10.0 FEET	┪ !			-10.0
- {												1
	_											
										·	, in the second of the second	
											is	
}	-											+ 1
t	_											
	_						ļļ					
}		L T	D	Λ D i	700 7	TMDATT	: : <u></u>	ASSOCIATES LOGGED BY: M.EBEL			COMPLETION DEPTH: 10.0 f	+
		Ь.	К	ΛRI				ADDUCTATED REVIEWED BY: E.SCIULI	<u> </u>		COMPLETE: 09/29/98	`
Į					Ebensl	burg, Per	ınsyl	vania Fig. No:				1 of 1
-												

		•			300181	
MARTIN AARON		START DATE: 09/29/98			BOREHOLE No: 96C123_S	B69
LOCATION: CAMDEN	I, NJ	WEATHER: CLEAR, 70's			Project No: 96-1322-C123	
DRILLED W/GEOPRI		DRILLED BY: STEVE MOY	LAN, JCA		LEVATION: 0.000 (ft)	
SAMPLE TYPE	Shelby Tube Split Spoon	Roller Bit	Drilled Casing	ПП но	llow Stem Core	
DEPTH (ft) SAMPLE TYPE SAMPLE NO SPT(N)	◆% Core Recovery ◆ 20 40 60 80 ● RQD ● 20 40 60 80 ■ % Recovery ■ 20 40 60 80 ■ "N" value ▲ 20 40 60 80	SOIL DESCRIP		USC ONI SYMBOL	B DATA	ELEVATION (ft)
- S2	grav.	-2.0' SILTY SAND: brownel, brick at 2.0' -8.0' As above, shell frers, turning more black	 agments, some		S1 Recovery: 1.0'/2.0' PID: 0.0 0.5'-1.0' SB69-1 SVOA, Pest/PCB, TAL, CN 1.5'-2.0' SB69-2 VOA S2 Recovery: PID:	-
-5.0 S3	4.0'-	-6.0' Shell fragments, :	some cinders		S3 Recovery: 0.5'/2.0' PID: 0.0 S4 Recovery: 1.0'/2.0' PID: 0.0 6.0'-7.0' SB69-3 SVOA, Pest/PCB, TAL, CN, VOA	-5.0
-		© 7.5' L DEPTH = 8.0 FEET				-
-10.0						-10.0
-		OLO GLA TIPO	OCCED BY, M EDG		COMPLETION DECEMBER 1 2 2	
L. ROB	ERT KIMBALL & AS		LOGGED BY: M.EBEL REVIEWED BY: E.SCIULL	 I	COMPLETION DEPTH: 8.0 f COMPLETE: 09/29/98	-
	Ebensburg, Pennsylvan	· · · · · ·	Fig. No:	<u> </u>		e 1 of 1

DOTATION: CAMDEN, NJ WEATHER: CLEAR, 70'S Project Nov. 96-1322-C12.	MARTIN A	AARO)N		START DATE: 09/29/98	BOREHOLE No: 96C123	_SB70
DRILLED BY: STEVE MOYLAN, JCA AMPLE TYPE Sheby Tube	OCATION	N: C	AMDEN	N, NJ			
Shelby Tube							
### ### ### ### ######################		<u> </u>			oon Roller Bit Drilled Casing	Hollow Stem Core	
0.0'-8.0' SILTY SAND: brown and black, maist, with concrete, brick and cinders S1 Recovery: 1.5'/2.0' PiD: 10.0		T	Τ	◆% Core Recovery ◆ 20 40 60 80 ● RQD ● 20 40 60 80 ■% Recovery ■ 20 40 60 80 ■ "N" value ▲	SOIL	OSU SYMBOL DATA	(a) Notton
Dry concrete © 2.5' S3 Recovery: 1.5'/2.0' PID: 6.0 S4 Recovery: 1.5'/2.0' PID: 20.0 6.5'-7.5' SB70-3 VOA,SVOA, Pest/PCB,TAL_CN Wet © 7.5'; black below 7.5' TOTAL DEPTH = 8.0 FEET	0.0	S1				1.5'-2.0' SB70-2	0.0
S4 Recovery: 1.5'/2.0' PID: 20.0 6.5'-7.5' SB70-3 VOA,SVOA,Pest/PCB,TAL,CN Wet © 7.5'; black below 7.5' TOTAL DEPTH = 8.0 FEET		S2			Ory concrete @ 2.5'		
- / S4 Wet @ 7.5'; black below 7.5' TOTAL DEPTH = 8.0 FEET 6.5'-7.5' SB70-3 VOA,SVOA,Pest/PCB,TAL,CN	5.0	S3					5
		S4			√et © 7.5'; black belaw 7.5'	6.5'-7.5' SB70-3 VOA,SVOA,Pest/PCB,TAL,C	N
	10.0		·				-1
							-
					LOCOSTO DV. VICTO		
L. ROBERT KIMBALL & ASSOCIATES LOGGED BY: M.EBEL . COMPLETION DEPTH: 8.0 F REVIEWED BY: E.SCIULLI COMPLETE: 09/29/98	L.	. R	OB	ERT KIMBALL & A		COMPLETION DEPTH: 8.0	ft

MARTIN AARON		CTADT DATE, 00 /20 /00		DUDE	HOLE No: 96C123_	CR71
MARTIN AARON LOCATION: CAMDEN	JNI	START DATE: 09/30/98 WEATHER: OVERCAST, 70's			ot No: 96-1322-C123	
DRILLED W/GEOPR	<u> </u>	DRILLED BY: STEVE MOYLAN	JCA	+	TION: 0.000 (ft)	
SAMPLE TYPE	Shelby Tube Split Spoon	Roller Bit		Hollow S		
DEPTH (ft) SAMPLE TYPE SAMPLE NO SPT(N)	↑7° Core Recovery ↑ 20 40 60 80 RQD ↑ 20 40 60 80 % Recovery ■ 20 40 60 80 A "N" value ▲	SOIL DESCRIPTI	SS	SOIL SYMBOL	FIELD DATA	ELEVATION (F)
0.0		-2.0' SILTY SAND: brown ar st, with cinders	d black,	1 1.	Recovery: 2.0'/2.0')/FID: 666/0.1)'-1.0' SB71-1 DA,Pest/PCB,TAL,CN	0.0
S2	2.5	-2.5' GRAVELLY SANDY SILT -3.0' SILTY SAND: brown -4.0' SAND and CINDERS: b		VO		-
5.0		-6.0' SILTY SAND: brown, m cinders @ 4.5'	oist; ash	S3 PID 4.0 SVC	Recovery: 1.5'/2.0' /FID: 306/0.0 '-5.0' SB71-3 DA,Pest/PCB,TAL,CN,VOA	-5.0
S4	6.0'-	-10.0 Ash and cinders			Recovery: 1.0'/2.0' /FID: 114/0.0	
\$55	Silty	clay @ 9.5'		PID	Recovery: 2.0'/2.0' /FID: 350/0.0	- -
56	10.0 grav	'—12.0' SILTY CLAY: light br elly sand @ 11.0'	own;	S6 PID	Recovery: 2.0'/2.0' /FID: 65/0.0	-10.
	ATOT	L DFPTH = 12.0 FEET				
L. ROB	ERT KIMBALL & AS		ED BY: M.EBEL WED BY: E.SCIULLI		OMPLETION DEPTH: 12.0 OMPLETE: 09/30/98	ft
		· IIIL VIL	HILL LANGULL	I LU	one train 11597.307.90	

MADELL A	4.0	<u> </u>		OTINT DITE 00 (70 (00		Jacob 11 000407 007
MARTIN A			1 All	START DATE: 09/30/98		BOREHOLE No: 96C123_SB7
LOCATION DRILLED			 	WEATHER: OVERCAST, 70's DRILLED BY: STEVE MOYLAN, JCA		Project No: 96-1322-C123 ELEVATION: 0.000 (ft)
SAMPLE	<u> </u>		Shelby Tube Split Spoon			Hollow Stem Core
DEPTH (ft)	S		◆% Core Recovery ◆ 20 40 60 80	SOIL DESCRIPTION	nsc	TORNA FIELD DATA
0.0	S	1	0.0	'-2.0' SAND: brown, pebbly, medium, np, moist black sand, ash and cinders		S1 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 0.0'-1.0' SB72-1 SVOA;Pest/PCB,TAL_CN 1.0'-1.5' SB72-2 VOA
	S2	2		–4.0' SAND: black, maist, ash, cinders brick		S2 Recovery: 1.5'/2.0'
5.0	S.	3	4.5	-4.5' SAND: brown, moist -5.0' Ash and cinders -6.0' SAND: black, with ash and ers		S3 Recovery: 2.0'/2.0' - PID/FID: 0.0/0.0
	S4	1	6.0'	-8.0' CLAYEY SILT: black, moist		S4 Recovery: 2.0'/2.0' PID/FID: 35/0.0
	S5		8.0'	-12.0' SAND: light brown, moist		S5 Recovery: 2.0'/2.0' - PID/FID: 45.5/0.0 - 9.0'-10.0' SB72-3 VOA,SVOA,Pest/PCB,TAL,CN
10.0	Sē	5				S6 Recovery: 2.0'/2.0' —1 PID: 30/0.0
			TOT	NL DEPTH = 12.0 FEET		
L	F	ROB	ERT KIMBALL & AS Ebensburg, Pennsylvan	INTERED BI: ESCIULI		COMPLETION DEPTH: 12.0 ft COMPLETE: 09/30/98 Page 1 of

•			300185	
MARTIN AARON	START DATE: 09/30/98	3	BOREHOLE No: 96C123_SE	873
LOCATION: CAMDEN, NJ	WEATHER: OVERCAST, 7		Project No: 96-1322-C123	
DRILLED W/GEOPROBE	DRILLED BY: STEVE MO		CLEVATION: 0.000 (ft)	
SAMPLE TYPE Shelby Jube	Split Spoon Roller Bit	Drilled Casing Ho	llow Stem Core	
SAMPLE TYRES SAMPL	50 80 50 80 SOII DESCRIP	🔯 🎖		ELEVATION (ft)
0.0 20 40 - S1	0.0'-0.4' ASPHALT 0.4'-2.0' SILTY SAND: dark moist, w/ glass	gray, black,	S1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.0'-1.0' SB73-1 SVOA, Pest/PCB, TAL, CN	0.0
	2.0'-2.5' BRICK 2.5'-3.3' SAND: brown, mo medium	ist, gravelly,	1.5'-2.0' SB73-2 VOA S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	-
	3.3'-4.0' SILTY SAND: black and brick 4.0'-8.2' SILTY SAND: dark with brick, cinder and ash	brown, moist,	S3 Recovery: 2.0'/2.0' PID/FID: >2000/0.0	5.0
-			S4 Recovery: 2.0'/2.0' PID/FID: >2000/35.2 7.0'-8.0' SB73-3 VOA,SVOA,Pest/PCB,TAL,CN	
S5	.Wet <u>@</u> 8.2' 8.2'—12.0' MEADOW MAT, g	ray, medium sand	S5 Recovery: 2.0'/2.0' PID/FID: >2000/0.0	
-10.0 S6			\$6 Recovery: 2.0'/2.0' PID/FID:	10.0
	TOTAL DEPTU - 12.0 FEET		·	
	DALL & ADDUCTATED	LOGGED BY: M.EBEL REVIEWED BY: E.SCIULLI Fig. No:	COMPLETION DEPTH: 12.0 ft COMPLETE: 09/30/98 Page	

	MARTI	N A	ARON				START DATE: 09/30/	/98	····	BOR	EHOLE No: 96C123_S	R74
	LOCAT				N.J		WEATHER: OVERCAST				ect No: 96-1322-C123	0.7
	DRILL						DRILLED BY: STEVE I				/ATION: 0.000 (ft)	
Á	SAMP				Shelby Tube	Split Spoo		Drilled Casing	П		Stem . Core	
	DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	◆% Core 20 40 20 40 20 40 ■% R 20 40	e Recovery ◆ 60 80 RQD ◆ 60 80 Recovery ■ 60 80 " value ▲	SO DESCRI	IL	JSC	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
	0.0		S 1		20 10	0.0	0'-2.0' SILTY SAND: lig own, damp; brick at 1	ght brown to dark .2'-1.5'			1 Recovery: 1.5'/2.0' 1D/FID: 0.0/0.0 .0'-1.0' \$B74-1 VOA,Pest/PCB,TAL,CN	0.0
			S2			2.1	0'-8.0' SAND: black bi	rown, moist		J۷	.0'-1.5' SB74-2 OA 2 Recovery: 1.0'/2.0' ID/FID: 0.0/0.0	-
	-5.0		 S3			4.5	5' ash and cinders and	d brick		SP	3 Recovery: 2.0'/2.0' ID/FID: 0.0/0.0	-5.0
	-						·	THAT I STATE OF		SP 6	4 Recovery: 2.0'/2.0' ID/FID: 0.0/0.0 .0'-7.0' SB74-3	-
٠			S4			TC	TAL DEPTH = 8.0 FEET				ÕA,SVÕA,Pest/PĈB,TAL,CN	
	-											_
	-10.0											-10.0
								w .				
			<u> </u>	ODI	יייי אורון			וותרענט פע. או בפני			OND TION PETT - 2.2	
		L.	K			ABALL & AS	44	LOGGED BY: M.EBEL REVIEWED BY: E.SCIULLI			OMPLETION DEPTH: 8.0 ft OMPLETE: 09/30/98	
	L		·		Ebensbu.	rg, Pennsylva	nia	Fig. No:		1		1 of 1

IOCATION: CAMPICN: NJ MCHERR: CLEAR, 70's Project No. 96-1322-C123 Pallich WydeoProbe Sample: Yell Sept Tube (Camping Spin) Soon No. 1003 (ft) SAMPLE: YPE Sept Tube (Camping Spin) Soon No. 1003 (ft) SAMPLE: YPE Sept Tube (Camping Spin) Soon No. 1003 (ft) SAMPLE: YPE Sept Tube (Camping Spin) Soon No. 1003 (ft) SAMPLE: YPE Sept Tube (Camping Spin) Soon No. 1003 (ft) SAMPLE: YPE Sept Tube (Camping Spin) Soon No. 1003 (ft) SOIL	MADT	1NI /	AADO					START DATE: 09/29/98	<u> </u>		D/	אסבעטו ב	Na. 060127 (CD75
DRILLED W/SCIPPORTS SAMPLE TIPE Seeby Tob. See 2 Seeby Tob. See 2 Seeby Tob. Seeby Tob					N.I						_			
SAMPLE TYPE Schely time (See Corporation) \$ \frac{\partial \text{ Sectors} \text{ Points} \text{ Sectors} \text{ Points} \tex						· ····					_			
Solid Soli			<u> </u>			: / S	plit Spoon							
DO -2.0' SLTY SAND. brown, loose, some gravel concrete © 1.0' gravel concrete © 1.0' S1 S2 2.0'-4.0' As obove, grading to more silt, some shale fragments, some ash, cinder 4.0'-6.0' As obove, black felt or tar poper © 5.0', shale fragments, ash and cinder 5.0 S3 6.0'-8.0' Grading to silt © 7.0', welt, office or some shale fragments, ash and cinder 5.0 S4 FD: 0.0 S78, Pecovery: 1.5'/2.0' PD: 0.0 S3. Recovery: 2.0'/2.0' PD: 0.0 S4. Recovery: 2.0'/2.0' S4. Pecovery: 2.0'/2.0' S5. Pro. S873-3 VA. SYGA, Pest/PCB,TMLCN 100 -100 L. ROBERT KIMBALL & ASSOCIATES EXCEPTED BY: M.EBEL COMPLETION DEFTH: 8.0 ft COMPLETION DEFTH: 8.0	DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	20 4 20 4 20 4 20 4	0 60 80 RQD 0 60 80 Recovery 0 60 80 N" value				OSC	SOIL SYMBOL			ELEVATION (ft)
4.0"-6.0" As above, black felt or tar paper © 5.0", shale fragments, ash and cinder 5.0 S3 S3 S3 S4 S4 S4 S4 S4	0.0		S1		20 4	0 00 00	0.0 gra	vel concrete @ 1.0' '-4.0' As above, gradin	g to more silt,			0.5'-1.0' SVOA,Pes 1.5'-2.0' VOA	t/PCB,TAL,CN	0.0
5.0 S3 S3 S4 Recovery: 2.0 / 2.0 ' PD: 0.0 S5 - 7.0 ' S975 - 3 VOASYGA Pest/PCB,TAL_CN TOTAL DEPTH = 8.0 FEET S6.0 S6.	_		S2				4.0°	'-6.0' As above, black t er @ 5.0', shale fragme	felt or tar			S3 Recov PID: 0.0	rery: 2.0'/2.0'	
L. ROBERT KIMBALL & ASSOCIATES LOGGED BY: M.EBEL COMPLETION DEPTH: 8.0 ft REVIEWED BY: E.SCIULLI COMPLETE: 09/29/98	-5.0 -						6.0	'-8.0' Grading to silt @	7.0', wet,			S4 Recov PID: 0.0 6.5'-7.0' VOA,SVOA	very: 2.0'/2.0' SB75-3 ,Pest/PCB,TAL,CN	-5.0
L. RUDERT RIMIDALL & ASSUCIATES REVIEWED BY: ESCIULI COMPLETE: 09/29/98	-10.0						TOT	al depth = 8.0 feet						10.0
L. RUDERT RIMIDALL & ASSUCIATES REVIEWED BY: ESCIULI COMPLETE: 09/29/98	_													
		L	. R	.0BI	ERT KI	MBALL	& AS	SSOCIATES						
Ebensburg, Pennsylvania Fig. No: Poge 1 of 1								and the second s	Fig. No:			JOOITH LL		e 1 of 1

ſ							OTABL BATE 40/04	/^ _		100	30018	<u> </u>
	MART						START DATE: 10/01/	· 			PREHOLE No: 96C123_S	8R/6
}	LOCA						WEATHER: COOL, PAF				oject No: 96-1322-C123	
	DRILL		<u> </u>			[75 # 5	DRILLED BY: STEVE A				EVATION: 0.000 (ft)	
	SAMP	LL	IYPE	-	Shelby Tube ◆% Core Reco	Split Sp	oon Roller Bit	Drilled Casing	, Ш	HOIIO	w Stern Core	
	DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	20 40 6 ● RQD ●	0 80 0 80 0 80 0 80	SO DESCRI	-	OSC	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
	0.0		S1				0.0'-0.5' SAND: brown, r 0.5'-2.0' SAND: gray, as				S1 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 0.0'-1.0' SB76-1 SVOA, Pest/PCB, TAL_CN 1.0'-1.5' SB76-2	0.0
	-		S2	-			2.0'—4.0' Ash and cinder	s, moist			VÕA S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	-
	-5.0		S 3				4.0'–4.5' SAND: brown, c 4.5'–6.0' SANDY SILTY CI				S3 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 4.0'-5.0' SB76-3 VOA,SVOA,Pest/PCB,TAL,CN	5.0
	-		S4				5.0'-8.0' SILTY SAND: da	rk gray, wet			\$4 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	-
.]	-						TOTAL DEPTH = 8.0 FEET			. ,		
	-10.0											-10.0
	-											-
,	-	T		ODI		ATT 0	A COO CLAMEC	LOGGED BY: M.EBEL			COMPLETION DEPTH: 8.0 ft	
		L.	K	0RI			ASSOCIATES	REVIEWED BY: E.SCIULLI			COMPLETE: 10/01/98	
Į					Ebensburg,	Pennsylv	ania	Fig. No:				1 of 1

			CTART DATE 40 /04 /05		75	DD1015 N 000107 0	D77
MARTIN AARO		I NII	START DATE: 10/01/98		\rightarrow	DREHOLE No: 96C123_S	R11
OCATION: CA			WEATHER: PARTLY CLOUDY, COOL DRILLED BY: STEVE MOYLAN, JCA			roject No: 96-1322-C123 .ΕVΑΠΟΝ: 0.000 (ft)	
SAMPLE TYP		Shelby Tube Split Sp		- m		ow Stem Core	
	T =	◆% Core Recovery ◆ 20 40 60 80			<u></u>		E
DEPTH (ft) AMPLE TYPE SAMPLE NO	SPT(N)	● RQD ● 20 40 60 80	SOIL	nsc	SYMBOL	FIELD	
SAMPLE TYPE SAMPLE NO	S	▲"N" value ▲	DESCRIPTION		SOIL	DATA	ELEVATION (ft)
• /			0.0'-1.5' SAND: light gray, gravelly, moist			S1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.0'-1.0' SB77-1 SVOA,Pest/PCB,TAL,CN	0.0
S1		}	1.5'-4.0' Ash and cinders			1.0'-1.5' SB77-2 VOA	-
						S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	
S2							-
			4.0'-6.0' SILTY GRAVELLY SAND: brown, moist			S3 Recovery: 2.0*/2.0* PID/FID: 0.0/3.1	
\$3							-5.0
			6.0'-8.0' SILTY SAND: black, moist, with cinders			S4 Recovery: 1.5'/2.0' PID/FID: 0.0/7.4 6.0'-7.0' SB77-3 VOA,SVOA,Pest/PCB,TAL,CN	
S4			7.2'-7.5' Brick and wood				-
			TOTAL DEPTH = 8.0 FEET				
.0					į.		-10.0
							-
							-
		5.					
				1			1
T R	`\UBI	ERT KIMBALL & .	ASSOCIATES LOGGED BY: M.EBEL REVIEWED BY: E.SCIULLI			COMPLETION DEPTH: 8.0 ft	

	<u> </u>	100:			CT4PT P4TE 00 /00 /00		D00001015 11 000407 0070
MARTI				MI	START DATE: 09/29/98		BOREHOLE No: 96C123_SB78
LOCAT					WEATHER: CLEAR, 70's		Project No: 96-1322-C123
DRILL		<u> </u>			DRILLED BY: STEVE MOYLAN, JCA	<u> </u>	ELEVATION: 0.000 (ft)
SAMP	LE	TYPE	- •	Shelby TubeSplit Spoon ◆% Core Recovery◆	Roller Bit Drilled Casing		Hollow Stern Core
ОЕРТН (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	20 40 60 B0 ● RQD ● 20 40 60 B0	SOIL	nsc	TO SOIL SYMBOL SOIL SYMBOL SOIL SYMBOL (ft)
	AM	\$	(,)	20 40 60 80 ▲ "N" value ▲	DESCRIPTION		DATA S
	Ľ			20 40 60 80			
0.0		S 1			-2.0' SILTY SAND: brown, moist, some vel and cinders		S1 Recovery: 1.5'/2.0' PID: 10.0 0.0'-1.0' SB78-1 SVOA,Pest/PCB,TAL,CN 1.0'-1.5' SB78-2 VOA
		C2		gra			S2 Recovery: 2.0'/2.0' PID: 0.0
		S2			-3.5' SILTY CLAY: brown & gray, moist -6.0' moist brown silty sand, some		
-					ers and coal		S3 Recovery: 1.0'/2.0' PID: 0.0
-5.0		S3					-5.0
		S4		6.01	-8.0' SILTY SAND: brown, moist		S4 Recovery: 1.0'/2.0' PID: 50.0 6.5'-7.5' SB78-3 VOA,SVOA,Pest/PCB,TAL,CN
					● 8.0′	de sale ,	
				ΤΟΤ	NL DEPTH = 8.0 FEET		
-10.0							-10.0
			•				
_							
	Ţ,	R	ORI	ERT KIMBALL & AS	SOCIATES LOGGED BY: M.EBEL		COMPLETION DEPTH: 8.0 ft
	٠.	10	-11		ILENICAED DI L'OCIOLLI		COMPLETE: 09/29/98
J				Ebensburg, Pennsylvan	1a Fig. No:		Page 1 of 1

MARTI	IN A	AAR OI	٧			START DATE: 09/30,	/98		BC	REHOLE No: 96C123_S	B79	7
LOCA	TIOI	N: CA	MDEN	, NJ		WEATHER: OVERCAST	, 70's		Pr	oject No: 96-1322-C123]
DRILL	ED	W/G	EOPR(OBE		DRILLED BY: STEVE	MOYLAN, JCA		EL	EVATION: 0.000 (ft)]
SAMP	LE	TYP		Shelby Tube	Split S	ooon 🔀 Roller Bit	Drilled Casing		Hollo	w Stem Core		
DEPTH (ft)	SAMPI F TYPF	SAMPLE NO	SPT(N)	● RQD 20 40 6 ■% Recov 20 40 6 ■ "N" val	60 80 60 80 eny ■ 60 80	SO DESCR		OSN	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)	
0.0	\vdash			20 40 (60 80	0.0'-0.5' SILTY SAND: bi	rown, moist	1	 	S1 Recovery: 2.0'/2.0'	0.0	1
_		S1				0.5'-1.5' Concrete and				\$1 Recovery: 2.0'/2.0' PID/FID: 0.0/51.1 0.0'-1.0' \$B79-1 \$VOA_Pest/PCB,TAL_CN (MS/MSD)	_	
-						1.5'-4.0' SILTY CLAY: ye	llow brown, moist			1.5'-2.0' SB79-2 VOA (MS/MSD) S2 Recovery: 1.5'/2.0' PID/FID: 0.0/51.1		
-		S2				4.0'-6.0' SILTY SAND: gr moist, some cinders	ay and brown,			S3 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0	-	
-5.0 -		\$3 \$4				6.0'-8.0' SILTY SAND: gr moist, medium, with bric fragments	ay and dark brown, k and rock			S4 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 6.5'-7.5' SB79-3 VOA,SVOA,Pest/PCB,TAL,CN 6.5'-7.5' SB79-4 dup. VOA,SVOA,Pest/PCB,TAL,CN	-5.0	
-		S5				8.0'—10.0' ŠAND: dark g meadow mat @ 8.5'	ray, moist, and	,		S5 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0	_	
-10.0		S 6				10.0'-12.0' SAND: light	gray, wet, medium		-	S6 Recovery: 2.0'/2.0' PID: 0.0/0.0	-10.0	
-						TOTAL DEPTH = 12.0 FE	<u>.</u>					
	L	 . R	OBI	ERT KIMB Ebensburg,		ASSOCIATES	LOGGED BY: M.EBEL REVIEWED BY: E.SCIULLI Fig. No:			COMPLETION DEPTH: 12.0 f	1 of 1	

MARTIN	ΑA	RON				START DATE: 10/01/	98		BOI	REHOLE No: 96C123_S	SB80
LOCATIO	N:	CAN	IDEN,	NJ		WEATHER: PARTLY CL	OUDY, COOL		Pro	ject No: 96-1322-C123	
DRILLED) W	//GE	OPRO	BE		DRILLED BY: STEVE M	IOYLAN, JCA		ELE	EVATION: 0.000 (ft)	
SAMPLE	<u> </u>	YPE		Shelby Tube		Spoon Roller Bit	Drilled Casing		Holloy	x Stem Core	
DEPTH (ft)	SAMPLE ITPE	SAMPLE NO	SPT(N)	◆% Core R 20 40 ■ RQ 20 40 ■ Rec 20 40 ■ N Rec 20 40 40 ■ N N Y 20 40	60 80 0 0 80 60 80 bwery 8 60 80	SO: DESCRI		OSO	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0		S 1				0.0'-0.5' CONCRETE 0.5'-2.0' SILTY SAND: bro	own, moist			\$1 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 0.5'-1.0' \$B80-1 \$VOA,Pest/PCB,TAL_CN	0.0
-		\$2				2.0'-4.0' No recovery, rosampler	ock in end of		ľ	1.0'-1.5' SB80-2 VOA S2 Recovery: 0.0'/2.0' PID/FID: 0.0/0.0	
-5.0		\$3				4.0'-5.0' SILTY SAND: bromoist 5.0'-6.0' SILTY SAND: bro				S3 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 4.5'-5.5' SB80-3 VOA,SVOA,Pest/PCB,TAL,CN	5.
-		S4				6.0'-8.0' SILTY SAND: ligi Water @ 6.5'	nt brown			S4 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	
-						TOTAL DEPTH = 8.0 FEET					 - -
-10.0											-10
-											
I	<u>.</u>	R	OBI	ERT KIMI Ebensburg		ASSOCIATES	LOGGED BY: M.EBEL REVIEWED BY: E.SCIULL Fig. No:			COMPLETION DEPTH: 8.0 ft	1 of

MARTIN	l A	APA	J			START DATE: 10/01/	QR		RUI	REHOLE No: 96C123_S	R81
LOCATIO				N.I		WEATHER: PARTLY CL				ject No: 96-1322-C123	001
DRILLE						DRILLED BY: STEVE M				VATION: 0.000 (ft)	
SAMPL		<u> </u>		Shelby (Tube	Split S		Drilled Casing	П		Stem Core	
	SAMPLE TYPE I		SPT(N)	◆% Core F 20 40 ■ RQ 20 40 ■ % Rec 20 40 ▲ "N" y	Recovery ◆ 60 80 00 80 00 80 00 80 00 80 00 80 00 80 00 80	SO: DESCRI	IL	OSC	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0		51		20 40	60 80	0.0'-0.5' CONCRETE 0.5'-0.8' BRICK 0.8'-2.0' SAND: brown, n cinders 2.0'-6.0' SILTY SAND: brown brown, n cinders	wn, moist, with			S1 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 0.8'-1.3' SB81-1 SVOA, Pest/PCB, TAL, CN 1.3'-1.5' SB81-2 VOA 52 Recovery: 1.0'/2.0' PID/FID: 0.0/0.0	0.0
-5.0		S2 S3								53 Recovery: 1.0'/2.0' PID/FID: 0.0/0.0 5.0'-6.0' SB81-3 SVOA,VOA,Pest/PCB,TAL,CN	-5.0
		S4				6.0'-8.0' SAND: brown to medium to fine, green mi in.; wet @ 6.0'	greenish brown, ottling in last 6			54 Recovery: 1.0'/2.0' PID/FID: 0.0/0.0	
10.0						TOTAL DEPTH = 8.0 FEET					10.0
				***			·				
I	[R	OBI	ERT KIMI	BALL &	ASSOCIATES	LOGGED BY: M.EBEL			COMPLETION DEPTH: 8.0 ft	
				Ebensburg		9	REVIEWED BY: E.SCIULLI]	COMPLETE: 10/01/98	
				посполит Я	z, i chiisyl	vallia	Fig. No:		J	Page	1 of 1

MARTII	N A	ΔP/N			START DATE: 10/01/	98		RΛ	REHOLE No: 96C123_	SRR2
LOCAT					WEATHER: PARTLY CL			+	oject No: 96-1322-C123	
DRILLE					DRILLED BY: STEVE M			+	EVATION: 0.000 (ft)	
SAMPL				■		Drilled Casing	ПП	ــــــــــــــــــــــــــــــــــــــ	w Stem Core	
	SAMPLE TYPE	SAMPLE NO	SPT(N)	◆% Core Recovery ◆ 20 40 60 80 ●RQD ● 20 40 60 80 ■% Recovery ■ 20 40 60 80 ■"N" Yalue ▲ 20 40 60 80	SOI DESCRI	IL		SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0				0.	0'-0.5' CONCRETE 5'-1.0' SAND and CIND	ERS: brown, moist			S1 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 0.5'-1.0' SB82-1 SVOA,Pest/PCB,TAL,CN	0.0
_ ′		S1		1.	0'-4.0' SAND: brown, m	noist, medium			1.0'-1.5' SB82-2 VOA S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	-
-		S2			- 1				·	
-5.0		S3			0'-6.0' SILTY SAND: bro oter @ 5.0'	wn, moist,			S3 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 4.0'-5.0' SB82-3 VOA,SVOA,Pest/PCB,TAL,CN	-5.0
_		S4		6.0	D'-8.0' SĀND: gray, sati	urated, medium		Î	S4 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	
-				TO	TAL DEPTH = 8.0 FEET					-
-10.0										-10.
-					•					
-										
	Ī)DI	ERT KIMBALL & AS	SCOCIATEC	LOGGED BY: M.EBEL			COMPLETION DEPTH: 8.0 f	 t
	<u>.</u> .	T//	JUL		*	REVIEWED BY: E.SCIULLI			COMPLETE: 10/01/98	
				Ebensburg, Pennsylva	ทาล	Fig. No:		\neg		1 of 1

MARTIN AAR	ΩNI			START DATE: 10/05/9	 }R		D.C	DREHOLE No: 96C123_S	R87
LOCATION: C		N.I			GHTLY BREEZY, 70 DE	r.	\rightarrow	oject No: 96-1322-C123	נטטו
DRILLED W/				DRILLED BY: STEVE M		.0,		EVAΠON: 0.000 (ft)	
SAMPLE TY		Shelby Tube '	Split Spoo		Drilled Casing	<u> П</u> П		ow Stem Core	-
SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE		◆% Core 20 40 ● R0 20 40	Recovery ◆ 60 80 QD ● 60 80 covery ■ 60 80	SOI DESCRII	L	OSO	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0 S1			0.0 0.5 1.0)'-0.5' Concrete 5'-1.0' CINDERS: black,)'-7.0' SAND: brown, w m wet to saturated w/	et, fine to medium		•	S1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.5'-1.5' SB83-1 SVOA,Pest/PCB,TAL,CN 1.5'-2.0' SB83-2 VOA S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	0.0
5.0 S3			₩a	ter @ 5.0'				S3 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 4.0'-5.0' SB83-3 VOA,SVOA,Pest/PCB,TAL,CN S4 Recovery: 2.0'/2.0' PID/FID: 0.0/1.0	-5.0
S4			fin	o'-8.0' SILTY SAND: gra e to medium TAL DEPTH = 8.0 FEET	y, saturated,				-
0.0									-10.0
T	نحر ۸ د	י עדי שכונ	DATT 0 AC		LOGGED BY: M.EBEL		L	COMPLETION DEPTH: 8.0 ft	
- L. I	MRI			SSOCIATES	REVIEWED BY: E.SCIUL	Ш		COMPLETE: 10/05/98	
			g, Pennsylva	the state of the s	Fig. No:				1 of 1

MARTIN AARON LOCATION: CAMDE DRILLED W/GEOPH SAMPLE TYPE SAMPLE NO SAMPLE NO SO SO SO SO SO SO SO SO SO SO SO SO SO	ROBE Shelby Tube Split Spoon	START DATE: 10/05/98 WEATHER: SUNNY, SLIGHTLY BREEZY, 70 DEG. DRILLED BY: STEVE MOYLAN, JCA Roller Bit Drilled Casing SOIL DESCRIPTION -0.5' Concrete -9.0' SAND: brown, wet, fine to medium	USC THE TOTAL TH	BOREHOLE No: 96C123_SB8 Project No: 96-1322-C123 ELEVATION: 0.000 (ft) Ollow Stern	S ELEVATION (ft)
SAMPLE TYPE SAMPLE NO SPIT(N)	ROBE Shelby Tube Split Spoon	DRILLED BY: STEVE MOYLAN, JCA Roller Bit Drilled Casing SOIL DESCRIPTION -0.5' Concrete	THE STATE OF THE	ELEVATION: 0.000 (ft) oliow Stem	j
SAMPLE TYPE SAMPLE NO SPT(N)	Shelby Tube	SOIL DESCRIPTION -0.5' Concrete	USC	FIELD DATA	j
S DEPTH (ft) SAMPLE TYPE SAMPLE NO SPT(N)	↑% Core Recovery ↑ 20	SOIL DESCRIPTION -0.5' Concrete	SC	FIELD DATA	j
0.0	20 40 60 80 RCO 20 40 60 80 RCC 20 40 60 80 N'N' value 20 40 60 80 O.0'	DESCRIPTION -0.5' Concrete		DATA	j
	0.0'			S1 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 0.5'-1.5' SB84-1 SVOA, Pest/PCB, TAL,CN 1.5'-2.0' SB84-2 VOA	0.0
					-
- \delta \s2				S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	-
-5.0	Wate	er @ 5.5'			-5.0
- S4				S4 Recovery: 1.0' /2.0' PID/FID: 0.0/1.0	
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9.0' fine 9.5'	-9.5' SILTY SAND: gray, saturated, to medium -10.5' SILTY CLAY: dark gray, wet		S5 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0	10.0
-10.0 - S6		5'-12.0' SAND: gray, wet, medium, with		S6 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0	-10.0
	TOTA	AL DEPTH = 12.0 FEET			
L. ROI	BERT KIMBALL & AS Ebensburg, Pennsylvan	* IKEVIEWED BT: CSCIOLLI		COMPLETION DEPTH: 12.0 ft COMPLETE: 10/05/98 Page 1 o	of 1

MARTIN											T DATE: 10/							No: 96C12		385
OCATIO											HER: SUNN			Y, 70 DEG.		+		96-1322-0	2123	
RILLED										DRILL	ED BY: STE							0.000 (ft)		
SAMPLE	E T	YPE		Shelb					Spoon		Roller Bi	t	Drille	d Casing	<u>Ш</u>	Hollo	w Stem	Соге	·	
DEPTH (ft)	SAMPLE IYPE	SAMPLE NO	SPT(N)	20 20 20	4 = %	0 ■ RQD 0 Recov	60 60 rery ■ 60	80 80 80			DESC	SOIL RIP		ļ	OSO	SOIL SYMBOL		FIELD DATA		ELEVATION (ft)
).0	1	-		20			60	80	0.0'-	1.0'	SANDY GRA	VEL: m	oist			-	S1 Recov	/ery: 1.5'/2.0' 0.0/0.0 SB85-1	,	0.0
	/	S1							1.0'-		SĀND: brow	n, moi:	st, fine to				0.0'-1.0' SVOA,Pes	SB85-1 t/PCB,TAL,CN		-
\bigvee		-							mediu								AOV	SB85-2		
	7								2.0'-	2.5'	CINDERS: b	lack, m	oist				PID/FID:	/ery: 1.0'/2.0' 0.0/0.0		_
		S2	·						2.5'~	4.ō'∃	BRICK: moi	st, ash	and cinde	rs						_
-									4.0'-	4.5' S	SĪLTY SĀND	. black,	moist -				S3 Recov PID/FID:	rery: 2.0'/2.0' 0.0/0.0		_
0 //		\$3							4.5'- mediu		SAND: brow	n, mois	t, fine to		Ì					— 5.0
-					***	·								,			S4 Recov PID/FID:	rery: 2.0'/2.0' 0.0/0.0		
		S4														:	6.5'-7.5' VOA,SVOA	SB85-3 ,Pest/PCB,TAL	L,CN	_
											SĪLTY SĀND						SS Rass	/enr 2 Nº /2 Nº		
		\$5							8.0'- to we		SAND: ver	y light	brown, mo	ist		-	PID/FID:	/ery: 2.0'/2.0' 0.0/0.0		_
0.0								-									S6 Recov	very: 2.0°/2.0° 0.0/0.0	1	10
		S6														•		•		-
											D' GRĀVĒLĪ. coarse	y sand	: brown,				S7 Recor	very: 2.0°/2.0° 0.0/0.0	;	 -
		S7							Jacuit	accu,	000130									
		58			<i>5</i> 7.,												S8 Reco	very: 1.5'/2.0 0.0)'	•
<u>y</u>		R)RI	ZPT	KI	MP	ΔΤ	T. &r	<u> </u>	ነበር	IATES		OGGED BY:		<u> </u>			TION DEPTH:		<u></u>
1	٠.	T.C.	الدب						ylvani Ylvani		TUTTIN	R	EVIEWED BY	: ESCIULLI			COMPLE	TE: 10/05/98	8	

MARTIN	AA	RON										-		ST	TART	DAT	E: 1	0/05	98							BO	REHOLE	No:	96C	123	_S	B8
LOCATIO)N:	CAN	IDEN,	N)					_	_				_						BREE Z	ZY, 7	O DE	G.			oject No					
DRILLE) W	/GE	OPRO)BE										DI	RILL	ED B	Y: S	TEVE	MOY	LAN,	JCA					ELI	EVATION:	0.00	00 (f	t)		
SAMPLI					elby	Tu	be		Ì	<u> </u>	Sp	lit S	poon			∑ F	Roller	Bit		Ē	Drill	ed Co	sing				w Stem					
		0	SPT(N)		20 20	=	#0 % R #0 "N"	ecov	60 rery 60		80 80_)IL		ON			1180		SOIL SYMBOL			ELI ATA			
15.0	+			-	20	<u> </u>	40	-	<u>60</u>		80	-												+	\dashv							+
	/	S8											TOTA	AL [DEP	TH =	= 16.	.0 FE	ET								,					
			!																													
 -										<u></u>	<u></u>																•					-
-																									1							-
-20.0																													٠			
-										ļ											,											
-																							٠,									-
										<u></u>		<u></u>																				-
													i i							٠			,									
-25.0													i																			-
-																																_
																																-
																		•						-								-
·		$\prod_{\mathbf{D}'}$	ינדר.		ידי	T2	71	(T) A	TT	<u>;</u>	0.	V C1	00	7/11	TAIT		l	li i	OGGF	D BY:	M FR	 F1				COMPLE	TION	DEDI	H- 1£	O ft	L
1	١.	К(אר	ጎኮ		Ŋ	ΔL	1L	ſΑ	ليا	. (X	AS	27	JU.	IAI	<u>下</u> り	١ .			(ED B)			T			COMPLE				. V II	_

MARTIN AARON START DATE: 10/01/98 BOREHOLE No: 96C123_SI	SELEVATION (FIX.)
DRILLED BY: STEVE MOYLAN, JCA ELEVATION: 0.000 (ft) SAMPLE TYPE Shelby Tube	ELEVATION
SAMPLE TYPE Shelby Tuble Shelby Spoon Roller Bit Drilled Casing Hollow Stem Core **Core Recovery ** 20 40 60 80 20 40 60 80 DESCRIPTION O.0 S1 Recovery ** 20 40 60 80 DOIL DATA **N" value ** 20 40 60 80 O.0'-1.0' Ash and cinders: dry, black sand, slag 1.0'-4.0' SAND: brown, moist, with cinde and slag 1.0'-1.5' SB86-2 VOA S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	ELEVATION
### A ### SO II	ELEVATION
SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION Solution S	ELEVATION
Storage Storag	0.0
4.0'-6.0' SAND: black, damp, and cinders and slag 53 Recovery: 1.0'/2.0' PID/FID: 0.0/0.0 S4 Recovery: 1.5'/2.0' PID/FID: 0.0/4.2 Saturated, cinder Water © 6.5' S4 Recovery: 1.5'/2.0' PID/FID: 0.0/4.2 Saturated, cinder Water © 6.5'	-5.0
TOTAL DEPTH = 8.0 FEET	-10.0
L. ROBERT KIMBALL & ASSOCIATES LOGGED BY: M.EBEL COMPLETION DEPTH: 8.0 ft REVIEWED BY: E.SCIULLI COMPLETE: 10/01/98	
ILEVIEND BI. ESCIOLES COMPLETE 10/01/98	1 of 1

									300200	
MARTIN	AAR	ON			START DATE: 10/01/	/98		BOF	REHOLE No: 96C123_	SB87
LOCATIO	ON: (CAMDEN	, NJ		WEATHER: PARTLY CI			_	ject No: 96-1322-C123	
DRILLE) W/	GEOPR	OBE		DRILLED BY: STEVE I	MOYLAN, JCA		ELE	VATION: 0.000 (ft)	
SAMPLE	ETY	PE	Shelby Tube	Split Spoon	Roller Bit	Drilled Casing		Hollow	v Stem Core	
DEPTH (ft)	SAMPLE TIPE	SPT(N)	◆% Core R 20 40 ● RQ 20 40 ■% Recc 20 40 ▲"N" vi 20 40	60 80 60 80 60 80	SO DESCRI		OSO	SOIL SYMBOL	FIELD DATA	
0.0	s			0.0 0.5 0.8 me	'-0.5' CONCRETE '-0.8' SAND: black, d '-1.5' SAND: light bro dium '-4.0' SAND: black, d	own, damp, fine to			S1 Recovery: 2.0'/2.0' PID/FID: 0.0/38.3 0.5'-1.0' SB87-1 SVOA, Pest/PCB, TAL, CN 1.5'-2.0' SB87-2 /OA S2 Recovery: 2.0'/2.0' PID/FID: 0.0/1.0	0.
-5.0	s	3		and	-6.0' SILTY SAND: da ash			V	53 Recovery: 1.0'/2.0' 10/FID: 0.0/36.2 1.0'-5.0' SB87-3 'OA,SVOA,Pest/PCB,TAL,CN 64 Recovery: 1.0'/2.0' 10/FID: 0.0/3.6	5
-	5	4		Wat	-8.0' SAND: brown, w er @ 8.0' AL DEPTH = 8.0 FEET	et, mediam		P	20/FID: 0.0/3.6	·
-10.0					ne Deriii - 0.0 FEET					<u>1</u>
-										
I	<u>.</u>]	ROBI	ERT KIME	BALL & AS	SOCIATES	LOGGED BY: M.EBEL REVIEWED BY: E.SCIULLI			COMPLETION DEPTH: 8.0 ft	
			TO1	, Pennsylvan		Fig. No:			Page	

MARTIN	1 A/	ARON	1							START D	ATE: 10/0	2/98	· · · · · · · · · · · · · · · · · · ·			BC	REHOLE No	96C123	3_SB8	8
LOCATI	ON:	: CA	MDEN	, NJ							R: COOL, S		/INDY			_	oject No: 96			
DRILLE	D V	N/GE	OPR()BE						DRILLED	BY: STEVE	MOYLA	N, JCA			EL	EVATION: 0.0	000 (ft)		
SAMPL	E 1	TYPE		Shelb	y Tube	į.		Split S	Spoon		Roller Bit		Drilled	Casing		Holic	w Stem	Core		4
DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)		◆% ℃ 0 44 0 44 0 44 0 44 1	Recover 0 6	60 B eny∎ 60 B	30 30		Е	S()ESCF	OIL RIPT:	ION		OSC	SOIL SYMBOL	I .	IELD DATA		ELEVATION (f)
0.0		S 1			J 1,	<i>y</i>	<u> </u>		1		ncrete Ty sand:	brown c	ind black,	and			\$1 Recovery PID/FID: 12: 0.5'-1.0' SI SVOA, Pest/F		0	.0
<u> </u>		S2							2.0'- sand	-7.0' CIN	IDERS: gra ed moistu	iy,moist, ire w/ c	black silty lepth	,			VOA S2 Recovery PID/FID: 39			
		^7	-			,											S3 Recovery PID/FID: 284	: 1.5'/2.0' 4/90.8		5.0
		\$3															S4 Recovery PID/FID: 160 6.0'-7.0' SE VOA,SVOA,Pe	: 1,5'/2.0' 35/13.9 388-3 st/PCB,TAL,		3.0
		S4							Water	r @ 7.3'	TY CLAY: 0		h cinders						-	
.0	•	i i																		10.0
																			-	
					Section 1															D
]	ļ.,	R	OBI	RT	KII	MB_{i}	ALL	&	ASS	SOCIA	TES		GED BY: M.					N DEPTH: 8.		
	_	-									· • - · · ·		EWED BY: 1	ESCIULLI .	-		COMPLETE	10/02/98		
				LDe.	<u>nsbi</u>	irg,	<u>ren</u>	nsy	<u>lvani</u>	ia		Fig.	No:				1		Page 1 c	of 1

MARTI	N A	ARON	1						START DATE	: 10/02/	98			BC	REHOLE No: 96C1	23_S	B89
LOCAT	10N	: CAN	dDEN,	NJ					WEATHER: (COOL, SUN	NY, WINDY			Pre	oject No: 96-1322	-C123	
DRILLE	ED \	N/GE	OPRO	BE					DRILLED BY	: Steve M	OYLAN, JCA				EVATION: 0.000 (ft)		
SAMP	LE	TYPE			Tube			Spoon	Ro	oller Bit .	Drille	ed Casing		Hollo	w Stem 🔲 Co	ore	.,
ОЕРТН (#)	SAMPLE TYPE	SAMPLE NO	SPT(N)	20 20 20 20	● R 40 ■% Re 40 ▲"N"	60 60 covery I	80 80 80		DE	SOI SCRI	L PTION		OSU	SOIL SYMBOL	FIELD DATA		ELEVATION (ft)
-5.0		\$1 \$2 \$3						2.0' mais 2.5'	-0.5' CONCI -2.0' SĀND: st, fine to m -2.5' SĪLTY st -6.0' CĪNDE	brown an an and an an an an an an an an an an an an an	th cinders	brown, st			S1 Recovery: 2.0' /2 PID/FID: 204/0.0 0.5'-1.0' SB89-1 SVOA,Pest/PCB,TAL, 1.5'-2.0' SB89-2 VOA S2 Recovery: 1.5'/2 PID/FID: 12.3/0.3 S3 Recovery: 1.0'/2 PID/FID: 1104/0.3 4.0'-5.0' SB89-3 VOA,SVOA,Pest/PCB, S4 Recovery: 1.0'/2 PID/FID: 0/10.0	.0' .0'	- - - - - - - -
-10.0									L DEPTH =								10.0
	L.	R	OBE	ERT	ИM	BAI	L &	: AS	SOCIATI	ES	LOGGED BY: REVIEWED BY				COMPLETION DEPTH: COMPLETE: 10/02/		
				Eben	sbur	g, P	enns	ylvan	ia	*	Fig. No:				10/02/	Page	1 of 1

				300203	
MARTIN AARON		START DATE: 10/02/98	BOF	REHOLE No: 96C123_SE	390
LOCATION: CAMDE	N, NJ	WEATHER: COOL, SUNNY, WINDY		ject No: 96-1322-C123	
DRILLED W/GEOPI		DRILLED BY: STEVE MOYLAN, JCA		VATION: 0.000 (ft)	
SAMPLE TYPE	Shelby Tube / Split Spoon		Casing Hollow		
DEPTH (ft) SAMPLE TYPE SAMPLE NO SPI(N)	◆% Core Recovery ◆ 20 40 60 80 ■ RQD ● 20 40 60 80 ■ % Recovery ■ 20 40 60 80 ▲ "N" value ▲	SOIL DESCRIPTION	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
-5.0 S3	20 40 60 80 0.0'- 0.5'- mais	-0.5' CONCRETE -4.0' SILTY SAND: dark gray and bist, and cinders -7.0' No recovery	rown,	S1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.5'-1.0' SB90-1 SVOA, Pest/PCB, TAL, CN 1.0'-1.5' SB90-2 VOA S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 S3 Recovery: 0.0'/2.0' PID/FID:/	-5.0
- S4 -10.0	cinde 7.7.7- Some	-7.7' SILTY CLAY: gray, moist, and ers -8.0' SILTY SAND: brown, saturated e cinders, water @ 7.7' L DEPTH = 8.0 FEET		7.0'—7.5' SB90—3 VOA,SVOA,Pest/PCB,TAL,CN	-10.0
L. ROE	ERT KIMBALL & ASS	. INEVIEWED DI:		COMPLETION DEPTH: 8.0 ft COMPLETE: 10/02/98	
	Ebensburg, Pennsylvani	ia Fig. No:	_	Page	1 of 1

MART	IN A	APOI					START DATE: 10/06	:/QR			T _B O	PREHOLE No: 96C123_S	CD01
LOCA				l N.I			WEATHER: SUNNY, ('		_	oject No: 96-1322-C123	
DRILL							DRILLED BY: WELLS				+	EVATION: 0.000 (ft)	
SAMF		_ 		Shelby Tube	Split S		Roller Bit		Drilled Casing	П		wwwStern Core	
DEPTH (ft)	SAMPLE TYPE		T =	◆% Core Rec 20 40 6 ● RQD € 20 40 6 ■% Recove 20 40 6	00 80 80 80 80 80 80	P0011)ÎL)SC	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
-5.0		\$1 \$2 				1.0'- 1.5'- 2.0'- grave 4.0'- brown 6.0'- black, sand,	1.0' SAND: black, ors 1.5' SAND: light brack, ors 2.0' BRICK 4.0' SAND: light brack, or sand or san	ght gray el and cir	np, fine			S1 Recovery: 2.0'/2.0' PID/FID: 0/0 0.0'-0.5' SB91-1 SVOA,Pest/PCB,TAL,CN 1.0'-1.5' SB91-2 VOA S2 Recovery: 1.5'/2.0' PID/FID: 0/0 S3 Recovery: 2.0'/2.0' PID/FID: 0/0 5.0'-6.0' SB91-3 VOA,SVOA,Pest/PCB,TAL,CN S4 Recovery: 2.0'/2.0' PID/FID: 0/0	-5.0
	L.	R	0B.	ERT KIMBA			*		BY: M.EBEL ED BY: E.SCIULLI			COMPLETION DEPTH: 8.0 ft COMPLETE: 10/06/98	
				Ebensburg,	Pennsyl [*]	vania	a `	Fig. No				Page	1 of 1

MARTIN AARON START DATE: 10/06/98 BOREHOLE No: 96C12. LOCATION: CAMDEN, NJ WEATHER: SUNNY, COOL, DRY Project No: 96-1322-C DRILLED W/GEOPROBE DRILLED BY: WELLS REEVES, JCA ELEVATION: 0.000 (ft) SAMPLE TYPE	
DRILLED BY: WELLS REEVES, JCA ELEVATION: D.000 (ft) SAMPLE TYPE Shelby Tube \$\sqrt{\frac{\sqrt{\sqrt{\chi}}{\sqrt{\chi}}}} \sqrt{\sqrt{\chi}} \sqrt{\sqrt{\chi}} \sqrt{\sqrt{\chi}} \sqrt{\sqrt{\chi}} \sqrt{\sqrt{\chi}} \sqrt{\chi}	
SAMPLE TYPE Shelby Tube Split Spoon Roller Bit Drilled Casing Hollow Stem Core ***T Core Recovery ** ***Description** ***T Recovery ** ***P volume A	TION (ft)
Solid Soli	TION (ft)
Solid Soli	TION (ft)
0.0'-1.5' SAND: brown, dry, with cinders and brick S1 Recovery: 2.0'/2.0' PD/FID: 0/0 0.0'-1.0' SB32-1 SVOA,Pest/PCB,TAL,CN 1.5'-2.0' SB92-2 Cinders 2.5'-6.0' ASH and CINDERS: black and gray moist S3 Recovery: 1.5'/2.0' PID/FID: 0/0 S3 Recovery: 1.0'/2.0' PID/FID: 0/0 S4 Recovery: 1.0'/2.0' PID/FID: 0/0 Cinders and ash, water @ 7.5' S4 Recovery: 2.0'/2.0' PID/FID: 0/0 S4 Recovery: 2.0'/2.0' PID/FID: 0/0 S4 Recovery: 2.0'/2.0' PID/FID: 0/0 S4 Recovery: 2.0'/2.0' PID/FID: 0/0 S4 Recovery: 2.0'/2.0' PID/FID: 0/0 S6 PID/FID: 0/0 S4 Recovery: 2.0'/2.0' PID/FID: 0/0 S6 PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0 S7 Recovery: 2.0'/2.0' PID/FID: 0/0	ELEVA
6.0'-8.0' SAND: brown, moist to wet, PID/FID: 909/0 cinders and ash, water @ 7.5'	-
	-5.0 - CN
0.0 TOTAL DEPTH = 8.0 FEET	10.0
L. ROBERT KIMBALL & ASSOCIATES LOGGED BY: M.EBEL COMPLETION DEPTH: 8 REVIEWED BY: E SCHILL! COMPLETE: 10/06/08	
INCHICATED DI. MODINI METELLE, 10/00/30	
	Page 1 of 1

MARTI	N A	ARON	1		START DATE: 10/06/9	98		ВС	DREHOLE No: 96C123_S	B93
LOCAT	ПОМ	: CA	MDEN	, NJ	WEATHER: SUNNY, CO	OL, DRY		+	oject No: 96-1322-C123	
DRILL	ED '	W/GI	OPR(OBE	DRILLED BY: WELLS R	EEVES, JCA		EL	EVATION: 0.000 (ft)	
SAMP	LE	TYPE		Shelby Tube Split Spo	n Roller Bit	Drilled Casing		Holic	ow Stem 📗 Core	
	سا			◆% Core Recovery◆ 20 40 60 80				=		£
E	TYPE	일 일	Î	● RQD ● 20 40 60 80	SOI	\mathbf{L}	ای	SYMBOL	FIELD	ELEVATION (ft)
DEPTH	SAMPLE	SAMPLE	SPT(N)	■% Recovery■	DESCRI	סייז האז	OSC		DATA	ATI(
133	SAIV	₹S		20 40 60 80 ▲"N" yatue ▲	DESCITE	. 1101		SOIL	DATA	ELEY
0.0	1-	ļ		20 40 60 80	0'-8.0' SAND: rust-cold	red moist ash			\$1 Recovery 1.5' /2.0'	0.0
					id cinders	rod, moiot, don			\$1 Recovery: 1.5'/2.0' PID/FID: 0/0 0.0'-1.0' \$B93-1	
L	$\ \ $	S 1							SVOA, Pest/PCB, TAL, CN	
	\int	31							1 01 1 51 0007 0	
	V								1.0'-1.5' SB93-2 VOA	
-									S2 Recovery: 1.5'/2.0' PID/FID: 0/0	-
	1								1	
-	\parallel	S2								- 1
}	$\ $									
ļ	V						İ		\$7 December 1.51 /2.02	
							ľ		S3 Recovery: 1.5'/2.0' PID/FID: 74.9/0.3 4.0'-5.0' SB93-3	
1									VOA,SVOA,Pest/PCB,TAL,CN	
-5.0	$\ f \ _1$	S3								-5.0
	$\ \cdot \ $,			
_									S4 Recovery: 1.5'/2.0'	_
									S4 Recovery: 1.5'/2.0' PID/FID: 22.1/0	
	\prod_{i}						ì			
	$\ \ $	S4								<u> </u>
ļ	$\ \cdot \ $			l w	nter @ 7.5'		•			
- .	\vdash			8	D'-8.5' CINDERS: Ы́асk,	saturated	İ		S5 Recovery: 2.0'/2.0' PID/FID: 7.6/58.8	- 1
1						ì			PID/FID: 7.6/56.6	
		S5			5'-10.0' SANDY SILT: blo ayey sand	ick, and silty	: .			
		3			.,,,,	į	i		· ·	
						:				
-10.0				11	.O'-12.O' SILTY CLAY: 6	lack and dark			S6 Recovery: 2.0'/2.0' PID/FID: 8.0'/20.5	10.0
				gr	ay	į			1.571.51 510) 2510	
<u> </u>		S6								 -
	$\ $									
	V				•					
				To	TAL DEPTH = 12.0 FEET					
									,	
-									,	-
						,				
					• ,					
	<u>Т</u>	D	UDI	ERT KIMBALL & A	SALVIDUS	LOGGED BY: M.EBEL	1		COMPLETION DEPTH: 12.0 ft	<u> </u>
	ш.	. 11	ומט			REVIEWED BY: E.SCIULLI			COMPLETE: 10/06/98	
				Ebensburg, Pennsylva	ша	Fig. No:			l Page	1 of 1

	•														300207		
MART	N A	AARO	N						START D	ATE: 10/06,	/9 8	·		BC	REHOLE No: 96C123_S	B94	
			MDEN						WEATHER	R: SUNNY, C	OOL, DRY				oject No: 96-1322-C123		
			EOPR								REEVES, JCA				EVAΠON: 0.000 (ft)		
AMF	LE	TYP	E L		Tube			Spoon	<u> </u>	Roller Bit	Dril	led Casing		Holic	ow Stem Core		
~				20	40		ery. ♦ 	_]						_		(E)	
<u></u>		Z U	2	20		RQD ● 60	80			S0	lL		ی	SYMBOL	FIELD		
оертн (#)	SAMPLE TYPE	SAMPLE NO	SPT(N)	20	■% R 40	lecovery 60	80	7	Γ	FCCD.	PTION		OSC	l S	DATA	ELEVATION	
9	SA	25			▲ "N	" value 4	1	7	Ъ		.1 11011			SOIL	DAIA	191	
.0		-	-	20	40	60	80	0.0'-	-0.5' COI	NCRFTF	·				S1 Recovery: 1.5'/2.0'	0.0	
											nd gray, dry,		-	,	S1 Recovery: 1.5'/2.0' PID/FID: 0/0 0.5'-1.0' SB94-1 SVOA,Pest/PCB,TAL,CN		
		51					ļļ.	cind		ID. DIUCK UI	ia gray, ary,	#IUI	,		SVOA, Pest/PCB, TAL, CN		
										ID: red, and	d cinders, mo	oist			1.0'-1.5' SB94-2		
	1														VOA		
		Ì										!			S2 Recovery: 1.5'/2.0' PID/FID: 0/0		
									•						, ,		
	I_{\perp}	S2														-	
	/														C7 D 1 51 /2 D1		
	7]							S3 Recovery: 1.5'/2.0' PID/FID: 0/0		
															4.5'-5.5' SB94-3 VOA,SVOA,Pest/PCB,TAL,CN		
)	1	S3					ļļļ	.							10/40/0/4/ 00// 00///2011	— 5.0	
	1				14										CA Passions 1 51 /2 01		
					V.										S4 Recovery: 1.5'/2.0' PID/FID: 0/0		
										DERS: black	, wet	-					
		S4						Wate	r @ 6.5'							-	
	_						ļļļ	-].			_	
								TOTA	L DEPTH	= 8.0 FEE							
													. :			-	
1.0							ļļļ.			•						-10	
															·		
							Ĭ										
			ľ							-		·				-	
							<u>ļ. i. i.</u>										
																1	
						_					(<u></u>	<u> </u>			
	L.	. R	0BI	ERT	KIN	(BA	LL &	ASS	SOCIA	TES	LOGGED BY:	: M.EBEL TY: E.SCIULLI			COMPLETION DEPTH: 8.0 ft COMPLETE: 10/06/98		
							enns			*,	Fig. No:	71. HJUILL	-			1 of	

MARTIN	A	\R0N			START DATE: 10/06/98		B	OREHOLE No: 96C123_S	SB95
LOCATIO	ON:	CAI	ADEN,	. NJ	WEATHER: SUNNY, COOL, DRY			roject No: 96-1322-C123	
DRILLE	D V	V/GE	OPRO)BE	DRILLED BY: WELLS REEVES, JCA		EL		
SAMPL	E]	TYPE		<u> </u>	Spoon Roller Bit Drilled Casing		Holk	ow Stem 🔲 Core	
DEPTH (ft)	SAMPLE IYPE	SAMPLE NO	SPT(N)	◆% Core Recovery ◆ 20 40 60 80 ● RQD ● 20 40 60 80 ■% Recovery ■ 20 40 60 80 ▲ "N" value ▲	SOIL DESCRIPTION	OSU	SOIL SYMBOL	FIELD DATA	(a) NOFFICE
0.0	\dashv	-		20 40 60 80	0.0'-0.5' SAND: brown and gray, damp,			S1 Recovery: 1.5'/2.0'	0.0
-		S1 S2			cinders, gravel and slag 0.5'-2.0' GRAVELLY SAND: light brown and gray, damp, and cinders 2.0'-3.0' SAND: red; damp, medium, and cinders 3.0'-4.5' CINDERS: black, moist			\$1 Recovery: 1.5'/2.0' PID/FID: 0/0 0.0'-1.0' \$B95-1 \$VOA,Pest/PCB,TAL,CN MS/MSD 1.0'-1.5' \$B95-2 VOA MS/MSD \$2 Recovery: 1.5'/2.0' PID/FID: 0/0	
-5.0		\$3			4.5'—6.0' SAND and CINDERS: red, moist			S3 Recovery: 1.5'/2.0' PID/FID: 0/0 4.5'-5.5' SB95-3 V0A,SV0A,Pest/PCB,TAL,CN 4.5'-5.5' SB95-4 dup. V0A,SV0A,Pest/PCB,TAL,CN	-5.
-		S4			6.0'-7.0' CINDERS: black, saturated Water @ 6.5' 7.0'-8.0' SILTY CLAY: black	-		S4 Recovery: 1.5'/2.0' PID/FID: 0/0	
-10.0					TOTAL DEPTH = 8.0 FEET				10
-									
-									-
-					· · · · · · · · · · · · · · · · · · ·				

									300209	
MARTIN	V A	AROI	V		START DATE: 10/02,	/98		BC	DREHOLE No: 96C123_S	SB96
OCAT	ION	: CA	MDEN	, NJ	WEATHER: COOL, SU	NNY, WINDY			oject No: 96-1322-C123	
RILLE	_			OBE	DRILLED BY: STEVE	MOYLAN, JCA		EL	EVATION: 0.000 (ft)	
SAMPL	Ε.	TYPE			Spoon Roller Bit	Drilled Casing		Hollo	ow Stem	_4
	ابر			◆% Core Recovery ◆ 20 40 60 80				7		€
=	SAMPLE TYPE	SAMPLE NO	$\widehat{\mathbf{z}}$	● RQD ● 20 40 60 80	\neg SC	\prod	ی	SYMBOL	FIELD	N N
DEPTH (ft)	핕	Æ	SPT(N)	■% Recovery■	DESCR	וסייוטו	OSC		DATA	MT(
	₹	S		▲"N" yalue ▲		II IION		SOIL	DATA	ELEVATION (ft
0.0	\dashv			20 40 60 80	0.0'-0.5' CONCRETE				S1 Recovery: 2.0' /2.0'	0.0
					0.5'-1.0' SANDY FILL: d		-		\$1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.5'-1.0' \$B96-1	8
	II	S1				JIK DIOWII, WILII	,		SVOA, Pest/PCB, TAL, CN MS/MSD	
.	//	•			1.0'-1.5' Concrete Ag./	gray sand, black			1	
1	$ \cdot $				sand with cinders and b	rick pieces	1		1.0'-1.5' SB96-2 VOA MS/MSD	
-	7				inders	ik brown, with			S2 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0	-
					2.5'-2.8' Concrete piece	 !S	{		, , , , , , , , , , , , , , , , , , , ,	
		S2			2.8'-4.0' SAND: dark bro	own to brown,	1			-
	П				medium to coarse, with					
/	/				pebbles, last 3 in. sand	only				
ţ	\exists				4.0'-8.0' SAND: dark bro	own/black, and	1		S3 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 4.0'-5.0' SB96-3	-
	\parallel	}			cinders				4.0'-5.0' SB96-3 VOA,SVOA,Pest/PCB,TAL,CN	
0	\parallel	S3								-5.0
	\prod					•				
/		ł					1			
ŀ			1						S4 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0	
						•			, ,	
	II	S4			Water @ 7 CV					-
	$ \cdot $				Water @ 7.0'					
1							-			
ľ					TOTAL DEPTH = 8.0 FEE		1		}	Γ
										-
0.0										-10.
0.0	-	.								10.
							Ì			-
										1
							}			
		}								
		1							,	
	 T	D.	ΛDΙ	ERT KIMBALL 8	ASSUCIALES	LOGGED BY: M.EBEL			COMPLETION DEPTH: 8.0 f	t
	Lı.	If	UD.			REVIEWED BY: E.SCIULL			COMPLETE: 10/02/98	
				Ebensburg, Penns	vivania	Fig. No:			Page	e 1 of

MARTIN AARON START DATE: 10/02/98 BOREHOLE No: 96C1	-C123
DRILLED W/GEOPROBE SAMPLE TYPE Shelby Tube Split Spoon Roller Bit Drilled Casing Hollow Stem Tool SOIL SOIL DESCRIPTION DATA S1 1.0°-2.0° SAND: dark gray, damp, and silt with gravel and cinders 1.5°-2.0° SB97-2 VOA S2 4.0°-4.5° SILTY SAND: dark gray, damp, ash, cinders 4.0°-4.5° SILTY SAND: dark gray, damp, ash, cinders 4.0°-4.5° SILTY SAND: red, damp, and cinders S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5°/2. PID/FID: 0.0/0.0 S4.0°-6.0° CINDERS	.0' 0.
SAMPLE TYPE Shelby Tube Spirt Spoon Roller Bit Drilled Casing Hollow Stem Covery 6 20 40 60 80 SOIL Covered Recovery 6 20 40 60 80 SOIL Cover	.0' 0.
SO SO SO SO SO SO SO SO	.0' 0.
DATA DATA	.0' 0.
DATA DATA	.0' 0.
20 40 60 80 0.0'-1.0' SAND: dark gray, damp, and silt with gravel and cinders S1 Recovery: 1.5'/2. PID/FID: 0.0/0.0 0.0'-1.0' SB97-1 SVOA,Pest/PCB.TAL_C 1.0'-2.0' SILTY SAND: light brown, damp, fine, with gravel and cinders 1.5'-2.0' SB97-2 VOA S2 Recovery: 1.0'/2. PID/FID: 0.0/0.0 S2 Recovery: 1.0'/2. PID/FID: 0.0/0.0 S2 Recovery: 1.0'/2. PID/FID: 0.0/0.0 S3 Recovery: 1.0'/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S4.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S997-3 VOA,SVOA, Pest/PCB,TOM S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S4.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S4.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S4.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S997-3 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S997-3 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S997-3 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S997-3 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0/0.0 S1.5'-5.0' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0' S1.5' SILTY SAND: dark brown, damp. S3 Recovery: 1.5'/2. PID/FID: 0.0' S1.5' SI	.0' 0.
S1	.0° -
1.0'-2.0 SILTY SAND: light brown, damp, fine, with gravel and cinders 1.5'-2.0' SB97-2 VOA S2 Recovery: 1.0'/2. PID/FID: 0.0/0.0	.0' -
ash, cinders 4.0'-4.5' SILTY SAND: red, damp, and cinders 4.5'-5.0' SILTY SAND: dark brown, damp, and cinders 5.0'-6.0' CINDERS	.0' -
4.0'-4.5' SILTY SAND: red, damp, and cinders 4.5'-5.0' SILTY SAND: dark brown, damp, and cinders 5.0'-6.0' CINDERS	
-5.0 S3 and cinders 5.0°-6.0° CINDERS	
-5.0 S3 and cinders 5.0°-6.0° CINDERS	
6.0'-8.0' SILTY CLAY: light gray, wet to PID/FID: 0.0/0.0 /2.	0,
saturated, ash cinders	
TOTAL DEPTH = 8.0 FEET	
	-
-10.0	-1
	-
	.
	-
	 -
L. ROBERT KIMBALL & ASSOCIATES LOGGED BY: M.EBEL COMPLETION DEPTH: REVIEWED BY: E. SCHULL COMPLETION DEPTH:	
REVIEWED BY: ESCIULI COMPLETE: 10/02/9	^

DRILLED BY: STEVE MOYLAN, JCA ELEVATION: 0.000 (ft) SAMPLE TYPE Shelby Tube Shelt Spoin Spirit Spoon Solid Bit Drilled Casing Hollow Stem Casing Hollow Stem Casing Hollow Stem Casing Hollow Stem Casing FIELD ***T. Core Recovery ***	23_SB98	PREHOLE No: 96C123_S	B(START DATE: 10/02/98		*-,	1	l AAROI	MARTI
SAMPLE TYPE		oject No: 96-1322-C123		/, WINDY	WEATHER: COOL, SUNN		NJ	MDEN,	ON: CA	LOCAT
Solid Soli		EVATION: 0.000 (ft)	EL	TAN, JCA	DRILLED BY: STEVE MO		BE	OPRO	D W/GI	DRILL
SOIL DESCRIPTION SOIL		w Stem Core	Holk	Drilled Casing	poon Roller Bit	e 🎉 🛮 Split S	Shelby Tube		E TYPE	SAMP
0.0" - 0.5" GRAVEL: dark brown, dry, sand S1 Recovery; 2.0" / PD/FID: 0.0/0.0 0.0" - 1.0" CSNDE: dark brown, and aG 0.0" - 1.0" SB98 - 1 SVOA,Pest/PCB,TAL, and ashes, medium brown sand mixed in with orange mottling 1.0" - 4.0" SAND: dark brown, and cinders and ashes, medium brown sand mixed in with orange mottling 1.0" - 1.5" SB98 - 2 VOA S2 Recovery; 2.0" / PD/FID: 0.0/0.0 4.0" - 5.0" SB98 - 3 VOA,Pest/PCB,TAL, and a second provided in with orange mottling 1.0" - 1.5" SB98 - 2 VOA S2 Recovery; 2.0" / PD/FID: 0.0/0.0 4.0" - 5.0" SB98 - 3 VOA,SVOA,Pest/PCB, and a second provided	ELEVATION (ft)	FIELD DATA				0 60 80 ■ RQD ● 0 60 80 Recovery ■ 0 60 80 N" value ▲	20 40 20 40 20 40	SPT(N)	SAMPLE TYPE SAMPLE NO	DEPTH (ft)
33 Recovery: 2.0'/2 PID/FID: 0.0/0.0 4.0'-5.0' SILTY SAND: brown, moist, fine 33 Recovery: 2.0'/2 PID/FID: 0.0/0.0 4.0-5.0' SB98-3 VOA,SVOA, Pest/PCB, from moist to wet w/ depth cinders, ash water © 7.0' TOTAL DEPTH = 8.0 FEET				n, and AG , and cinders	and cingers 0.5'-1.0' CONCRETE: broke 1.0'-4.0' SAND: dark brown and ashes, medium brown	0 60 80	20 40			0.0
S4 S4 SILL: Black, cinders, dsh from moist to wet w/ depth cinders, ash water © 7.0' TOTAL DEPTH = 8.0 FEET	L,CN	S3 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 4.0'-5.0' SB98-3 VOA,SVOA, Pest/PCB,TAL,CN		n, moist, fine	4.0'-5.0' SILTY SAND: brow					-
TOTAL DEPTH = 8.0 FEET	, - 5.0	S4 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0			from moist to wet w/ dept				S3	-5.0 -
-10.0	-								S4	-
	-10.0									-10.0
	-									-
										~
I DODEDT KIMDATT & ACCOCIATES LOGGED BY: M.EBEL COMPLETION DEPTI	8.0 ft	COMPLETION DEPTH: 8.0 fi		LOGGED BY: M.EBEL	A S S O C I A T E S	MIDATT 0.	ודעד יוזיםי ודעד יוזיםי	UDI	T D	
		COMPLETE: 10/02/98			· •			ומט	ы. П	

MARTI	N A	ARON	<u></u>		START DATE: 10/02/98	BOREHOLE No: 96C123_SB99
LOCAT				NJ	WEATHER: COOL, SUNNY, WINDY	Project No: 96-1322-C123
DRILLE					DRILLED BY: STEVE MOYLAN, JCA	ELEVATION: 0.000 (ft)
SAMP				Shelby Tube Split Spoon	Roller Bit Drilled Casing	Hollow Stem Core
	SAMPLE TYPE	SAMPLE NO	SPT(N)	◆% Core Recovery ◆ 20	SOIL DESCRIPTION	SOIL SYMBOL SOIL SYMBOL BLEVATION (ft)
0.0		S1		0.0'- to k	6.0' SAND: medium brown with medium rge pebbles, cinders, brick pieces, lic slag, light brown near bottom	S1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.0'-1.0' SB99-1 SVOA, Pest/PCB, TAL, CN 1.0'-1.5' SB99-2 VOA S2 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0
-5.0		S2 S3				S3 Recovery: 2.0'/2.0' – PID/FID: 0.0/0.0
		S4		coar	8.0' SAND: dark brown to black, e 9 7.5', cinders	S4 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 7.0'-7.5' SB99-3 VOA,SVOA,Pest/PCB,TAL,CN
-10.0				ATOTA	DEPTH = 8.0 FEET	—-10.I
-						
	L.	R(ERT KIMBALL & ASS Ebensburg, Pennsylvan	INCALLACTOR DI COCIOCE	COMPLETION DEPTH: 8.0 ft COMPLETE: 10/02/98 Page 1 of 1

MARTIN AARON START DATE: 10/05/98 BOREHOLE No: 96-1322-C1	CD105
DRILLED BY: STEVE MOYLAN, JCA ELEVATION: D.000 (ft) SAMPLE TYPE Shelby [ulger	
SAMPLE TYPE	
Solid Soli	
0.0'-0.5' Concrete 0.5'-4.0' SAND: black, moist, gravelly, and cinders S1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.5'-1.5' SB105-1 SVOA, Pest/PCB, TAL_CN 1.5'-2.0' SB105-2 VOA S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 4.0'-6.5' CINDERS: black, moist 4.0'-6.5' CINDERS: black, moist S3 Recovery: 1.0'/2.0' PID/FID: 0.0/0.0 4.0'-5.0' SB105-3 VOA, SVOA, Pest/PCB, TAL_()	ELEVATION (ft)
S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0 4.0'-6.5' CINDERS: black, moist 4.0'-5.0' SB105-3 VOA,SVOA, Pest/PCB, TAL, (0.0
5.0	
C4 Dec 4 01 /0 01	- CN 5.0
S4 Recovery: 1.0'/2.0' 6.5'-8.0' ASH: gray, saturated	
0.0 TOTAL DEPTH = 8.0 FEET	-10.0
I PORFOT VIMBALL & ACCOCIATED LOGGED BY: M.EBEL COMPLETION DEPTH: 8.	O ft
L. ROBERT KIMBALL & ASSOCIATES LOGGED BY: M.EBEL COMPLETION DEPTH: 8.	0.10
	age 1 of 1

MARTIN A	ARAN			START DATE: 10/05/98		IRO	REHOLE No: 96C123_S	R10
LOCATION			. NJ	WEATHER: SUNNY, SLIGHTLY BREEZY, 70 DEG.		+	oject No: 96-1322-C123	010
DRILLED \				DRILLED BY: STEVE MOYLAN, JCA		+	EVATION: 0.000 (ft)	
SAMPLE			Shelby Tube Split Spoo	Roller Bit Drilled Casing		Hollo	w Stem Core .	
DEPTH (ft) SAMPLE TYPE	SAMPLE NO	SPT(N)	◆% Core Recovery ◆ 20 40 60 80 ●RQD ● 20 40 60 80 ■% Recovery ■ 20 40 60 80 ▲ "N" value ▲ 20 40 60 80	SOIL DESCRIPTION		SOIL SYMBOL	FIELD DATA	FI FVATION (ft)
0.0	S 1		0.0	'-0.5' Concrete '-3.0' CINDERS: black, moist, and coal			S1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.5'-1.5' SB106-1 SVOA, Pest/PCB, TAL, CN 1.5'-2.0' SB106-2 VOA S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	0.0
-	S2		cir	'-4.0' SAND: rust-colored, moist, and ders and ash	The state of the s			
-5.0	S3		l kcir	ders 7-6.5' CINDERS: black, moist		- }	S3 Recovery: 1.5'/2.0' PID/FID: 25.5/0.0 4.0'-5.0' SB106-3 VOA,SVOA, Pest/PCB,TAL,CN	 -5
	S4		6.5 sd	7-8.0' ASH: light gray, wet to urated, with cinders, water ⊕ 7.0'			S4 Recovery: 1.5'/2.0' PID/FID: 0.0/1.1	
			ТО	AL DEPTH = 8.0 FEET	The state of the s			
-10.0								1
-								
L.	R	OBI	ERT KIMBALL & AS Ebensburg, Pennsylva	INCHERCE DIS ESCIOLE			COMPLETION DEPTH: 8.0 ft COMPLETE: 10/05/98	

MARTI	IN A	ARON	٧			START DATE: 10/02/	 98		ВС	REHOLE No: 96C123_S	B107
LOCAT				l, NJ	<u> </u>	WEATHER: COOL, SUN			_	oject No: 96-1322-C123	- : 57
DRILL				<u> </u>		DRILLED BY: STEVE M				EVATION: 0.000 (ft)	
SAMP				Shelby Tube	Split Spoo		Drilled Casing	П		w Stem Core	
	,,,		SPT(N)	◆% Core Recc 20	O BO O BO O BO O BO O BO O BO O BO O BO	SOI DESCRI		JSN	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0		S 1			0. 0.	0'-0.5' Asphalt and col	es, cinders			S1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.5'-1.0' SB107-1 SVOA, Pest/PCB, TAL, CN 1.0'-1.5' SB107-2 VOA S2 Recovery: 2.0'/2.0'	0.0
-		S2			co	0'-3.0' Anthracite, asho arse brown sand 0'-8.0' Cinders, black o attling		_		S2 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 S3 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	
-5.0 -		S3		4						5.0'-6.0' SB107-3 VOA,SVOA,Pest/PCB,TAL,CN S4 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0	-5.0
-		S4		**		et @ 7.5° TAL DEPTH = 8.0 FEET				110) 110. 0.0) 0.0	-
- -10.0											10.0
-											
	L.	R	0B	ERT KIMBA Ebensburg,		SSOCIATES	LOGGED BY: M.EBEL REVIEWED BY: E.SCIUL Fig. No:	Ш		COMPLETION DEPTH: 8.0 ft COMPLETE: 10/02/98 Page	1 of 1

MARTIN	ΔΔR	ON				START DATE: 10/05	/9R		BO	REHOLE No: 96C123_S	R108
LOCATIO			DEN	N.J			SLIGHTLY BREEZY, 70	DFG.	+	oject No: 96-1322-C123	70100
DRILLED						DRILLED BY: STEVE			+	EVATION: 0.000 (ft)	
AMPLE					Split Spoon	L	Drilled Cas	ng 🗍		w Stem Core	
DEPTH (ft)		2	SPT(N)	◆% Core Recovery ◆ 20	<u> </u>)IL	JSN	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0	s	1					moist, medium, and		,	\$1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.0'-1.0' \$B108-1 \$VOA,Pest/PCB,TAL_CN	0.0
-	s	2	-		med	-2.0' SAND: rust—co ium, with cinders or -4.5' CINDERS: blac ash	- slag			1.5'-2.0' SB108-2 VOA S2 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0	
-5.0	s	3				-6.0' SAND: light br brick and rock frag				S3 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 5.0'-6.0' SB108-3 VOA,SVOA,Pest/PCB,TAL,CN	-5.0
-	S	4	•		satul 'Wate 6.5'-	-6.5' SAND: brown, ated silty r @ 6.3' -9.5' MEADOW MAT: organic material	wet, medium, to	,		S4 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	
- -	S	5								S5 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0	<u> </u>
-10.0	5	б			medi 10.0	-10.0' SILTY CLAYEY um -12.0' SAND: light se, saturated				S6 Recovery: 2.0*/2.0* PID/FID: 0.0/0.0	10 -
-					TOTA	L DEPTH = 12.0 FE	ET				
J,	.]	RC)BE	RT KIMBALL	& ASS	SOCIATES	LOGGED BY: M.EBEI			COMPLETION DEPTH: 12.0 fi	- -
				Ebensburg, Pen	neuluani	^	Fig. No:			Page	

MARTIN AARON		START DATE: 10/05/98		BOREHOLE No: 96C123_S	B109
OCATION: CAMDEN	I, NJ	WEATHER: SUNNY, SLIGHTLY BREEZY, 70 DEC		Project No: 96-1322-C123	
DRILLED W/GEOPR	OBE	DRILLED BY: STEVE MOYLAN, JCA		ELEVATION: 0.000 (ft)	
SAMPLE TYPE	Shelby Tube Split Spo	on Roller Bit Drilled Casing	∭ но	ollow Stem Core	
DEPTH (ft) SAMPLE TYPE SAMPLE NO SPT(N)	▲ "N" yalue ▲	SOIL DESCRIPTION	USC NAMES	FIELD DATA	ELEVATION (ft)
5.0	20 40 60 80	.0'-1.5' SILTY SAND: rust-colored, moist,	-	S1 Recovery: 2.0'/2.0'	0.0
S1		ith fine gravel		\$1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.0'-1.0' \$B109-1 \$VOA,Pest/PCB,TAL,CN	_
$\parallel \parallel \parallel$	1 1 1 1 1 1 1 1 1 1 1 1	.5'-2.0' SILTY SAND: black, moist, fine, ith cinders		1.5'-2.0' SB109-2 VOA	
S2	2	.0'-2.5' CINDERS: black .5'-4.0' SAND: light brown, wet, medium o coarse		S2 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	_
		.0'-5.5' SAND: light brown, wet, fine to		S3 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 4.5'-5.5' SB109-3	
5.0				VOA,SVOA,Pest/PCB,TAL,CN	-5.0
S4	, w , 6. 6. m	.5'-6.0' SAND: gray, fine to medium ith cinders, water @ 5.5'(saturated) _0'-6.3' MEADOW MAT _3'-7.0' SAND: black, well sorted, wet nedium _0'-8.0' SAND: brown and gray, medium		S4 Recovery: 2.0°/2.0° PID/FID: 0.0/108	
	to	OTAL DEPTH = 8.0 FEET			
					-
0.0					-10.0
		•			
	1 -4.				
I DOD	DDM IZIMDATI 0 *	CCOCIATES LOGGED BY: M.EBEL		COMPLETION DEPTH: 8.0 ft	
r. KOR	ERT KIMBALL & A	REVIEWED BY: E.SCIULI		COMPLETE: 10/05/98	
,	Ebensburg, Pennsylv	ania Fig. No:			1 of 1

MARTIN	ΔΔ	RON										STAR	T DATI	F· 10/	08/98						BC	REHOLE	No:	960	123	SR1
LOCATIO				NJ	-									<u>-</u> _	AST, R						_	oject No				
DRILLED											-					/LAN, J	IC.A				$\overline{}$	EVATION				
SAMPLE		<u> </u>		Shelb	y Tub	ж		\overline{Z}	Split	Spc				oller Bi		É		d Casin	10	Ш		w Stem		T c		
DEPTH (ft)	J	SAMPLE NO	SPT(N)		•% ())) 	€ RC 40 € RC 40 % Rec 40 "N" y 40	60 60 60 60	y =						C	SOII	TIO				OSO	SOIL SYMBOL		FI	ELD ATA		
-5.0		\$1 \$2				40	60		60	9	o'	wet	ĊĨŊĎĖ			dark b						S1 Record PID/FID 0.0'-0. SVOA, Pi 0.5'-1. VOA 52 Record S3 Record PID/FID	5' SB1 est/PC O' SB1 overy:	10–1 B,TAL, 10–2 0.0′/2	2.0°	0.
-10.0										T	OTĀL	. DEP	TH =	6.0 F	EET											
-		R	ОВН	RT Ebe									ĪAT.	ES		OGGED REVIEWE			JLLU			COMPLI COMPLI				-

LOCATION CAMDEN, NU BRILLED W/JACCHAMMER DRILLED	MARTIN A	AAR	ON			-			<u> </u>	START	DATE: 1	0/08/9	В			····	BO	REHOLE	No: 96C12	73 5	8111
BRILED BY: STEVE MOYLAN, AC. SAMPLE TYPE Sheety Tuby Spirit Spoon Spoon State Bit Birthed Cosing III hallow Seem III Core SOIL SOIL DESCRIPTION DATA S1 Recovery, 0.5 /2.0* 10.0* 51 Sign Spoo				N, NJ													_				111
SAMPLE TYPE Sheety to the Shee														Α			+				
Solid Soli		<u>_</u>			Tube	15.5		Split S	1						sing	П			<u>:</u> :	;	
D.O. ST			T	20 20	% Con 40 40 40 8 % F 40	RQD • 60 RQD • 60 Recover 60	very de la la la la la la la la la la la la la	30 30 60		•		SOL		J		OSN	SOIL SYMBOL				ELEVATION (ft)
S2 S2 S2 S2 S2 S2 S2 S2	0.0		<u> </u>	20	40	60	<u> </u>	<i>.</i> U			CINDERS:	gray, t	lack, bro	wn,				S1 Recov	ery: 0.5'/2.0	1	0.0
S2	-	S1	1						moist												_
S.O. S3 S.O. — 6.0" SILTY SAND: brown and gray, saturated, water © 5.2" TOTAL DEPTH = 6.0 FEET S.O. FEET	-	S2	2															S3 Recove PID/FID: 4.0'-5.0'	ery: 2.0°/2.0° 105/0.0 SB111-4		
L. ROBERT KIMBALL & ASSOCIATES LOGGED BY: M.EBEL COMPLETION DEPTH: 5.0 ft REVIEWED BY: E.SCIULLI COMPLETE: 10/08/98	5.0	\$3	3 .						satura	ited, 1	water @	5.2'	n and g	ray,				*UA,3*UA,	resy rub, in	L, UN	5.0
L. ROBERT KIMBALL & ASSOCIATES LOGGED BY: M.EBEL COMPLETION DEPTH: 5.0 ft REVIEWED BY: E.SCIULLI COMPLETE: 10/08/98																				,	
L. NODERT RIMDALL & ASSOCIATES REVIEWED BY: ESCIULI COMPLETE: 10/08/98	10.0																•				-10.0
L. NODERT RIMDALL & ASSOCIATES REVIEWED BY: ESCIULI COMPLETE: 10/08/98																					
L. NODERT RIMDALL & ASSOCIATES REVIEWED BY: ESCIULI COMPLETE: 10/08/98												·									
L. NODERT RIMDALL & ASSOCIATES REVIEWED BY: ESCIULI COMPLETE: 10/08/98	<u></u>	I		LDu.	VII	<u></u> √D ∧	TT	Q.	V G G	ירעיו	מתייי או		LOGGED E	BY: M.EB	i			COMPLET	ION DEPTH:	6.0 ft	1
Ebensburg, Pennsylvania Fig. No: Page 1 of	1.	1.	TOD								(ユIAI										

													1		
	MARTI										START DATE: 10/08/98			PREHOLE No: 96C123_S	B112
	LOCAT										WEATHER: OVERCAST, RAINY			oject No: 96-1322-C123	
	DRILLI	_							7.		DRILLED BY: STEVE MOYLAN, JCA	- п		EVATION: 0.000 (ft)	
	SAMP	LE	TYPE		Shelby			<u> </u>		it S	poon Roller Bit Drilled Casing		Hollo	w Stern Core	7
	DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	20 20 20	4	RQD	60 60	80 80		SOIL DESCRIPTION	nsc	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
		SA	Š			▲"	N" ya!	ue 🛦			2 20 01411 1101		S		
	0.0		S1	,	20	4	0	60	80		0.0'-3.0' CINDERS: black, moist, and gray ash			S1 Recovery: 0.5'/2.0' PID/FID: 231/0.0 0.0'-0.5' SB112-1 SVOA, Pest/PCB, TAL, CN 0.5'-1.0' SB112-2 VOA	0.0
	-		S2								3.0'-6.0' SAND: black, wet to saturated,			S2 Recovery: 2.0'/2.0' PID/FID: 222/1.0 2.0'-3.0' SB112-3 VOA,SVOA,Pest/PCB,TAL,CN	<u>.</u>
											with cinders, becoming lighter gray and cleaner with depth		3	S3 Recovery: 1.5'/2.0' PID/FID: 200/0.0	-
	− 5.0		\$3												-5.0
	-										TOTAL DEPTH = 6.0 FEET				
	- -														-
	-10.0														10.0
	_														_
	_														-
	_														
		T	Di	\DI	ייקק	ΙΊ	MP	ΛT	T	 {,•	ASSOCIATES LOGGED BY: M.EBEL	J		COMPLETION DEPTH: 6.0 ft	
,		Li.	Tf.								INCAICHED DI. COCIOLLI			COMPLETE: 10/08/98	
	L				грег	isbi	urg,	<u> </u>	nn	syl	vania Fig. No:			Page	1 of 1

14070				OTABT DATE 40 /00 /00			I DOD!	7101EN 000407 0	D117
MARTIN A				START DATE: 10/06/98			+	HOLE No: 96C123_S	R112
LOCATION				WEATHER: SUNNY, COOL			+	ect No: 96-1322-C123	
DRILLED	<u>_</u>			DRILLED BY: WELLS REE	Drilled Casing		Hollow	ATION: 0.000 (ft) Stem	
DEPTH (ft) SAMPLE TYPE	T	Т	▲ "N" value ▲	Roller Bit SOIL DESCRIP		OSO	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
-	S1		0.5°	-0.5' CONCRETE -1.0' SAND: brown, mo rse -4.0' CINDERS: black a			1. V(1 Recovery: 2.0'/2.0' ID/FID: 0/0 .5'-1.5' SB113-1 VOA, Pest/PCB, TAL, CN .5'-2.0' SB113-2 DA	0.0
-	S2		W_L	- A A O			3. V(2 Recovery: 2.0'/2.0' ID/FID: 0/9.7 .0'-4.0' SB113-3 DA,SVOA,Pest/PCB,TAL,CN 3 Recovery: 2.0'/2.0' ID/FID: 231/207	-
-5.0	S3			er & 4.0' -7.5' CINDERS: black, s	aturated			iD/FID: 231/207 4 Recovery: 2.0'/2.0' ID/FID: 418/2230	-5.0
-	S4			-8.0' SAND: greenish g AL DEPTH = 8.0 FEET	ray, saturated		P	ID/FID: 418/2230	-
-10.0									10.0
-									
L	. J	ROE	ERT KIMBALL & AS Ebensburg, Pennsylvar	SOCIATES	LOGGED BY: M.EBEL REVIEWED BY: E.SCIULLI Fig. No:			COMPLETION DEPTH: 8.0 ft COMPLETE: 10/06/98 Page	1 of 1

MARTIN AAF	SON		START DATE: 10/07/98		ВО	REHOLE No: 96C123_S	B114
LOCATION:		NJ	WEATHER: OVERCAST, 70 DEG.		_	oject No: 96-1322-C123	
DRILLED W			DRILLED BY: STEVE MOYLAN, JCA		ELI	EVATION: 0.000 (ft)	
SAMPLE TY		Shelby Tube Split Sp	oon Roller Bit Drilled Casing		Hollo	w Stem Core	
SAMPLE TYPE	SPT(N)	◆% Core Recovery ◆ 20 40 60 80 ■ RQD ● 20 40 60 80 ■% Recovery ■ 20 40 60 80 ■ "N" value ▲ 20 40 60 80	SOIL DESCRIPTION	OSO	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
-	51		0.0'-0.7' SILTY SAND: light brown, moist 0.7'-2.0' SILTY SAND: black and brown, moist, and cinders 2.0'-3.0' SILTY SAND: black, wet, with gravel, brick	_		\$1 Recovery: 1.5'/2.0' PID/FID: 59.8/63.7 0.0'-0.5' \$B114-1 \$VOA, Pest/PCB,TAL,CN MS/MSD 1.0'-1.5' \$B114-2 VOA MS/MSD \$2 Recovery: 1.5'/2.0' PID/FID: 71.4/130.1	0.0
-5.0	53		4.0'-5.0' DECOMPOSED CONCRETE 5.0'-6.0' SILTY SAND: black, with bright red, blue, and green on plastic melted to wood 6.0'-8.0' CINDERS: brown and gray, brick			S3 Recovery: 2.0'/2.0' PID/FID: 12.0/2.2 4.0'-5.0' SB114-3 VOA,SVOA,Pest/PCB,TAL,CN 4.0'-5.0' SB114-4 dup. VOA,SVOA,Pest/PCB,TAL,CN S4 Recovery: 1.0'/2.0' PID/FID: 4Z.2/2.2	-5.0
-	54		TOTAL DEPTH = 8.0 FEET			,	
-10.0							-10.
-						·	
-			·				
I.	ROBE	ERT KIMBALL & .	ASSOCIATES LOGGED BY: M.EBEL			COMPLETION DEPTH: 8.0 ft	 -
		Ebensburg, Pennsylv	. INCALCATED DI. E.JOIOLE			COMPLETE: 10/07/98 Page	

lian-	. .	4001					CTART RATE 40 (00 /			I DO	PENDLE N OCC 107 . C	D115
MARTI				A11			START DATE: 10/06/S				REHOLE No: <u>96C123_</u> S oject No: 96—1322—C123	RIID
DRILL							WEATHER: SUNNY, CO DRILLED BY: WELLS R			-	EVATION: 0.000 (ft)	
SAMP				Shelby Tube	 ✓ s	plit Spoon		Drilled Casing			w Stem Core	
DEPTH (ft)	SAMPLE TYPE	9	SPT(N)	◆% Core 20 40 20 40 ■% R 20 40	Recovery ← 60 80 RQD ← 60 80 ecovery ■ 60 80 value ▲ 60 80		SOI DESCRII	L	OSO	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0		S1				blac	'-2.0' SILTY GRAVELLY ck, damp, cinders, glas	38		,	S1 Recovery: 2.0'/2.0' PID/FID: 6.3/9.2 0.0'-0.5' SB115-1 SVOA, Pest/PCB, TAL, CN 1.5'-2.0' SB115-2 VOA S2 Recovery: 2.0'/2.0' PID/FID: 48.8/35.5	0.0
_		S2				4.0°	ck, damp, cinders and -5.0' SīLīY SĀND: grā	brick .		-	S3 Recovery: 1.5'/2.0' PID/FID: 35.3/106	
-5.0		S3		1		5.0'	cinder -6.0' WOOD -7.0' SAND: gray, wet	fine to medium			S4 Recovery: 2,0'/2.0' PID/FID: 1842/162	5.0
-		.\$4				7.0° wet,	10.0' CINDERS and A , water @ 7.5'	SH: black and gray			6.5'-7.0' SB115-3 VOA,SVOA,Pest/PCB,TAL,CN S5 Recovery: 1.0'/2.0' PID/FID: 187/160.1	
-10.0		S5				15.0	D'-12.0' MEADOW MAT:				S6 Recovery: 2.0°/2.0° PID/FID: 565/180	-10.0
_		S6				blac	sk silty clay	·			PID/FID: 565/180	_
				2		ТОТ	AL DEPTH = 12.0 FEET					
	L.	R	OBI	ERT KIM	BALL	& AS	SOCIATES	LOGGED BY: M.EBEL REVIEWED BY: E.SCIULLI	J		COMPLETION DEPTH: 12.0	ft
				Ebensbur	rg, Penr	ısylvan	iia	Fig. No:			COMPLETE: 10/06/98 Page	1 of 1

MARTI	N A	ARON	1			START DATE:	10/05/98			ВО	REHDLE No: 96C123_S	B11
LOCAT				, NJ				BREEZY, 70 DEG.		+	oject No: 96-1322-C123	
DRILL						DRILLED BY: S				ELI	EVATION: 0.000 (ft)	
SAMP				Shelby Tube	Split Spo	on Rolle	r Bit	Drilled Casing		Hollo	w Stem Core	-
DEPTH (ft)	SAMPLE TYPE		SPT(N)	● RQD 20 40 40 6 20 40 6 40 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	60 80 60 80 60 80 60 80		SOIL SCRIPTI		OSN	SOIL SYMBOL	FIELD DATA	(10) 100 (10)
0.0		S1).0'—4.0' CINDERS and rock fragment		t, with sand			\$1 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0 0.5'-1.0' \$B116-1 \$VOA,Pest/PCB,TAL,CN 1.5'-2.0' \$B116-2 VOA \$2 Recovery: 2.0'/2.0'	0.0
-		S2									S2 Recovery: 2.0'/2.0' PID/FID: 0.0/0.0	
-5.0		S3			-4 r	.Õ'-4.5' SĀND: bī .5'-5.Ō' SĀND: bī nedium .Ō'-6.Ō' CĪNDĒRS nd ash	ack, moist, v	vell sorted,	The second of		S3 Recovery: 1.5'/2.0' PID/FID: 9.0/0.3 4.4'-5.1' SB116-3 VOA,SVOA,Pest/PCB,TAL,CN	
		S4				.Õ'—8.Ō' SĀND: lic o coarse	ght brown, we	t, medium			S4 Recovery: 1.5'/2.0' PID/FID: 0.0/0.0	
					T	OTAL DEPTH = 8.0	O FEET		The state of the s			
10.0											·	<u>1</u>
												- - -
						·		:				
	Ĺ.	R	0BI	ERT KIMB. Ebensburg,		SSOCIATES		ED BY: M.EBEL WED EY: E.SCIULLI	1		COMPLETION DEPTH: 8.0 ft COMPLETE: 10/05/98	

	•			' -	
MARTIN AARON		START DATE: 10/07/98	BC	REHOLE No: 96C123_V	/OA1
LOCATION: CAMDEN	N. NJ	WEATHER: OVERCAST, 70 DEG.		oject No: 96-1322-C123	
DRILLED W/GEOPR		DRILLED BY: STEVE MOYLAN, JCA	EL	EVATION: 0.000 (ft)	
SAMPLE TYPE	Shelby Tube Split Spoon	Roller Bit Drilled Casing	Holla	ow Stem 🔲 Core	
DEPTH (ft) SAMPLE TYPE SAMPLE NO SAMPLE NO	▲ "N" yakie ▲	SOIL DESCRIPTION	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
- / S1	brow 0.5'	-0.5' GRAVELLY SILTY SAND: light n, moist -3.5' GRAVELLY SILTY SAND: black, t, and cinders		\$1 Recovery: 2.0'/2.0' PID/FID: 141/18.0 1.5'-2.0' VOA1-1 VOA, % Solids \$2 Recovery: 1.5'/2.0' PID/FID: 810/16.0	0.0
-5.0 S2	fine 4.0'- 4.5'-	-4.0' SAND: greenish brown, moist, to medium -4.5' SAND: black, moist, and cinders -5.0' SILTY CLAY: light gray, moist -8.0' CINDERS: black, saturated		S3 Recovery: 1,0'/2.0' PID/FID: 2000/16.5 4.0'-4.5' VOA1-2 VOA, % Solids	5.0
S4	Wood	r @ 6.0' I caused refusal		S4 Recovery: 1.0'/2.0' PID/FID: 375/27.0	
-10.0	TOTA	L DEPTH = 8.0 FEET			-10.0
L. ROB	ERT KIMBALL & AS Ebensburg, Pennsylvan	* INCALCACE DIT C'2010FFI		COMPLETION DEPTH: 8.0 f COMPLETE: 10/07/98	t e 1 of 1

LOCATION DRILLE SAMPLE						START DATE: 10/07/					
DRILLE	ION:	. / `** 1								No: 96C123_	
					··· ······	WEATHER: OVERCAST,				: 96-1322-C12	5
SAMPL		<u> </u>				DRILLED BY: STEVE M				0.000 (ft)	
	Ε,	TYPE		Shelby Tube	Split Spo	on Roller, Bit	Drilled Casing		Iollow Stem	. Core	T
DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	20 40 6 20 40 6 20 40 6 20 40 6	50 80 50 80 ery ■ 60 80	SO. DESCRI			SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0		S1		20 70 0	0 0 0	.0'-0.5' GRAVELLY SILTY rown, moist .5'-1.0' GRAVELLY SILTY noist .0'-2.0' GRAVEL: light g	SAND: black,		S1 Reco PID/FID: 1.5'-2.0 VOA, %	very: 2.0'/2.0' 820/5.4 3' VOA2-1 Solids	0.0
		S2				.0'-6.0' SANDY ĈLAYEY reenish sand @ 4.0'	SILT: black, moist,		S2 Reco PID/FID:	very: 2.0'/2.0' <2000/77.0	-
-5.0		S3							S3 Reco PID/FID:	very: 2.0'/2.0' <2000/35.0	5.0
		S4			7	0'-7.0' SANDY SILT: yel 0'-8.0' CINDERS: wet ater @ 7.0'	low, moist		S4 Reco PID/FID: 6.5'-7.0 VOA, %	very: 2.0'/2.0' <2000/407 'YOA2-2 Solids	-
-10.0					Ti	otal depth = 8.0 feet					-10
						,					
							x. 1				-
	\sqcup				ATT C	ado at timba	LOGGED BY: M.EBEL	I L	COMPLE	TION DEPTH: 8.0 I	
	L.	K()RF	CKI KIMB	ALL & A	SSOCIATES	REVIEWED BY: E.SCIULLI	· · · · · · · · · · · · · · · · · · ·		TE: 10/07/98	

MARTIN AARON LOCATION: CAMDEN, NJ DRILLED W/GEOPROBE SAMPLE TYPE Shelby Tube ORDER SPlit Spoon Roller Bit Drilled Casing To Recovery 20 40 60 80 ROLL SOIL To Recovery 20 40 60 80 DESCRIPTION A "N" value A 20 40 60 80 DOCUMENT OF RECOVERY 20 40 60 80 DOCUMENT OF RECOVERY 20 40 60 80 DESCRIPTION ORDER	Pr EL SXWB0l SXWB0l	OREHOLE No: 96C123_ roject No: 96−1322−C12 EVATION: 0.000 (ft) ow Stem	
DRILLED W/GEOPROBE DRILLED BY: STEVE MOYLAN, JCA SAMPLE TYPE Shelby Tube 1 Split Spoon Roller Bit Drilled Casing (±) HLd3 NUL 3 JdWy S 10 40 60 80 SOIL 20 40 60 80 SOIL DESCRIPTION 20 40 60 80 DESCRIPTION	JSC SYMBOL	ow Stern Core	
SAMPLE TYPE Shelby Tube Shelby Tube Split Spoon Solit Spoon Spoon Solit Spoon Solit Spoon Solit Spoon Solit Spoon Solit Spoon Solit Spoon Solit Spoon Solit Spoon Solit Spoon Solit Spoon Solit Spoon Solit Spoon	JSC SYMBOL		
### SOIL A	USC SYMBOL	nini n	
	SOIL	FIELD DATA	ELEVATION (ft)
- S1 fragments		S1 Recovery: 1.5'/2.0' PID/FID: 11.1/23.7 0.0'-0.5' PCB1-1 PCB	0.0
2.0'-4.0' SAND: black, maist, with cinders and gravel		S2 Recovery: 1.5'/2.0' PID/FID: 25.8/17.1	-
4.0'-6.0' SILTY SAND: orange, moist		S3 Recovery: 2.0' /2.0' PID/FID: 56.0/37.2	
5.0		5.0'-6.0' PCB1-2 PCB	-5.0
6.0'-8.0' CINDERS: wet, and sand, staining, bright yellow material, water © 6.5'		S4 Recovery: 2.0'/2.0' PID/FID: 0/0	
TOTAL DEPTH = 8.0 FEET			-
10.0			—10.0 —
L. ROBERT KIMBALL & ASSOCIATES LOGGED BY: M.EBEL		COMPLETION DEPTH: 8.0) ft
Ebensburg, Pennsylvania Ebensburg, Pennsylvania REVIEWED BY: E.SCIULLI Fig. No:	<u> </u>	COMPLETE: 10/07/98	age 1 of 1

MARTI	N A	ARON	1					_			START DATE: 10/07/98 BOREHOLE No: 96C123_PO	CB2
LOCAT	TION	: CA	MDEN,	NJ							WEATHER: OVERCAST, 70 DEG. Project No: 96-1322-C123	
DRILLI	ED \	₩/GE	OPRO	BE					-		DRILLED BY: STEVE MOYLAN, JCA ELEVATION: 0.000 (ft)	
SAMP	LE	TYPE		Shel						plit S	poon . Roller Bit Drilled Casing: III Hollow Stem II Core	
DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)		20 20 20	40 40 ■% F 40 ■ "N	RQD Recov	60 rery∎ 60. ue ≜	80 80 80		SOIL DESCRIPTION SING PIELD DATA	ELEVATION (ft)
0.0	١,				20	40	:	60	80		0.0'-3.0' SAND: black, damp, cinders and S1 Recovery: 2.0'/2.0'	0.0
-		S1									0.0'-3.0' SAND: black, damp, cinders and gravel S1 Recovery: 2.0'/2.0' PID/FID: 79.7/29.0 0.0'-0.5' PCB2-1 PCB	
-											S2 Recovery: 2.0'/2.0' PID/FID: 354/268	_
-		S2									3.0'-4.0' SILTY SAND: black, moist, with 3.0'-4.0' PCB2-2 PCB	
•					,						TOTAL DEPTH = 4.0 FEET	-
-5.0												5
-												-
-												_
-												
-10.0												1
-												
-												<u> </u>
-												 -
-												_
	Ţ	R	ORF	יקי זיקי	٠ ل	<u>:</u> (1)	/P	<u>Δ</u> Τ	Ī	<u>:</u>	ASSOCIATES LOGGED BY: M.EBEL COMPLETION DEPTH: 4.0 ft	<u>l</u>
	L.	Τſ									ADDUCTATED REVIEWED BY: E.SCIULLI COMPLETE: 10/07/98 Vania Fig. No: Page 1	

MARTIN AARON	START DATE: 10/07/98	BC	DREHOLE No: 96C123_PI	CB3
OCATION: CAMDEN, NJ	WEATHER: OVERCAST, 70 DEG.		oject No: 96-1322-C123	300
RILLED W/GEOPROBE	DRILLED BY: STEVE MOYLAN, JCA		EVATION: 0.000 (ft)	
AMPLE TYPE Shelby. Tube Split Spoon	Roller Bit Drilled Casing		ow Stem Core	
Core Recovery No. Cor	SOIL DESCRIPTION	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
20 40 60 80	-2.0' SILTY SAND: moist, and cinders		\$1 Recovery: 2.0'/2.0'	0.0
S1			\$1 Recovery: 2.0'/2.0' PID/FID: 63/240 0.0'-0.5' PCB3-1 PCB	
\$2.0°-	-8.0' SAND: black, maist, and cinders		S2 Recovery: 2.0'/2.0' PID/FID: 3.2/32.1'	
			S3 Recovery: 2.0'/2.0' PID/FID: 0/15.7	
0			5.0'-6.0' PCB2-2 PCB	-5.0
S4 S4			\$4 Recovery: 2.0'/2.0' PID/FID: 20/39.0'	
Wate	er @ 7.5'			
TOTA	AL DEPTH = 8.0 FEET			_
1.0	·			-10.0
	Locoth by, Mithe			
L. ROBERT KIMBALL & AS	SOCIATES LOGGED BY: M.EBEL REVIEWED BY: E.SCIULLI	-	COMPLETION DEPTH: 8.0 ft COMPLETE: 10/07/98	
Ebensburg, Pennsylvan	nia Fig. No:			1 of 1

MARTI	IN A	ARON	1								STAR	RT DA	TE: 10,	/07/9	8				ВС	REHOLE	No: 96C12	3_PC	ΒZ
LOCAT				. NJ							 		OVER			3,			_		96-1322-0		-
DRILLI						-	-		_				3Y: STE						EL	EVATION:	0.000 (ft)		
SAMP		<u> </u>		Shelby	Tube			Sp	olit S	poon		⊠ F	Roller B	it	Ē	Drille	d Casing		Hollo	ow Stem	Core		
DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	20 20	4{ ■% 4(RQD Recov	60 60 rery ■ 60	80 80				D]	ESC	SOI! :RIF)N		OSN	SOIL SYMBOL		FIELD DATA		(S)
0.0		S 1								0.0'-	-1.5'	SILTY	Y SAND); brov	wn, m	oist				S1 Reco PID/FID: 0.0'-0.5 PCB	very: 2.0'/2.0' 0/1.0 ' PCB5-1		0.0
_													CRĒTĒ Y SĀNĒ); blac	 ck, an	 gravi	 el			S2 Reco PID/FID:	very: 2.0°/2.0° 84.3/30.0		
_		S2											c and		 s					2.0'-3.0 PCB Refusal (PCB4-2		-
-5.0 -										TOTA	Ē DĒP	₹H =	= 4.0	FEET						relusur	9 +.0		[
-																							
-10.0																							-1
-																							
-																10 (\$4 \$) 10 (\$4 \$)							
	L.	R	OBI	ERT Eben								TAI	ES.	. [M.EBEL E.SCIULL	j			TION DEPTH: 4 [E: 10/07/98	.0 ft Page 1	_

MARTII	NI A	ADON	1		 	CTADT DATE: 10 /07 /			Tac	DREHOLE No: 96C123_	DCDS
LOCAT				N I		START DATE: 10/07/9 WEATHER: OVERCAST,			_	oject No: 96-1322-C123	
DRILLE				<u> </u>		DRILLED BY: STEVE M			_	EVATION: 0.000 (ft)	
SAMP		<u> </u>		Shelby Tube	Split S		Drilled Casing	ПП		ow Stem Core	
(tt)	SAMPLE TYPE F	S S	SPT(N)	◆% Core Rec 20 40 6 ● RQD € 20 40 6 ■% Recove 20 40 6 ▲ "N" valu	overy ◆ 0 80 0 80 0 80 0 80 0 80 0 80	SOI DESCRI	IL	OSO	SOIL SYMBOL	FIELD DATA	(#) NOTENZE IS
0.0		S 1.	,	20 40 6	0 80	0.0'-0.5' SILTY SAND: light damp 0.5'-2.0' SILTY SAND: bro	-	,		\$1 Recovery: 2.0'/2.0' PID/FID: 21.8/3.5 0.0'-0.5' PCB5-1 PCB	0.0
- -		S2				2.0'—4.0' CINDERS: black,	, and red brick			\$2 Recovery: 2.0'/2.0' PID/FID: 155/165	
-5.0		S3				4.0'-6.0' No recovery	· · · · · · · · · · · · · · · · · · ·			\$3 Recovery: 0.0'/2.0' PID/FID: 0/0	5
-		S4				6.0'-8.0' SILTY SAND: bla black cinders, water @ 7.	ick, moist, wood, 5'			S4 Recovery: 2.0'/2.0' PID/FID: 0/14.7 6.0'-7.0' PCB5-2 PCB	_
-10.0						TOTAL DEPTH = 8.0 FEET					-10
-											-
	Ϊ.	R	0B1	ERT KIMBA Ebensburg,		ASSOCIATES	LOGGED BY: M.EBEL REVIEWED BY: E.SCIULLI Fig. No:			COMPLETION DEPTH: 8.0 f	t e 1 of

					30023	
MARTIN AARON			START DATE: 10/07/98		BOREHOLE No: 96C123_	PCB6
LOCATION: CAN	ADEN.		WEATHER: OVERCAST, 70 DEG.		Project No: 96-1322-C123	
DRILLED W/GE			DRILLED BY: STEVE MOYLAN, JCA		ELEVATION: 0.000 (ft)	
SAMPLE TYPE		Shelby Tubes Split Spoon	Roller Bit Drilled Casing	Ш н	ollow Stem Core	
DEPTH (ft) SAMPLE TYPE SAMPLE NO	SPT(N)	◆	SOIL DESCRIPTION		FIELD DATA	ELEVATION (ft)
- S1 - S2		70.5°	0.5' SILTY SAND: brown and gray, damp 2.0' BRICK: black cinders and sand 4.0' BRICK: rock and black silty sand DEPTH = 4.0 FEET		S1 Recovery: 2.0'/2.0' PID/FID: 0/6.4 0.0'-0.5' PCB6-1 PCB S2 Recovery: 2.0'/2.0' PID/FID: 272/253 3.0'-4.0' PCB6-2 PCB Refusal @ 4.0'	0.0
-5.0						—5.0 ——5.0
10.0						-10.0
L. R()BI	ERT KIMBALL & ASS	. IREVIEWELLES E SUIDLE		COMPLETION DEPTH: 4.0	ft
		Ebensburg, Pennsylvania	a Fig. No:			ge 1 of 1

ICCATION: CAMPEN, NJ No.	MARTIN AARON		START DATE: 10/07/98	I D.	OREHOLE No: 96C123_F	PCR7
DRILLED BY: STAVE MOYLAN, JCA SAWTED THE States law Spin Soon Soon Soon Solid Bill Drilled Losing Indices Seen Income **To feet Receivery** 20 4 6 6 6 6 6 7 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		N.J				<u> </u>
SAMPLE TYPE Shorty Tube Spit Spoon Seater 8tt Spitice Cosmo Molecular St. SOIL SOIL SOIL DESCRIPTION DATA DO A TO TO TO A TO TO TO A TO TO TO A TO TO TO TO TO TO TO TO TO TO TO TO TO						· · · · · · · · · · · · · · · · · · ·
### Completion Resemble 20 40 80 80 80 80 80 80 80 80 80 80 80 80 80						
0.0 - 2.0" SLIT' GRAVELLY SAND: brown and SI Recovery 2.0"/2.0" 0.	(ft) TYPE NO	◆% Core Recovery ◆ 20 40 60 80 ■ RQD ● 20 40 60 80 ■ % Recovery ■ 20 40 60 80 ■ % N" value ▲	SOIL	SYMBOL	FIELD DATA	ELEVATION (ft)
S2			iray, dry to damp			0.0
-5050	- S2	r	noist .0'-4.0' BRICK: and rock		2.0'~3.0' PCB7-2 PCB	
I. ROBERT KIMBALL & ASSOCIATES LOGGED BY: M.EBEL. COMPLETION DEPTH: 4.0 ft	-5.0					5.C
1: [\\ [1] [\\] [\] [\] [\] [\] [\]	-10.0					-10
1, 1\\(\(\(\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\	-					
1, 1\\(\(\) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I DODI	LINE TANDATT OF V	CCOCIATES LOGGED BY: M.FBFI		COMPLETION DEPTH: 4 D ft	<u></u>
Ebensburg, Pennsylvania Fig. No: Poge 1 of	L. KUBI		REVIEWED BY: E.SCIULL		COMPLETE: 10/07/98	

MARTIN A	- , - (N						START DATE: 10/07/9	8		RC	REHOI F	No: 96C123	S PCR	8
LUCATION:		MDEN,	NJ		_			WEATHER: OVERCAST,			_		96-1322-C		<u>-</u>
DRILLED V								DRILLED BY: STEVE MO	YLAN, JCA	•	EL	EVATION:	0.000 (ft)		
SAMPLE 1	TYPE		Shelby T				it Spoc	n 🔀 Roller Bit	Drilled Casing		Hollo	w Stem	Соге		
DEPTH (ft) SAMPLE TYPE	SAMPLE NO	SPT(N)	20 20 20	40 ◆ R 40 ■ % Re 40	Recove 60 60 60 ecovery I 60 value 4	80 80 80 80		SOI DESCRIF		OSC	SOIL SYMBOL		FIELD DATA		ELEVAIION (IT)
- /	S1		20	TV				0'-2.0' SILTY SAND: bro damp	wn and gray, dry			0.0'-0.5' PCB		0.	0
.]	S2							0'—4.0' BRICK and rock					rery: 2.0'/2.0' 0/0	~	
5.0	\$3						:	O'-4.5' BRICK PIECES 5'-8.0' CINDERS: black,	and sand .			5.0'-6.0' PCB	ery: 2.0'/2.0' 0/66.7 PCB8~2 ery: 1.0'/2.0' 0/54.2	-:	5.0
	\$4				8			ood @ 7.0' TAL DEPTH = 8.0 FEET				PID/FID:	0/54.2	-	
10.0										-				-	10.0
			ו מוכור	773	(T) 4 7	T T	O. A	CCCATAMEC	LOGGED BY: M.EBEL			ICOMPLE	TION DEPTH: 8	Λ ft	
<u>_</u> L.	R	OBE	CKT 1	KIM	IRY.		ΧA	SSOCIATES	REVIEWED BY: E.SCIU	111			TE: 10/07/98	.v it	

MARTIN A	AAF	NOS				- **					STAR	T DATE:	10/07/	98			·	BC	REHOLE	No: 96	C123_	PCBS
LOCATIO	N:	CAM	DEN,	NJ		-					WEAT	HER: 0V	ERCAST,	70 DE	G.						322-C12	
DRILLED	W,	/GEC)PRO	BE							DRILL	LED BY:	steve M	OYLAN,	JCA			EL	EVATION:	0.000	(ft)	
SAMPLE	<u>T</u>	/PE		Shelby	Tube	е		∕ s	plit :	Spoon		Rolle	er Bit	E	Drilled	Casing		Hollo	w Stem		Core	
	SAMPLE LIFE	SAMPLE NO	SPT(N)	20 20 20 20	4 4 ■% 4	● RQD 10 Reco 10 'N" va	60 60 very 1	80 80 80					SO: SCRI	PTI(OSC	SOIL SYMBOL		FIEI DAT	'A	(0) 1001410010
0.0	\int										-1.0' nents	SAND: E	rown, n	noist, v	vith roc	k			S1 Reco PID/FID:	very: 1.5 0/0	5'/2.0'	0.0
-	/ 9	51								1.0'-	- 4 .0'	BRIČK F	PIĒCĒS						1.0'-1.5 PCB	' PCB9-	-1	-
-		62								Wate	r @t 2	2.5'							S2 Reco PID/FID:	very: 1.0 28.0/42	0' /2.0' 2.7	
.		*								4.0'-	-6.0'	BRICK d	ind rock	piece:	s, wet	- -			S3 Recor PID/FID: Sheen or	very: 2.0 267/36 water)'/2.0' 5	-
-5.0	/	33																	pundgen	odor		-5
		64								TOTAL	_ DEF	PTH = 6	O FEET		134							-
10.0																						-
. 5.5				Ç																		1
																					·	-
			_											1.00-	B 51/ 1/				0011015			
	1.	RC)RF	'RT	KI	MF	łΔſ	Π.	&	ASS	የፀር	HATE	S		D BY: M	.ebel E.sciulli			COMPLE		тн: 8.0 f	t

MARTI	N A	ΔΔRΛΙ			START DATE: 10/07/9	Я		R/	DREHOLE No: 96C123_	PCRIN
LOCAT					WEATHER: OVERCAST,				oject No: 96-1322-C123	
DRILLE					DRILLED BY: STEVE MC			 -	EVATION: 0.000 (ft)	,
SAMP				Shelby Tube Split Spoon	Roller Bit	Drilled Casing	П		ow Stem Core	
	SAMPLE TYPE F		SPT(N)	◆% Čore Recovery ◆ 20 40 60 80 ■ RQD ● 20 40 60 80 ■ % Recovery ■ 20 40 60 80 ■ "N" Yalue ▲	SOI DESCRIF	L .	OSO	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0	-	-		20 40 60 80	2.5' SILTY SAND: redo	tish brown, moist			\$1 Recovery: 1.5'/2.0' PID/FID: 0/0	0.0
		S1							PID/FID: 0/0 0.0'-0.5' PCB10-1 PCB	-
		S2		2.5'—	i.Ō' CĪNŌĒRS and ast				S2 Recovery: 1.0'/2.0' PID/FID: 0/0	-
5.0		S3		4.0'i cinder	3.0' SAND: dark brow s	n, wet, with			S3 Recovery: 2.0'/2.0' PID/FID: 0/0 5.0'-6.0' PCB10-2	5.0
									PCB S4 Recovery: 1.0'/2.0' PID/FID: 0/0	
		S4		TOTAL	DEPTH = 8.0 FEET	<u>.</u>				-
0.0										-10.0
	L.	. R	OBI	ERT KIMBALL & ASS Ebensburg, Pennsylvani	"	LOGGED BY: M.EBEL REVIEWED BY: E.SCIULLI Fig. No:			COMPLETION DEPTH: 8.0 COMPLETE: 10/07/98	ft ge 1 of 1

MARTIN AARON	START DATE: 10/12/98		BOREHOLE No: 96C123_MW5	50
OCATION: CAMDEN, NJ	WEATHER: PARTLY CLOUDY, FAIR		Project No: 96-1322-C123	<u> </u>
DRILLED W/CME-55	DRILLED BY: JOHN URBAN, JCA		ELEVATION: 0.000 (ft)	
SAMPLE TYPE Shelby Tube Split Spoon			ollow Stem Core	
CEPTH (ff) Color	SOIL DESCRIPTION	USC		FLEWATION (#)
S1 140 ang mat	-2.0' SAND: brown, coarse, with ular stone, black cinders and ash erial - 2 in. on bottom, dry -4.0' SAND: brown-black, coarse, with		Recovery: 1.0'/2.0' PID/FID: 119/4.8 Some noticeable odor	0.0
plas	ular stone, cinders and ash, pieces of tic bag in bottom -6.0' BRICK; black cinders		S2 Blows: 42-46-37-55 Recovery: 1.7'/2.0' PID/FID: 274/108 Strong product odor S3 Blows: 7-7-7-6 Recovery: 0.3'/2.0' PID/FID: 124/116	-5.6
S4 47 6.5° 7.0°	-6.5' ASHES/CINDERS: black -7.0' SILTY SAND: brown -8.0' ASHES/CINDERS: black, and wood		S4 Blows: 7-7-33-14 Recovery: 1.6'/2.0' PID/FID: 261/530 Wet © 7.2' S5 Blows: 11-7-7-6	
S5 13 mot	-10.0' CINDER/ASH: black, tan and gray ling, wet		Recovery: 1.2'/2.0' PID/FID: 748/515 Product odor S6 Blows: 3-3-4-4	-1(
S6 8 mat	'-16.0' SILTY CLAY: greenish brown,		Recovery: 0.5'/2.0' PID/FID: 386/196	
// ₅₇ z	d/organics, bottom 6 inches-coarse sand wood		Recovery: 2.0'/2.0' PID/FID: 4.9/12.2	
15.0	L DEPTH = 16.0 FEET		Recovery: 2.0'/2.0' PID/FID; 10/2	-15
25.0	e			-2(
L. ROBERT KIMBALL & AS Ebensburg, Pennsylvan	[INLAILIATED DI. EIGOLOED		COMPLETION DEPTH: 16.0 ft COMPLETE: 10/12/98 Page 1 o	-2

				*****						30023	
MARTI						START DATE: 10/12/9				DREHOLE No: 96C123_	
LOCA						WEATHER: PARTLY CLC			_	oject No: 96-1322-C12	3
DRILL				5		DRILLED BY: JOHN UR				EVATION: 0.000 (ft)	
SAMP	LE	TYPE		Shelby Tube	Split Spoo	n 🔀 Roller Bit	Drilled Casing		Hollo	w Stem Core	
DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	◆% Cöre Recc 20 40 6 ● RQO ● 20 40 6 ■% Recove 20 40 6 ▲"N" value 20 40 6	0 80 0 80 0 80 0 80	SOI DESCRII	PTION	OSO	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0 - - -						O'-6.0' SAND: brown, co gular stanes; some blac				S1 Blows: 1-1-2-3 Recovery: 0.9'/2.0' PID/FID: 0/0	0.0
-5.0 -		\$1	5)'-8.0' SAND: brown, m	edium-coarse;			PID/FID: 0/0 S2 Blows: 1-1-1-1 Recovery: 0.5'/2.0' PID/FID: 0/0	—5.0 –
_		S2	2		8.0	ck pieces; cinders 0'-9.0' SAND: brown, m	edium-coarse,				-
- -10.0 - -		53	2		slik 9.0	ght odor 2'-16.0' SILTY CLAY: gre t, sheen visible, strong	eenish brown,			Recovery: 2.0'/2.0' PID/FID: 10/10 Water @ 8.0'	10
- -15.0 - -					ТО	TAL DEPTH = 16.0 FEET					-15.0
- 20.0 - - -											-20.0
25.0	L J.	R	OR'	ERT KIMBA	ΔIJ. & Δ°	SSOCIATES	LOGGED BY: M.EBEL			COMPLETION DEPTH: 16.0	-25.0
	٠,	. 16	Jυ.			6	REVIEWED BY: E.SCIULLI			COMPLETE: 10/12/98	
				Ebensburg,	rennsylva	ша	Fig. No:			I Pa	ge 1 of 1

	MARTI	N A	ARON	·		7	START DATE: 10/13/98		ВО	REHOLE No: 96C123_M	W7S
	LOCAT	ПОМ	: CA	MDEN,	NJ		WEATHER: CLOUDY, COOL, LIGHT RAIN		Pro	oject No: 96-1322-C123	
_	DRILL	ED \	N/CI	∕E-55	>		DRILLED BY: JOHN URBAN, JCA		ELI	EVATION: 0.000 (ft)	
	SAMP	LE	TYPE		Shelby Tube	Split Spor	n Roller Bit Drilled Casing	- [] I	tollo	w Stem Core	
"شهور دود د"	DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	20 40 60 20 40 60 7 Recovery 20 40 60 A "N" value A	B0 B0 B0 B0	SOIL DESCRIPTION	OSC	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
	0.0	T				0	0'-6.0' Piece of concrete plugged end of	1			0.0
•	-					S	oon				-
	-5.0		S1	16	1					S1 Blows: 6-10-8-8 Recovery: 0.0'/2.0' PID/FID:	-5.0
	- -		S2	17		w	D'-8.0' CLAYEY SILT: greenish black, th brick pieces and cinders, strong or, visible product			S2 Blows: 15-15-9-8 Recovery: 1.3'/2.0' PID/FID: off scale	- - -
			S3	13	1		D'-10.0' SILTY SAND: greenish brown, oduct odor			S3 Blows: 7-6-6-7 Recovery: 1.0'/2.0' PID/FID: off scale Wet @ 8.0'	
Ciles.	-10.0		S4	3			.0'-11.0' SAND: greenish brown, wet			S4 Blows: 1-1-1-2 Recovery: 2.0'/2.0' PID/FID: 1000/250	-10.0
			S5	3		11	.0'-16.0' SAND: greenish brown, wet			S5 Blows: 3-4-2-1 Recovery: 1.2'/2.0' PID/FID: 1000	
	-15.0 -					TO	TAL DEPTH = 16.0 FEET				- 15.0
										·	-
	-20.0										-20.0
	25.0						. 1				_
	22.0	I.	R		ERT KIMBALI Ebensburg, Per		INCALLATION DI COCOLDI			COMPLETION DEPTH: 16.0 ft COMPLETE: 10/13/98 Page	

r				-	- 1		
MARTIN AA				START DATE: 10/13/98		DREHOLE No: 96C123_M	W8S
LOCATION:				WEATHER: CLOUDY, COOL, LIGHT RAIN		roject No: 96-1322-C123	
DRILLED W				DRILLED BY: JOHN URBAN, JCA		EVATION: 0.000 (ft)	
SAMPLE T	YPE		Shelby Tube: Split Spoon ◆% Core Recovery◆	Roller Bit Drilled Casing	Holk	ow Stem	
DEPTH (SAMPLE NO	SPT(N)	20 40 60 80 20 40 60 80 20 40 60 80 ■ % Recovery ■ 20 40 60 80 ■ "N" value ▲ 20 40 60 80	SOIL DESCRIPTION	SOIL SYMBOL	FIELD DATA	ELEVATION (ft)
0.0				-6.0' SAND: brown, with angular			0.0
-5.0	S1	16	1 6.0'-	es, some cinders and brick, damp -8.0' ORGANIC MATÉRIAL: dark brown,		S1 Blows: 1-2-1-2 Recovery: 0.3'/2.0' PID/FID: 0/0 S2 Blows: 2-3-4-5 Recovery: 0.3'/2.0' PID/FID: 24.5/11.2	
-	S2 S3	17	8.0'-	with fine sand mixed in; damp -9.2' ORGANIC MATERIAL: dark brown -10.0' SAND: greenish, fine, damp		S3 Blows: 3-3-3-3 Recovery: 1.7'/2.0' PID/FID: 70/500	_
-10.0	S4	3	10.0°	-11.0' ORGANIC MATERIAL: dark brown		S4 Blows: 2-3-3-1 Recovery: 2.0'/2.0' PID/FID: 30/700 S5 Blows: 2-2-2-3 Recovery: 0.5'/2.0' PID/FID: 0/0	10.
-15.0	S5	3	L. dry	L DEPTH = 14.0 FEET	•	PID/FID: 0/0	_ 15.0 _ _
-20.0							-20.0
25.0							25.0
	R)BE	RT KIMBALL & ASS	SOCIATES LOGGED BY: M.EBEL		COMPLETION DEPTH: 14.0 ft	-25.0
			Ebensburg, Pennsylvani	* IKEVIEWED BY: E.SCIULLI		COMPLETE: 10/13/98 Page	1 of 1

									300241	
MART	IN A	ARON	٧		START DATE: 10/13/	/98		BC	DREHOLE No: 96C123_N	IWO
LOCA				, NJ	WEATHER: CLOUDY, (oject No: 96-1322-C123	1110
DRILL					DRILLED BY: JOHN L				EVATION: 0.000 (ft)	
SAMP					poon Roller Bit	Drilled Casing			ow Stem Core	
S DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	◆% Core Recovery ◆ 20	SO DESCRI	PTION	OSC	SOIL SYMBOL	FIELD DATA	0.0
-					organic flicks	omit, gruvel,			\$1 Blows: 2-3-4-2 Recovery: 0.8'/2.0' PID/FID: 0/0	
-5.0 - -	/	\$1 \$2	18		6.0'-8.0' SAND: brown, or pieces, slightly damp, or				S2 Blows: 4-2-6-12 Recovery: 0.8'/2.0' PID/FID: 54/0	-5 -
10.0		53	15		8.0'-8.6' SAND: brown, c 8.6'-9.2' SILTY MATERIAL organic material, dry 9.2'-12.0' SAND: grayish	: dark brown, with			S3 Blows: 3-3-6-10 Recovery: 1.7'/2.0' PID/FID: .7/0 S4 Blows: 3-3-4-3 Recovery: 0.9'/2.0' PID/FID: 38/0	-1
		S4 S6	7 15		12.0'-16.0' SANDY CLAY: and orange mottling, dry				PID/FID: 38/0' S5 advanced spaon 0.5' and found red brick in the end S6 Blows: 10-15-8-7 Recovery: 0.5'/2.0' PID/FID: 0/0	
15.0	/ /	\$7	20						PID/FID: 0/0 \$7 Blows: 7-9-9-11 Recovery: 1.5'/2.0' PID/FID: 0/0	-1
		\$8	13	•	16.0'-18.0' SILTY SAND:				S8 Blows: 5-6-6-7 Recovery: 0.9'/2.0' PID/FID: 0/0	-
20.0		59	12		18.0'—24.0' SILTY SAND: and orange mottling	brown, with gray			Wet ⊕ 18.0' S9 Blows: 3-6-7-5 Recovery: 1.7'/2.0' PID/FID: 0/0	-2
25.0		S10	69		- 24.ō'26.0' GRĀVĒL: den	se, with coarse			S10 Blows: 15-32-36-33 Recovery: 1,2'/2.0' PID/FID: 0/0	
	Ī.	R	<u>NRI</u>	ERT KIMBALL &	ASSOCIATES	LOGGED BY: M.EBEL			COMPLETION DEPTH: 26.0 ft	<u> -2</u>
	٠.	T.f.	الدب		5	REVIEWED BY: E.SCIULLI			COMPLETE: 10/13/98	
				Ebensburg, Pennsyl	vania	Fig. No:			Page	1 of

	N A	ARON	1				STA	RT DATE: 10/13/9	8		ВС	REHOLE	No: 96C123_	_MW9S	
.OCAT	ION:	: CAI	MDEN	, NJ				ATHER: CLOUDY, CO					: 96-1322-C12		
RILLE				5			DRI	LLED BY: JOHN URE	BAN, JCA		EL	ELEVATION: 0.000 (ft)			
SAMPL	Ε	TYPE		Shelby Tube		Split Sp	oon	Roller Bit	Drilled Casing		Hollo	w Stem	Соге		
	لير			◆% Core 20 40	Recovery 60	♦ B0									
DEPTH (ft)	Ĕ	SAMPLE NO	Î	20 40	RQD •	80		SOI			SYMBOL		FIELD	Z Z	
E	님	핕	SPT(N)		ecovery #					nsc			T) A TT A	ATIO	
B	SAMPLE TYPE	SA	0)	20 40 ▲ "N"	60 ' value ▲	80		DESCRIF	TIUN		SOIL		DATA	ELEVATION (ft)	
5.0				20 40	60									-25.0	
3.0	Λ	S10	69				sand, we	t						-23.0	
ľ							TOTAL DE	PTH = 26.0 FEET	•						
														-	
	1														
	İ													-	
).0														-30.0	
														00.0	
														-	
														F	
														-	
		ŀ					٠.								
.0				1										-3	
	-														
İ							•								
														Γ	
1.0										1				40.0	
								•							
1		ĺ													
														F	
														-	
.														 	
.0		-												-45.0	
									•						
												}			
														-	
0.0														-50.0	
	L.	R	0BĪ	ERT KIM	(BALI	<u>&</u>	ASSO		LOGGED BY: M.EBEL	11			TION DEPTH: 26.0		
			•	Ebensbui				". .	REVIEWED BY: E.SCIUL Fig. No:	<u> </u>		ICOMPLE	TE: 10/13/98	ge 2 of 2	

MARTIN	V A	ARON	1		START DATE: 10/14/98		BO	DREHOLE No: 96C123_M	W109
.OCAT	ION	: CA	MDEN	, NJ	WEATHER: PARTLY CLOUDY, COOL			oject No: 96-1322-C123	
RILLE	D١	N/CI	4E−5	5	DRILLED BY: JOHN URBAN, JCA		EL	EVATION: 0.000 (ft)	
AMP	E	TYPE		Shelby Tube Split Spoon	Roller Bit Drilled Casing		Holle	ow.Stem . Tore .	
DEPTH (ft)	SAMPLE TYPE	SAMPLE NO	SPT(N)	◆% Core Recovery ◆ 20	SOIL DESCRIPTION	OSC	SYMBOL	FIELD DATA	ELEVATION (ft)
3	SAW	SA		20 40 60 80 ▲"N" yalue ▲	DESCINITION		SOIL	DAIA	ELE
0.0			_	20 40 60 80 0.0'	-4.0' CINDERS: black, brick, ashes		-		0.0
		S1	14		-6.0' CINDERS: ash, slag, wet @ 6.0'			S1 Blows: 7-13-7-7 Recovery: 0.8'/2.0' PID/FID: 0/0	
5.0		S2	7		•			Recovery: 0.3/2.0' PID/FID: 145/0 S3 Blows: 2-2-2-2	-5.0
		\$3	4	6.0'- dry	-9.7' SILTY CLAY: gray, with organics			Recovery: 1.8'/2.0' PID/FID: 184/112 S4 Blows: 3-3-4-5	_
		S4	9	0-7;	7007 5005 717 77 77 77 77 77 77 77 77 77 77 77 77			Recovery: 1.7'/2.0' PID/FID: 54/120	_
0.0		\$5	11		-12.0' SAND: black-greenish gray, ium to fine, with pebbles			S5 Blows: 7-6-6-5 Recovery: 1.3'/2.0' PID/FID:/34	10.I
		S 6	12		'—14.0' SAND: greenish gray, medium to se, with gravel, wet			S6 Blows: 7-6-5-7 Recovery: 1.2'/2.0' PID/FID:/35	-
5.0		57	7		'—18.0' SAND: greenish gray, medium to se, wet			S7 Blows: 1-2-3-4 Recovery: 0.3'/2.0' PID/FID:/	-15.0
				TAX-	I DEDTIL 40.0 CELT				- - - -
0.0				1014	L DEPTH = 18.0 FEET			·	-20.0
									_
25.0									-25.0

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-118

Elevation:

Total Depth: 12.0' Start: 12/1/99 Complete: 12/1/99

Weather: Cold, Clear, 35 Deg. F.

		SUBSURFACE PROFILE		SAMPLE			
					!	"N" Value	
	_	Description			<u>ا</u> ا	N Value	Remarks
Depth	Elevation		Number	lype Blows/ft.	Recovery	10 30 50 70 90	
0 11 110	0	Ground Surface 0.0'-8.0' FILL					: 0.0'-2.0' S1
1-		black, brick, cinders, ash, some silty sand	:S1 S	ss	2.0'		PID: 0.0
2_			-	- :	:		2.0'-4.0' S2 PID: 20.0
3-1-1			S2 S	SS ;	1.5'		· ·
4-				- i	4.01		4.0'-6.0' S3 PID: 15.0
5-		·	S3	55	1.0'		- 6.0'-8.0' S4
6- 7-2			S4 S	SS :	0.8'		PID: .5
8_	-8			<u> </u>	i		- 8.0'-10.0' S5
9_		8.0'-10.0' FILL: black, brick, cinders, ash, some silty sand, damp at 10.0'	S5 S	SS .	1.2'		PID: 50.0
10-1-3	-10				1		- 10.0'-12.0' S6 PID: 50.0
11-	-12	black, brick, cinders, ash, some silty sand, wet at 11.0'	S6 S	ss ,	1.0		WATER LEVELS: After Drilling:
12-	- T	End of Borehole			:		~ 24-Hr.:
13-4	İ	•			;		
					:		
15-							
5							- !
18	1			:	1		<u>_</u>
19_				:	;		•
206					•		_
21_		•					
22_							_
23-7							
24-	1						_
25-							

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA Drill rig: Geoprobe Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-119

Elevation:

Total Depth: 5.5' Start: 12/1/99 Complete: 12/1/99

Weather: Cold, Clear, 35 Deg. F.

		SUBSURFACE PROFILE		SAI	MPLE		
Depth	o Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value Remarks
0 m m 1 m 2 m 3 m		Ground Surface 0.0'-5.5' SILTY SAND brown, fill, ash, cinder, brick, concrete	S1			1.8'	0.0'-2.0' S1 PID: 0.0 2.0'-4.0' S2 PID: 25.0
4- 5- 6-	-5.5	End of Borehole	S3	ss		1.5'	4,0'-5.5' S3 PID: 25.0 5.5' Auger Refusal WATER LEVELS:
6		End of Borehole	A Section of the sect			The second paper is a second paper of the seco	WATER LEVELS: After Drilling: 24-Hr.:

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA **Drill rig:** Geoprobe

Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-120

Elevation:

Total Depth: 10.0' Start: 12/1/99 Complete: 12/1/99

Weather: Cold, Clear, 35 Deg. F.

			SUBSURFACE PROFILE	SA	MPLE		
Depth		Elevation	Description	Number Type	Blows/ft. Recovery	·	emarks
οπ	то .	0	Ground Surface				
1-	l	-2	0.0'-2.0' SILTY SAND brown, cinders, ash, brick, fill, moist at 1.0'	S1 SS	2.0		1
3-	. 1 - 1	;	2.0'-4.0' FILL cinders, ash, brick, some olive green clay at 3.0'-3.5'	S2 SS	1.5	2.0'-4.0' PID: 0.5	
4 -	ł	4,	4.0'-6.0' FILL black, cinders, gravel, brick, slight fuel odor	S3 SS	1.5	4.0'-6.0' PID: 75.0	S3)
6_		-6				6.0'-8.0'	S4
7-	- 2	į	6.0'-10.0' FILL black, cinders, gravel, brick, slight fuel odor, wet at 7.0' (saturated)	S4 SS	2.0	o' PID: 50.)
8 – 9 –		!		S5 SS	1.3	8.0'-10.0 PID: 25. 2' WATER After Dri	D LEVELS:
10-	-3	-10	End of Borehole			24-Hr.:	g.
11-			Life of Bolefiole				į
12-	1	:					
13	- 4	!			-		
14_				1			
15_	ı						
16-							
17	- 5		•		: :		
18_	ĺ			:			Ì
19_			,		!		
20_	- 6				i .		f
21	ļ				•		
22							}
23	- 7 						
24-			•				}
25-					:		

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-121

Elevation:

Total Depth: 12.0' Start: 12/1/99 Complete: 12/1/99

Weather: Cold, Clear, 35 Deg. F.

			SUBSURFACE PROFILE		SA	MPLE				į
	Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	-	" Value 50 70 90	Remarks
ο."	L _O	0 :	Ground Surface			! - : -				1
1-		-2	0.0'-2.0' SILTY SAND brown, with gravel, loose, brick at 2.0'	S1	ss		1.5'			0.0'-2.0' S1 PID: 0.0
3_	_1	-4	2.0'-4.0' SILTY SAND brown, with grave, loose, ash, slag, and cinder	S2	ss		2.0'			2.0'-4.0' S2 PID: 1.0
4 - 5 -		-6	4.0'-6.0' ASH CINDER SLAG some brick and gravel	S3	ss		1.3'			4.0'-6.0' S3 PID: 50.0
6- 7-	-2	-0	6.0'-10.0' ASH CINDER SLAG some brick and gravel, fuel or solvent odor	i	ss		2.0'			6.0'-8.0' S4 PID: >100
8 – 9 –				S5.	ss		1.8'			8.0'-10.0' S5 PID: >200
10- 11-		-10 -12	10.0'-12.0' ASH CINDER SLAG some brick and gravel, strong odor, damp to wet	S6	SS		1.3'			10.0'-12.0' S6 WATER LEVELS: After Drilling: 24-Hr.:
12- 13- 14- 15- 16- 17- 18- 20- 21- 22- 23- 24- 25-		-12	End of Borehole							

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-122

Elevation:

Total Depth: 10.0' Start: 12/7/99 Complete: 12/7/99

Weather: Rain, cool, 40 deg. F

		SUBSURFACE PROFILE		SAI	MPLE			
Depth	Elevation	Description		Туре	Blows/ft.	Recovery	"N" Value 10 30 50 70 90	Remarks
0 m m 0 1 = 0	-2	Ground Surface 0.0'-2.0' SILTY SAND brown, with gravel, dry, loose at 1.5', concrete and brick 2.0'-4.0' SILTY SAND	S1	<u> </u>				0.0'-2.0' S1 PID: 0.5 2.0'-4.0' S2 PID: 8.0
3—1 4— 5— 6—	<u>-4</u>	as above, black, some slag and cinder 4.0'-6.0' SILTY SAND as above, black, some cinder and slag		SS				4.0'-6.0' S3 PID: 5.0
7——2 8—	-8	6.0'-8.0' CLAYEY SILT as above, ash cinders at 6.5', slag, black, white, clayey silt at 6.5'-8.0' 8.0'-10.0' CLAYEY SILT		SS				6.0'-8.0' S4 PID: 15.2 8.0'-10.0' S5 PID: 10.0
9- 103	-10	brown, organic, wet End of Borehole		SS	**************************************	!		WATER LEVELS: After Drilling: 24-Hr.:
12— 13—— 4 14—					:	:		
15— 16— 17—				:				
18 – 19 – 20 – 6		•			· :	:		<u>.</u>
21 _ 22 _ 237			,	:				
23—— / 24— 25—				:	:			-

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Project No: 96-1322-0123

Project Name: Martin Aaron

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-123

Elevation:

Total Depth: 10.0' Start: 12/8/99

Complete: 12/8/99

Weather: Cold, clear 35 deg. F

			SUBSURFACE PROFILE		SAI	MPLE		· · · · · · · · · · · · · · · · · · ·	
Depth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value 10 30 50 70 90	Remarks
01111	0	0 :	Ground Surface	-		-			
1-		-2	0.0'-2.0' SILTY SAND brown, loose at 0.5', gravel and brick to 1.2', 1.2'-2.0' cinders and slag, black	S1	ss		2.0'		0.0'-2.0' S1 PID: 0.0
3-	1	-4	2.0'-4.0' CINDERS AND SLAG as above, black	S2	ss		1.8'		2.0'-4.0' S2 PID: 0.5
5-			4.0'-6.0' CINDERS AND SLAG as above, brown, clayey silt at 6.0'	S3	ss		1.2'	4 F	4.0'-6.0' S3 라D: 10.0
6- 7-	2	-6	6.0'-8.0' CLAYEY SILT brown, and gravel, stringer of white, clayey silt, black cinders, sla at 8.0', wet	S4	ss		1.8'	e F	5.0'-8.0' S4 PID: 10.0
8 — 9 —	3	-8 : -10 :	8.0'-10.0' CLAYEY SILT olive green, organic, wet	S5	ss		1.0'		3.0'-10.0' \$5 PID: 20.0
	۲۲	i	End of Borehole		į.	1	i		
11-							τ		NATER LEVELS: After Drilling: 24-Hr.:
13— 14—	4	!				} !			
15-				:	1	!			
17-	5			!					
18-		, !				:			
20_	6	:		1	1				
22-		:							
23-	7	:					:		
25_			·		1	!			

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA Drill rig: Geoprobe Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-124

Elevation:

Total Depth: 10.0' Start: 12/8/99

Complete: 12/8/99

Weather: Cold, clear 35 deg. F

			SUBSURFACE PROFILE		SA	MPLE		
Denth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value Remarks
0,11	0	0	Ground Surface 0.0'-2.0' SILTY SAND	1		!	!	0.01.01.01
1_		-2	brown, loose gravel at 1.0', brick 1.5'-2.0', brown silty sand	S1	SS		2.0'	0.0'-2.0' S1 PID: 0.0
2- 3-	ľ		2.0'-4.0' CINDERS AND SLAG black, ash, loose, dry	S2	ss		2.0'	2.0'-4.0' S2 PID: 0.0
	-1	_4				!		4.0'-6.0' S3
5-		-6	4.0'-6.0' CINDERS AND SLAG as above, brown and oragne	S3	SS		1.8'	4.0-0.0 33 PID: 5.2
6- 7-	_2	i	6.0'-8.0' CINDERS AND SLAG as above, at 6.5' black cinder and slag, at 8.0' clayey silt, organic,	S4	ss		1.5'	6.0'-8.0' S4 PID: 10.0
8_	Ì	-8	olive green, wet 8.0'-10.0' CLAYEY SILT	·		!	<u> </u>	8.0'-10.0' S5
9_	_3	-10	as above, wet	S5	ss		1.5'	PID: 10.5
11-		:	End of Borehole	:	1	i	1	WATER LEVELS:
12 -		i	*	:	:	:		After Drilling: 24-Hr.:
14_	_ ,	:			:	:		
15_			•		:	!		
16— 17—	- 5	:				:		
18_				İ		:		
19_		:	•	i	1.		1	
20_	- 6			!		÷		
21				;		•	1	
22-	_ 7			:		!	:	
24-					•			
25-						,	<u>;</u>	

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-125

Elevation:

Total Depth: 13.0' Start: 12/7/99

Complete: 12/7/99

Weather: Rain, cool, 40 deg. F

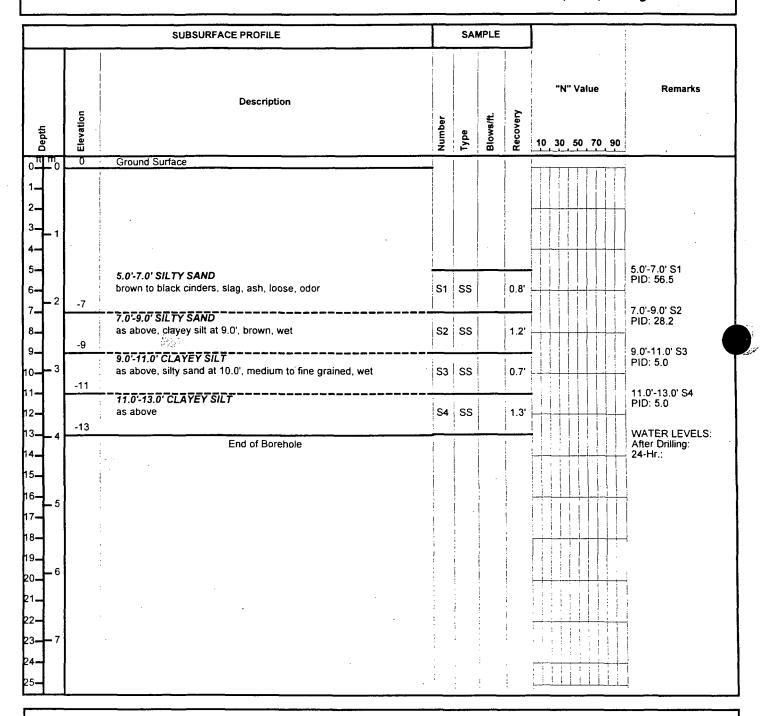
		SUBSURFACE PROFILE		SAI	MPLE			
Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value	Remarks
0 0	0 :	Ground Surface	_			!		:
1- 2- 31								
5- 6- 7-2	-7	5.0'-7.0' SILTY SAND black, medium to fine-grained, dry, clayey silt, white at 7.0'	S1	ss		1.5'		5.0'-7.0' S1 PID: 24.5 7.0'-9.0' S2
8- 9-	-9	7.0'.9.0' CLAYEY SILT white, as above, clayey silt, damp, some gravel at 7.5', silty sand, cinder, slag	S2	ss		2.0'		PID: 57.2
103	-11	9.0-11.0 CINDER AND SLAG as above, wet at 10.5', clayey silt 11.0-13.0' CLAYEY SILT	S3	SS		2.0'		PID: 10.0
12-	-13	brown, organic, as above End of Borehole	S4	ss		1.5'		PID: 0.0 WATER LEVELS: After Drilling:
14 15 				1				24-Hr.:
16- 17-			:	!	; ! ! !			
18- 19- 20-6				į				
21_			:	i :				
23 7 24			:	:	:	:		
25-						:		-

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe

Checked by: E. Sciulli

Client: NJDEP


Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-126

Elevation:

Total Depth: 13.0' Start: 12/7/99 Complete: 12/7/99

Weather: Rain, cool, 40 deg. F

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-127

Elevation:

Total Depth: 13.0' Start: 12/7/99 Complete: 12/7/99

Weather: Rain, cool, 40 deg. F

				SUBSURFACE PROFILE		SA	MPLE			
	Depth		x Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value	Remarks
0.	4		0	Ground Surface		į i		1	<u> </u>	
1. 2. 3. 4.	$\frac{1}{2}$	-1								
5 6		- 2	-7	5.0'-7.0' CINDER AND SLAG some silty sand, black, moist	S1	ss		1.0'		5.0'-7.0' S1 PID: 10.0 7.0'-9.0' S2
8	П		-9	7.0'-9.0' CINDER AND SLAG as above, clayey silt at 8.0', very damp at 8.5', sand medium to fine-grained, some cinder 9.0'-11.0' CINDER AND CLAY	S2	ss		1.2'		PID: 15.0 9.0'-11.0' S3
10	ı	- 3	-11	as above, wet 11.0-13.0' CINDER AND SLAG	S3	ss		0.8'		PID: 0.0 11.0'-13.0' S4 PID: 0.0
12 13	1	_4	-13	as above, wet	S4	ss		0.5'		WATER LEVELS:
14 15	$\frac{1}{2}$:	End of Borehole						After Drilling: 24-Hr.:
16 17	┪	-5	:							
19	$\left\{ \right.$	-6	:							
21 22	1				1	! !				
23 24 25	ł	- 7	:		÷					

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA Drill rig: Geoprobe Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-128

Elevation:

Total Depth: 13.2' Start: 12/7/99

Complete: 12/7/99

Weather: Rain, cool, 40 deg. F

		•	SUBSURFACE PROFILE		SAI	MPLE							
Deoth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	10	"N"			90	Remarks
ο"	_0 	0 :	Ground Surface	: -		Ī		-	11	77			1
1- 2- 3-													
רון	-1												
4		:				!			\top			+-	
5-			5.2'-7.2' CINDER, SLAG AND GRAVEL		! !	!	!						5.2'-7.2' S1 PID: 51.0
6-	_2		black, slight odor, olive green clay at 7.0'	S1	SS		1.5'	H					1
7-	ŀ	-7.2	7.2'-9.2' CLAYEY SILT	!	-	!	1						7.2'-9.2' S2 PID: 25.0
8-			olive green, damp	S2	SS		2.0'	++	$\dashv \dashv$	+			
9-	[-9.2		-		<u>:</u>	1	!					9.2'-11.2' S3 PID: 5.0
10-	-3		as above, wet at 9.5', olive green, clayey silt	S3	SS		2.0	$\vdash \vdash$					PID. 5.0
11-		-11.2		!	1	<u> </u>	<u> </u>						11.2'-13.2' S4
12 -	_4	-13.2	11.2'-13.2' CLAYEY SILT as above 12.0', cinder, ash and slag, wet at 13.', sand, some silt, brown, wet	S4	ss		1.7'						PID: 5.0 WATER LEVELS:
14_	ľ		End of Borehole				í		-	-	Ш		After Drilling: 24-Hr.:
15.		i						11		1			
11													
16-	- 5			!			}			-		П	1
							}						
18-		1					į			+			¬
19-	- 6			!	1		!			į			
20-	$\lceil \ ceil$				1	:				-	+	+	-
21-		,		:	:		:			:			
22-				,	•	1				-		+	
23_	- 7				:	!	i	i : i	1	1		1 1	:
24-				.:	:			-	-			1	<u> </u>
25-					:	İ	:	-			ļ	<u>i i</u>	<u></u> :

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-129

Elevation:

Total Depth: 12.0' Start: 12/8/99

Complete: 12/8/99

Weather: Cold, clear 35 deg. F

		SUBSURFACE PROFILE		SA	MPLE			:
Depth	Elevation	Description	Number	Type	Blows/ft.	Recovery	"N" Value	Remarks
0 " "0	0	Ground Surface 0.0'-2.0' SILTY SAND	:	! -				0.01.0.01.04
1-	-2	brown, gravelly, organic, loose, at 2.0' cinder and slag	S1	ss		1.5'		0.0'-2.0' S1 PID: 0.0 2.0'-4.0' S2
3-1		2.0'-4.0' CINDERS AND SLAG as above	S2	ss		1.5'		PID: 0.0
4 5	-4	4.0'-6.0' CINDERS AND SLAG as above, slight odor		ss				4.0'-6.0' \$3 PID: 0.0
6-	-6	6.0'-8.0' CINDERS AND SLAG as above, odor, wet at 8.0'	S4	ss				6.0'-8.0' S4 PID: 0.0
8 - -	-8	8.0'-10.0' CLAYEY SILT mottled brown and olive green	S5	ss				8.0'-10.0' S5 PID: 0.0
103	-10	10.0'-12.0' CLAYEY SILT as above, wet	S5	ss	!	-		10.0'-12.0' \$6 PID: 0.0
11-	-12	·	- 33	1 33				WATER LEVELS: After Drilling:
13—4 14— 15— 16—5 17— 18— 19—6 21—22—23—7 24—25—		End of Borehole						24-Hr.:

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP 📩 🧬

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-130

Elevation:

Total Depth: 10.0' Start: 12/7/99

Complete: 12/7/99

Weather: Rain, cool, 40 deg. F

			SUBSURFACE PROFILE		SAI	MPLE			
Denth		. Elevation	Description	Number	Type	Blows/ft.	Recovery	"N" Value	. Remarks
οπ	<u>."</u> o	0	Ground Surface 0.0'-2.0' SILTY SAND	1	<u> </u>	!	 		
1-		-2	brown, with some gravel, 0.5'-1.0' orange, brown sand, medium to fine-grained, 1.0'-2.0' brown, silty sand	S1	SS		1.2'		0.0'-2.0' S1 PID: 0.0
3_	_ 1		2.0-4.0' SILTY SAND as above, brown, silty sand, more silty, organic material	S2	ss		2.0'		2.0'-4.0' S2 PID: 0.0
4-		-4				İ	1	-	4.0'-6.0' S3
5		-6	4.0'-6.0' SILTY SAND as above, at 5.0' clayey silt, mottled brown and olive green	S3	ss		1.3'		PID: 5.0
6-	_2		6.0'-8.0' CLAYEY SILT	1	1	1			6.0'-8.0' S4 PID: 5.0
7 8	_	-8	as above, stringers of white and gray, clayey silt, wet at 8.0'	S4	SS		1.2		8.0'-10.0' S5
	ĺ		8.0'-10.0' CLAYEY SILT as above, wet	S5	ss		1.0'		PID: 0.0
9-	_3	-10	as above, wet	35	33		1.0		
10 — 11—	_ 3		End of Borehole						WATER LEVELS: After Drilling: 24-Hr.:
12-	Ì				-				
	- 4					İ	!		
15-						İ			
16-	_ 5						i		
17 —				i i					
1				ļ	İ		1		
19 — 20 —	-6			ŀ					
21_				:	!		:		
22-	_ 7		•	;	i i		:		
24-			· ·		:	:			
25 –						į	i j		

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe

Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-131

Elevation:

Total Depth: 10.0' Start: 12/7/99

Complete: 12/7/99

Weather: Rain, cool, 40 deg. F

			SUBSURFACE PROFILE	\mathbb{L}	SA	MPLE							:
Denth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	10			alue	0 90	Remarks
οπ	Ε°	0 .	Ground Surface	1	1			_	,	1-7		-, ,	
1_		-2	0.0'-2.0' SILTY SAND 0.0'-1.0' silty sand, brown, some gravel, loose, at 1.0' cinders and ash	S1	ss		1.5'						0.0'-2.0' S1 PID: 0.0
3-			2.0°-4.0° CINDERS AND ASH as above, black	S2	ss		1.0'						2.0'-4.0' S2 PID: 0.0
4-		-4			!	<u> </u>		+	- -	++	+!	44	4.0'-6.0' S3
5-		-6	4.0'-6.0' CINDERS AND ASH as above, silty sand, black cinder and slag	S3	ss		1.0'						PID: 0.0 6.0'-8.0' S4
7 8	_2	-8	6.0'-8.0' CINDER AND SLAG as above, strong odor, wet at 8.0'	S4	ss		1.5'						PID: 85.0
9_	_3	-10	8.0'-10.0' CLAYEY SILT mottled brown and olive green, silty sand, brown, at 10.0', wet	S5 [*]	ss		1.8'						8.0'-10.0' S5 PID: 0.0
11-			End of Borehole	-	-						! ;		WATER LEVELS: After Drilling: 24-Hr.:
13-	- 4												
115-				:	:			-			-		
16 - -	_5			!	! !			-					
18 19		:		:	!					+	+		-
20-	- 6			:	!				! !	#			
21 - 22 -								:	:	!!		:	-
23 -	- 7								: :		: :		i :
25 –								: : i_		1 1	: :		

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-132

Elevation:

Total Depth: 12.0' Start: 12/1/99

Complete: 12/1/99

Weather: Cold, Clear, 35 Deg. F.

		SUBSURFACE PROFILE		SAI	MPLE			
Depth	Elevation	Description	Number	Туре	Blows/ff.	Recovery	"N" Value	Remarks
0 m m	0	Ground Surface				Į	!	
1-	-2	0.0'-2.0' CONCRETE brown, sand with some silt, gravelly, loose	S1	ss		1.0'		0.0'-2.0' \$1 PID: 0.0
3	-4	2.0'-4.0' CONCRETE brown, sand with some silt, less gravel than above, loose	S2	ss		1.0'		2.0'-4.0' S2 PID: 0.0
5		4.0'-9.0' CLAYEY SILT brown to dark brown, organic matter (peat)	S3	ss		1.5'		4.0'-6.0' S3 PID: 0.0
6- 72			S4	ss	: !	2.0'		6.0'-8.0' \$4 PID: 0.0
8 - -	-9	9.0'-12.0' SAND	S5	SS		2.0'		8.0'-10.0' S5 PID: 0.0
10——3 11—	-12	brown to light brown, some silt, damp, wet at 11.0'	S6	ss		1.5'		10.0'-12.0' S6 WATER LEVELS: After Drilling: 24-Hr.:
12-	-12			: - -	.		<u>- </u>	
13—4 14— 15—		End of Borehole		<u>;</u>				
16- 17- 18-								
196			; ; ;		; ; ;			
21-					: :	: :		-
23—7 24—			•					-

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe

Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-132-2

Elevation: Total Depth: 2.0' Start: 12/9/99 Complete: 12/9/99

Weather: Cool, clear 40 deg. F

		·	SUBSURFACE PROFILE		_	SAM	MPLE								:
	Depth	⊖ Elevation	Description Ground Surface	Number		Туре	Blows/ft.	Recovery	10		N" \			90	Remarks
1	0		0.0'-2.0' CONCRETE 4" concrete, silty sand, brown, loose, some gravel	S1	i	C C		1.8'	T	Π	1	i		i	0.0'-2.0' S1 PID: 0.0
1-	1	-2 🖫	4 concrete, sitty sand, brown, toose, some graver	31	!	33		1.0							PID: 0.0
3-	1		End of Borehole	į	-										1
4-] - 	υ			-										AFTER DRILLING
5-						!						-			AFTER DRILLING: After Drilling: 24-Hr.:
6-	2	!			1				-	+		+	+	+	i 1
7-	1			i	1	:			-			-		İ	
8- 9-]		·	ri de	į	1				11				1	
10-	— 3	į			i	:			4	11	-		11	- <u> </u>	<u> </u>
11-	-				:										!
13-] ,			ļ	1									+	-
14-	Γ		·	1	!			!			1	-		1	1
15.				; ;	!									1	<u> </u>
16-	-5			!	1					Ħ	-		; 	- -	1 1 1
17-] '				i										<u>.</u>
19.	1				i	:	' 	l I				:		!	: : ∤
ko.	 6	:			!	,		i : :		! !	+	+	11	-	· · · · · · · · · · · · · · · · · · ·
k 1.	1			:	•	į		! : :		! :					
22-	1,			•					1			1			<u>.</u> :
24.					:	į		: :		1	!	:			
25-	-				ì		:	:		1	-	<u>.</u>	! نــــــــــــــــــــــــــــــــــــ		· -

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-133

Elevation:

Total Depth: 12.0' Start: 12/1/99 Complete: 12/1/99

Weather: Cold, Clear, 35 Deg. F.

		SUBSURFACE PROFILE		SAI	MPLE			
Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value	Remarks
0 11 110	0	Ground Surface						
1_		0.0'-4.0' CONCRETE/SILTY SAND brown, loose, some gravel	S1	ss		1.5'		0.0'-2.0' S1 PID: 0.0 2.0'-4.0' S2
3-1	-4		S2	ss		2.0'		PID: 0.0
4-		4.0'-8.0' CLAYEY SILT		!				4.0'-6.0' S3 PID: 0.0
5 -		brown to dark brown, organic	S3	ss	!	2.0'		6.0'-8.0' S4
72	-8		S4	ss		1.8'		PID: 0.0
9_		8.0'-12.0' SILTY SAND brown to light brown, fine to medium grained, damp to wet	S5	ss		1.6'		8.0'-10.0' S5 PID: 0.0
10——3 11—	-12		S6	ss		1.5'		10.0'-12.0' S6 WATER LEVELS: After Drilling: 24-Hr.:
12- 134 14		End of Borehole						
165			!			! ! !		
17 — 18 —			!	1				
19 — 20 — — 6		•		:	: :			
21_				:	!	!		
237			:		:	:		
24 — 25 —				ı		:		

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-134

Elevation:

Total Depth: 10.0' Start: 12/8/99

Complete: 12/8/99

Weather: Cold, clear 35 deg. F

		SUBSURFACE PROFILE		SA	MPLE			:
Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value	! Remarks
0 11 110	0 :	Ground Surface 0.0'-2.0' SAND				1		4
1_	-2	some silt, medium to coarse-grained gravel, brown to dark brown, brick at 1.5', 1.5'-2.0' cinders, slag, black	S1	ss		2.0'		0.0'-2.0' S1 PID: 0.0
3-1		2.0'-4.0' SILTY SAND with cinders and slag, orange, brown, loose, dry	S2	ss		2.0'		2.0'-4.0' S2 PID: 35.2
4-	-4	4.0'-6.0' CINDERS AND SLAG	-	<u>. </u>	<u> </u>	<u> </u>	+ +	4.0'-6.0' S3 PID: 54.5
5-	-6	as above, orange, brown at 4.5', silty sand, olive green grading to silt at 5.0°	S3	SS		2.0'		
7-2	-8	6.0'-8.0' CLAYEY SILT olive green and brown, mottled, organic, wet at 8.0'	S4			2.0'		6.0'-8.0' S4 PID: 25.2
8 - 9 -		8.0'-10.0' CLAYEY SILT as above, wet	S5	ss		2.0'		4 8.0'-10.0' \$5 PID: 0.0
103	-10			-	1	:	+ + + + + + + + + + + + + + + + + + + +	<u>:</u>
11-		End of Borehole	;	:				WATER LEVELS: After Drilling:
13-4	!		į	ļ		!		24-Hr.:
15_			:	 	:			
16				:				<u> </u>
18—					:	:		
19			•					
21_						1		
22-						:		_
23 + 7						:		
25-			:			:		- - -

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA Drill rig: Geoprobe Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-135

Elevation:

Total Depth: 10.0' Start: 12/8/99 Complete: 12/8/99

Weather: Cold, clear 35 deg. F

		SUBSURFACE PROFILE	Γ	SA	MPLE			
Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value 10 30 50 70 90	Remarks
0 ^π m ₀	-0	Ground Surface				:		
1-	-2	0.0'-2.0' SILTY SAND light brown to tan, at 0.8' stained black cinders, slag, at 2.0' gravel	S1	ss		1.5'		0.0'-2.0' S1 PID: 24.3
3-1	4	2.0'-4.0' CINDERS AND SLAG black, as above at 3.5', brown, silty sand, moist	S2	ss		1.8'		2.0'-4.0' S2 PID: 0.0
5-	-6	4.0'-6.0' SILTY SAND black to dark brown, some cinders, slag at 6.0', light tan to white clayey silt	S3	ss	!	1.2		4.0'-6.0' S3 PID: 67.5
6 - 7-	-8	6.0'-8.0' CLAYEY SILT light tan to white with some medium to coarse sand at 7.5', brown and gray cinders, slag, wet	S4	ss	:	1.0'		6.0'-8.0' S4 PID: 20.0
9- 103	-10	8.0'-10.0' NO RECOVERY wet	S5	ss		1.5'		8.0'-10.0' S5 PID: 2.0
ן ריין	:	End of Borehole	1		1	:		
11— 12— 13—— 4 14— 15— 16—— 5 17— 18—								WATER LEVELS: After Drilling: 24-Hr.:
20——6 21— 22— 23——7 24— 25—		·			•			

L Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-136

Elevation:

Total Depth: 10.0' Start: 12/8/99

Complete: 12/8/99

Weather: Cold, clear 35 deg. F

				SUBSURFACE PROFILE		SA	MPLE			
	Depth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value 10 30 50 70 90	Remarks
	υ <u>π</u>	-0 -0	0	Ground Surface 0.0'-2.0' SILTY SAND						1
ı	1-		-2	brown, loose, organic, at 1.0' cinders and slag, black	S1	SS		0.8'		0.0'-2.0' S1 PID: 0.0
-	2 -1 3 -1	_ 1		2.0'-4.0' SILTY SAND brown with cinders, slag, as above	 S2	ss		1.2'		2.0'-4.0' S2 PID: 0.0
١	4-		4				! !			4.0'-6.0' S3
ı	5-		-6	brown with cinders at 5.0', clayey silt, light tan with cinders changing to black at 6.0'	S3	ss		1.8'		PID: 0.0
- [6- 1 7- 1	_2		6.0'-8.0' CINDERS AND SLAG black at 8.0', olive green, clayey silt, wet, organic	S4	SS		1.2'		6.0'-8.0' S4 PID: 0.0
	₽┪		-8	8.0'-10.0' CLAYEY SILT			; '			8.0'-10.0' S5
1	9-	_3	-10	as above, wet	S5 ⁻	ss				PID: 23.6
I.			,	End of Borehole	,					i
	1 — 2 —		:		;	:				WATER LEVELS: After Drilling:
1	3_	- 4				:				24-Hr.:
- [4- 5-									
h	6-	_ 5			:	:				
I	7-		: 							: : :
	8 - 9 -					:	'			•
þ	0-	- 6								-
þ	1-						· .			
	3	- 7								-
þ	4-						:		· · · · · · · · · · · · · · · · · · ·	

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA Drill rig: Geoprobe Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-137

Elevation:

Total Depth: 10.0' Start: 12/8/99

Complete: 12/8/99

Weather: Cold, clear 35 deg. F

			SUBSURFACE PROFILE		SA	MPLE							
Depth		Elevation	Description		Туре	Blows/ft.	Recovery	10	•		alue	90	Remarks
ο"	-"₀	0	Ground Surface 0.0'-2.0' SILTY SAND	:		1	!	-		: 1	Т.		. 0.01.0.01.04
1-		-2	brown, loose, becoming more silty wiht depth, some gravel at 1.5', gravel, black cinders and slag	S1	SS		1.8'						0.0'-2.0' S1 PID: 0.0
3-	_ 1		2.0'-4.0' CINDERS AND SLAG black, as above	S2	ss		1.0'						2.0'-4.0' S2 PID: 0.0
4-		-4		<u> </u>	<u>: </u>			1	1	44	11	+	4.0'-6.0' \$3
5-	İ	-6	4.0'-6.0' SLAG AND CINDERS brown to orange brown at 5.5', light tan, clayey silt, some medium to coarse-grained sand	S3	ss								PID: 35.8
6 7	- 2	-8	6.0'-8.0' CLAYEY SILT 6.0'-6.5' light tan, as above, then slag, black, to 7.5', 7.5'-8.0' clayey silt, olive green, wet	S4	ss								6.0'-8.0' S4 PID: 70.0
9-	- 3	-10	8.0'-10.0' CLAYEY SILT olive green, as above, wet	S5	ss								8.0'-10.0' S5 PID: 56.0
10-1	_ `		End of Borehole		<u> </u>	1	1						7
11-			!	:									WATER LEVELS: After Drilling: 24-Hr.:
13-	-4		•	i		1	:			1 1	; ;		i :
15_		i		:									
16-	- 5			:		:	•		 	+	!		_i
18-	ļ					:		: ;					
19			•		:								-
20.	- 6				:								
21	j							: ,		1			
22_								:			- 1		
23-	- 7								:	: ;	: :	!	
24 - 25-			·.					-:					- '

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA Drill rig: Geoprobe Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-138

Elevation:

Total Depth: 10.0' Start: 12/9/99 Complete: 12/9/99

Weather: Cool, clear 40 deg. F

			SUBSURFACE PROFILE		SA	MPLE		
Depth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value Remarks
0 1 -	- 'o 	-2	Ground Surface 0.0'-2.0' SILTY SAND dark brown to black, loose, grading to brown, silty sand at 2.0'	S1	ss		1.5	0.0'-2.0' S1 PID: 29.9
3-	-1	-4	2.0'-4.0' SILTY SAND brown, loose, shell fragments, no cinder	; S2		:	2.0	2.0'-4.0' S2 PID: 0.0
5-		-6	4.0'-6.0' SILTY SAND as above, no cinder, clean	S3	SS		2.0'	4.0'-6.0' S3 PID: 0.0
7-	- 2	-8	6.0'-8.0' SILTY SAND as above, wet at 7.5'	S4	SS	 	1.8'	6.0'-8.0' S4 PID: 0.0
9-	- 3	-10	8.0'-10.0' SILTY SAND as above, wet	S5	``SS		1.5'	8.0'-10.0' S5 PID: 0.0
11-			End of Borehole			:		WATER LEVELS: After Drilling: 24-Hr.:
13-	- 4			:	1	!		
15-				:	· · · ·	!	:	
17-	- 5			:			i	
19-	-6					:	!	
20 - 21-					:	:	:	
23-	- 7					;		
24 - 25 -								

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-139

Elevation:

Total Depth: 12.0' Start: 12/9/99

Complete: 12/9/99

Weather: Cool, clear 40 deg. F

		SUBSURFACE PROFILE		SAI	MPLE			
Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value 10 30 50 70 90	Remarks
0 TI M	0	Ground Surface	:	i	:		· · · · · · · · · · · · · · · · · · ·	
1-	-2	0.0'-2.0' SILTY SAND brown to black, medium to fine-grained, cinder, slag, gravel, black	S1	ss		1.5'		0.0'-2.0' S1 PID: 52.5
2- 3- _ 1		2.0'-4.0' SILTY SAND as above at 3.8', brown, silty sand, some rounded quartz gravel, loose, no cinder or slag	S2	ss	İ	2.0'		2.0'-4.0' S2 PID: 0.0
4 5	-4	4.0'-6.0' SILTY SAND as above	S3	ss	<u> </u>	1.8'		4.0'-6.0' S3 PID: 0.0
6- 72	-6	6.0'-8.0' SILTY SAND as above, wet at 7.5'	: . S4	ss	<u> </u>	1.0'		6.0'-8.0' S4 PID: 0.0
8_	-8	8.0'-10.0' SILTY SAND		i	<u>i</u> i			8.0'-10.0' S5 PID: 0.0
9 103	-10	as above, becoming more silty, wet	: S5	SS		: 1.5' :		10.0'-12.0' S6
11-	-12	as above	: S6	ss		0.8'		PID: 0.0
12 13 -4		End of Borehole	:	:				WATER LEVELS: After Drilling: 24-Hr.:
14 15			:	:		:		
16				:	:	i		-
17 18				:				i - -
19— 20— — 6	:		:		:			
21_						÷		
22 23 7	0							!
24 – 25 –								=. :-

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA **Drill rig:** Geoprobe

Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-140

Elevation: Total Depth: 8.0' Start: 12/9/99

Complete: 12/9/99

Weather: Cool, clear 40 deg. F

	-	SUBSURFACE PROFILE		SA	MPLE			
Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value	Remarks
o m m	0 0	Ground Surface 0.0'-2.0' SILTY SAND	- 		1	-	<u>:</u> 7	0.01.0.01.01
1-1	·	black, some cinder and slag, turning brown at 1.0', brick at 1.5'	S1	SS	i	1.2'		0.0'-2.0' S1 PID: 0.0
2_	-2				1			2.0'-4.0' S2
		2.0'-4.0' BRICK 2.0'-3.0', brown, silty sand at 3.0', medium to fine-grained, damp	100	00	•	1.5'		PID: 0.0
3- -	1 4	2.0-5.0 , brown, siny samu at 5.0 , medium to inte-granieu, damp	32	SS	!	1.5		
4-		4.0-6.0 SILTY SAND		11		!		4.0'-6.0' \$3 PID: 0.0
5-		brown, as above	S3	SS		2.0'		
6-	-6	6.0'-8.0' SILTY SAND	_ 		-			6.0'-8.0' S4
7.4	2	brown, as above, at 7.5' brick adn concrete	S4	SS		1.2'		PID: 0.0
8	-8	·			<u> </u>	<u>:</u>		Auger Refusal 8.0'
<u>e</u>		End of Borehole	·	l :	!			•
11.	3		!		:	:		·
10-	<u> </u>					į		
¹ 1−1			;		:	:		
12-	1	•		!	į	!	- - - - - - - - - - - - - - - - - - -	WATER LEVELS: After Drilling:
13	4					;		24-Hr.:
14-	1		:	:				
15_			-		!	i i		
	Į		1					
1 1	5			!	1	i		
177	1				:			•
18-	1		:		i	İ		
19_						i		
20	6		:	i	:			
21			:	:	1	:		
	-					:		
1 1	_					:		
P3+	7							
24-	1				;			
25_	-				;	:	<u> Hiliman</u>	

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-141

Elevation:

Total Depth: 8.0' Start: 12/9/99 Complete: 12/9/99

Weather: Cool, clear 40 deg. F

		SUBSURFACE PROFILE		SAI	MPLE			
Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value 10 30 50 70 90	Remarks
0 11 110	0	Ground Surface 0.0'-2.0' SILTY SAND		!			11111111	7 0 01 0 01 04
1-	-2	brown to black gravel, some cinder and ash at 2.0', brown, silty sand, medium to fine grained, no cinder	S1	SS		1.2'		0.0'-2.0' S1 PID: 0.0
2- 3- - 1		2.0'-4.0' SILTY SAND brown, as above, no cinders, shell fragments at 3.8'	S2	ss		2.0'		2.0'-4.0' S2 PID: 0.0
4 - 5 -	-4	4.0'-6.0' CINDERS, SLAG AND SHELL FRAGS brown to black, granular	S3	ss		,		4.0'-6.0' S3 PID: 0.0
6- 72	6 8	6.0'-8.0' CINDERS, SLAG AND SHELL FRAGS as above, at 6.5' clayey silt, olive green, some sand, wet at 7.0'	S4	ss	<u> </u>			6.0'-8.0' S4 PID: 0.0
9- 10-3 11- 12- 13-4 14- 15- 16-5 18- 19- 20-6 21- 22- 23-7		End of Borehole						WATER LEVELS: After Drilling: 24-Hr.:
L. I -					· · · · · · · · · · · · · · · · · · ·			

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-142

Elevation: Total Depth: 8.0'

Start: 12/9/99

Complete: 12/9/99

Weather: Cool, clear 40 deg. F

			SUBSURFACE PROFILE		SA	MPLE						_	
t to 0		Elevation	Description	Number	Туре	Blows/ft.	Recovery	10			aiue	0 90	Remarks
0.11	m _o	0	Ground Surface 0.0'-2.0' CONCRETE	1	!	<u> </u>		T	Т:	П	Т ;	1 1	0.01.0.01.04
1_)	0.0'-0.5' concrete, 0.5'-2.0' brown to black silty sand, cinders, slag	S1	ss		2.0'						0.0'-2.0' S1 PID: 0.0
2_		-2						Li.				1	2.0'-4.0' S2
3_		ł	2.0'-4.0' CONCRETE as above	S2	SS		1.8'						PID: 10.0
	 	4	er er	-		l j							4.01.0.01.00
4	1		4.0'-6.0' SILTY SAND									11	√ 4.0'-6.0' \$3 PID: 50.2
5-		-6	brown, with gray cinders, slag	S3	SS		1.5'					11	
6-	_2	ٻَ	6.0'-8.0' SILTY SAND	i	i	1		+		H	11	+-	6.0'-8.0' S4 PID: 25.2
7-	Γ'	ł	as above, wet at 7.5'	S4	SS		1.0'						1 10. 20.2
8		-8	<u> </u>	!	!	1 1	, 		- -	!!		4	WATER LEVELS:
9_	<u>ן</u>	1	End of Borehole	"Rate"					'				After Drilling: 24-Hr.:
ho-	_ 3	İ		1	i	!							
11-		Í			İ								
	}			!			ļ				1 1		
12-	1	ļ		į			į					11	
13-	├ ⁴	[;	:	í ;								
14_	ł	l		i	!				-	-	1	+	
15_	┨	ļ	'		;		ļ						
16-	١.						 	4	+	H	; - :	!	
17-	- 5				!	!					14		
18-		}		:	į		ļ						1
19_			: :	1	!								
	L 6	[İ	!			il				
20-	1		\		:	1					++		
21_	1			٠			,				::		i I
22_	1					:		÷	-:-	-	! :	+ -	-
23_	- 7	1					į	1	i	:	;	11	
24_]					į	-;;	:		-	· ·	·
25-	1					:				i	٠		
	Ц_												-

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA Drill rig: Geoprobe Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-143

Elevation:

Total Depth: 10.0' Start: 12/8/99 Complete: 12/8/99

Weather: Cold, clear 35 deg. F

			SUBSURFACE PROFILE		SA	MPLE						
Depth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N 10 30	" Val		90	Remarks
ο"	_m _o	0	Ground Surface						: ; ;	, , ,-	· ·	
1-		-2	0.0'-2.0' SILTY SAND brown, some gravel, loose	S 1	SS	İ	1.8'					0.0'-2.0' S1 PID: 0.0
3_	_1		2.0'-4.0' SILTY SAND as above	S2	ss		2.0'					2.0'-4.0' S2 PID: 0.0
4 - 5-		4	4.0'-6.0' SAND some silt, orange, brown, lose, some cinder and slag, as above, wet at 8.0'		SS	:	1.2'					4.0'-6.0' S3 PID: 0.0
6 -	_2	φ	6.0'-8.0' SAND as above, wet at 8.0'	- :	ss		1.5'					6.0'-8.0' S4 PID: 0.0
8 - 9 -		-8	8.07-10.0' CLAYEY SILT as above, wet at 9.0', clayey silt, black, odor, saturated	S5	ss		1.5'					8.0'-10.0' S5 PID: 0.0
10-	- 3	-10					<u>. </u>		111		- -	
11— 12— 13—	-4		End of Borehole	:	:		, , , , , ,				-	WATER LEVELS: After Drilling: 24-Hr.:
15- 16-						:						
17 -	_ 5			;	i	:						
19 20 	- 6				:	:	1				-	
21 				•			:					
23 -	- 7	I							•		ī	
25-							:		:	:	:	<u>:</u>

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-144

Elevation:

Total Depth: 10.0' Start: 12/3/99 Complete: 12/3/99

Weather: Cold, Clear, 35 Deg. F.

		- ,	SUBSURFACE PROFILE	Τ	SA	MPLE					,		·]
	Deput	Elevation	Description	Number	Туре	Blows/ft.	Recovery	10		" Va	70 !	90	Remarks
0	<u>"</u> 0	0	Ground Surface 0.0'-2.0' SILTY SAND		1		<u> </u>		77			\pm i	0.0'-2.0' S1
1_			brown, loose, some gravel	S1	SS		1.5'						PID: 0.0
2_		-2				<u>i i</u>			Ш				2.0'-4.0' S2
3-	-1	-4	2.0'-4.0' SILTY SAND as above, slag, ash, cinder, wood, gravel at 3.5', silty sand, olive green	S2	ss		2.0'						PID: 25.2
5-		-6	4.0'-6.0' SILTY SAND offive green, medium to fine grained, very damp	S3	ss		1.7'						4.0'-6.0' S3 PID: 20.0
6 - 7 -	-2	-8	6.0'-8.0' SILTY SAND cinder and ash layer at 7.5'-8.0', olive green, clayey silt at 8.0', wet at 8.0'	S4	SS		1.3'						6.0'-8.0' S4 PID: 10.0
8 - -			8.0'-10.0' CLAYEY SILT AND SILTY SAND as above, wet	S5	ss	!	1.0'						8.0'-10.0' S5 PID: 10.0
10-	L 3	-10		:		!		\perp					
11- 12-			End of Borehole		1.		I						WATER LEVELS: After Drilling: 24-Hr.:
13-	- 4						Í						·
15-	}												`
16- 17-	- 5						į						
18 - 19-						!							
20-	-6	İ			!	!						4	
21-	1						į						
23-	- 7					:							
25-					:								

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-145

Elevation:

Total Depth: 10.0' Start: 12/3/99

Complete: 12/3/99

Weather: Cold, Clear, 35 Deg. F.

		SUBSURFACE PROFILE		SA	MPLE			\neg
Depth	Elevation	Description	Number	Type	Blows/ff.	Recovery	"N" Value Remarks	
0 11 110	0	Ground Surface						
1-	-2	0.0'-2.0' SILTY SAND brown, loose, gravel, slag and cinders at 1.5'	S1	ss		28.0'	0.0'-2.0' S1 PID: 28.0	
3-1		2.0'-4.0' SILTY SAND as above, slag, cinder, gravel at 3.0', silty sand, brown to light brown, moist, olive green mottling	S2	SS	İ	65.0'	2.0'-4.0' S2 PID: 65.0	
4 - 5-	-6	4.0'-6.0' SILTY SAND as above to 5.0', ash, cinder and slag at 5.0'-6.0', black, with some blue and tan	S3	ss		45.0'	4.0'-6.0' S3 PID: 45.0	
6- 7-	-8	6.0'-8.0' SILTY SAND as above, olive green, clayey silt at 8.0', wet	S4	ss		0	6.0'-8.0' S4 PID: 0.0	
9-10-3	-10	8.0'-10.0' CLAYEY SILT olive green wet	S5	ss		0	8.0'-10.0' S5 PID: 0.0	
11- 12- 13-4 14- 15- 16-5 17- 18- 19-6 21- 22- 23-7 24- 25-		End of Borehole			**************************************		WATER LEVELS: After Drilling: 24-Hr.:	

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-146

Elevation:

Total Depth: 8.0' Start: 12/3/99 Complete: 12/3/99

Weather: Cold, Clear, 35 Deg. F.

		SUBSURFACE PROFILE		SAI	MPLE						
Depth	Elevation	Description .	Number	Туре	Blows/ft.	Recovery	10	• Val	70	90	Remarks
0 11 110	0	Ground Surface 0.0'-2.0' SILTY SAND					1	 			
1-	-2	brown, loose, gravel at 1.5', cinder and slag	: S1	ss		2.0'				!	0.0'-2.0' S1 PID: 0.0
3-1	-4	2.0'-4.0' SILTY SAND as above 2.0'-3.0', cinder ash and slag, black, at 3.0', silty sand, brown turning olive green at 4.0'	S2	ss		2.0'					2.0'-4.0' S2 PID: 31.0
5-	-6	4.0'-6.0' SILTY SAND as above, silty sand, olive green, slag, black at 5.0', clayey silt, tan, moist	S3	ss		1.5'					4.0'-6.0' \$3 PID: 12.0
6- 72	— —	6.0'-8.0' SLAG AND CINDER black, at 7.4', clayey silt, olive green, wet	S4	ss		1.5'					6.0'-8.0' S4 PID: 0.0
9— 10——3 11— 12— 13——4 14— 15— 16——5 17— 18— 19——6 21— 22— 23——7 24—	5	End of Borehole									WATER LEVELS: After Drilling: 24-Hr.:

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-147

Elevation:

Total Depth: 10.0' Start: 12/3/99 Complete: 12/3/99

Weather: Cold, Clear, 35 Deg. F.

			SUBSURFACE PROFILE		SAI	MPLE			
Denth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value	Remarks
0"	_0	0	Ground Surface 0.0'-2.0' SILTY SAND			· :	:		0.0'-2.0' S1
11-			brown, loose, gravel at 0.5', turning black, slag and cinder	S1	SS	1	1.8'		PID: 0.0
2-3-	i	-2	2.0'-4.0' SILTY SAND as above, silty sand, black with slag, cinder at 2.8', silty sand,	92	ss	: :	2.0		2.0'-4.0' S2 PID: 89.0
1.1	- 1	-4	olive green, moist, odor	102		! 	2.0		4.0' 6.0' 60
5-		-Ģ	4.0'-6.0' SILTY SAND olive green, as above	. S3	ss	;	1.2'		4.0'-6.0' S3 PID: 70.0
6 -	- 2	-0	6.0'-8.0' SILTY SAND as above, ash and slag at 7.8'	S4	ss	:	1.6'		6.0'-8.0' S4 PID: 0.0
8		-8	8.0'-10.0' NO RECOVERY						8.0'-10.0' S5
9_	_ 3	-10	spoon wet	S5	SS		0		PID: N/A
10-			End of Borehole		ļ		i		WATER LEVELS:
11-			:	1	:		:		: After Drilling: : 24-Hr.:
13-	-4			;		:			:
14_				4	,	į			i .
15_					:				1
16-	_ 5		!	:	i	! !			<u>.</u>
18-				i		:	:		<u>.</u>
19					ı	:	,		!
20_	- 6								j
21_			· ·			:	į		
22-							į		_
23-							•		:
25 –		,					i .		

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-148

Elevation: Total Depth: 6.0' Start: 12/2/99

Complete: 12/2/99

Weather: Cold, Clear, 35 Deg. F.

7—2 8—9—10—3 11—12—13—4 14—15—16—5 17—6 20—6 21—22—23—7				SUBSURFACE PROFILE		SAI	MPLE			_	_			_	_	
0 0.0-4.0° SILTY SAND brown, loose, some gravel, at 1.5° cinder, slag, brick, concrete S1 SS 2.0° PID: 0.0 2.0° 4.0° S2 PID: 0.0 2.0° 4.0° S2 PID: 0.0 2.0° 4.0° S2 PID: 0.0 2.0° 4.0° S2 PID: 0.0 4.0° 6.0° S3 PID: 2.0 WATER LEVELS After Drilling: 24-Hr.: 15- 16- 17- 18- 19- 20- 6- 21- 22- 23- 7					Number	Туре	Blows/ft.	Recovery	10						90	Remarks
brown, loose, some gravel, at 1.5' cinder, slag, brick, concrete S1 SS 2.0' PID: 0.0 2.0'-4.0' S2 PID: 0.0' S2	0.	10	· ·	0.0'-4.0' SILTY SAND						1		7			!	0 0'-2 0' 51
3 — 1 4	1.	┨	İ	brown, loose, some gravel, at 1.5' cinder, slag, brick, concrete	S1	SS		2.0'		-					:	PID: 0.0
3 — 1 4	2.	┨	l	ste .	<u> </u>		; ;		-	+		÷	; T		┿	2.0'-4.0' S2
4.0°-6.0° CINDER ash, brick, obstruction at 5.5°, wood in bottom of spoon 53 SS 1.5° WATER LEVELS After Drilling: 24-Hr.: 15- 16- 15- 17- 5 18- 19- 20- 6 21- 22- 23-7	3.	 ↓₁			S2	SS		1.8'					!			1
5-	4.	┪	-4	: - 4.0-6.0 CINDER		1			+	-		1	╀		+	4.0'-6.0' S3
End of Borehole End of Borehole After Drilling: 24-Hr.: 8- 9- 10-3 11- 12- 13-4 14- 15- 16- 5 17- 18- 19- 20-6 21- 22- 23-7	5.	┨		ash, brick, obstruction at 5.5', wood in bottom of spoon	S3	ss	! !	1.5'								PID, 2.0
7-6-9-10-3 11-12-13-4 14-4 14-5 16-5 17-5 18-19-20-6 21-22-23-7	6.	,		End of Borehole	<u>!</u> !	· /	: !		+	1		+	+	-	+	WATER LEVELS:
9- 10-3 11- 12- 13-4 14- 15- 16-5 17- 18- 19- 20-6 21- 22- 23-7	7.	Γ				İ				Ì			İ			24-Hr.:
10—3 11— 12— 13—4 14— 15— 16—5 17— 18— 19— 20—6 21— 22— 23—7	8.	1	ĺ			-			-	Ť	H	+	-	; ; ; ;	╁	
11— 12— 13——4 14— 15— 16——5 17— 18— 19— 20——6 21— 22— 23——7	9.	┨		i :			,			!		-				
12— 13—4 14— 15— 16—5 17— 18— 19— 20—6 21— 22— 23—7	ho.	十3	Ì	i I						+		+	÷	!!	-	
13—4 14— 15— 16——5 17— 18— 20——6 21— 22— 23——7	- 111	┨			!	İ		i		1		i	1		i	
14— 15— 16— -5 17— 18— 19— 20— 6 21— 22— 23— 7	12	-]							+		+	1	+		·
16————————————————————————————————————	ήз.	↓ ₄				1						1				
16————————————————————————————————————	14.	┨			٠					+		+	÷		-	
16—5 17—18—19—20—6 21—22—23—7	15	-			1							1	į		!	
18— 19— 20— 6 21— 22— 23— 7	16	٦,	1							1	1 1	-	-	1	1	
19— 20——6 21—— 22——23——7	17	┰°		<u> </u> 		!	! (1		-	1			
20—6 21— 22— 23—7	18	4			:				-	Ļ	:	-	1	H	-	
20— 21— 22— 23— 7	19	4		:	1	:	! :				:		-	i		
22	20	- 6	Į		!					1		!	!	!!	_	
23 + 7	21	4				:			. !			-	:	: :	:	
	22	4			,		:		· ·	-	: :	:	:	: !		•
	23	1 7	ļ			:			. ;		: ;	j			:	· i
[[]	24	4	Ì			:							;	 -	· 	-
25—	25	4				!	:		: :	:	; !!		j !	· :	!	· :

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-149

Elevation:

Total Depth: 8.0' Start: 12/2/99

Complete: 12/2/99

Weather: Cold, Clear, 35 Deg. F.

		SUBSURFACE PROFILE		SAI	MPLE		· ·	
Depth	. Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value	Remarks
0 m m 0 m m	-2	Ground Surface 0.0'-2.0' SILTY SAND brown, loose, some large gravel, brick at 1.5', cinders and ash	S1	ss		2.0'		0.0'-2.0' S1 PID: 0.0
3-1	4	2.0'-4.0' BRICK cinder, ash, slag	S2	ss	<u> </u>	1.5'		2.0'-4.0' S2 PID: 0.0
5-	-6	4.0'-6.0' SLAG black, cinder and ash	S3	ss		1.5'		4.0'-6.0' S3 PID: 0.0
6- 7- 8-	-8	6.0'-8.0' SLAG black, cinder and ash, concrete at 6.5', obstruction at 7.5'	S4	ss		1.2'		6.0'-8.0' S4 PID: 0.0
9— 10—3 11— 12— 13—4 14— 15— 16—5 17— 18— 19—6 21— 22— 23—7		End of Borehole						After Drilling: 24-Hr.:

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-150

Elevation:

Total Depth: 10.0' Start: 12/2/99

Complete: 12/2/99

Weather: Cold, Clear, 35 Deg. F.

		SUBSURFACE PROFILE		SA	MPLE			
Depth	○ Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value	Remarks
0 m m	-	Ground Surface 0.0'-2.0' SILTY SAND		-	!	1		0.01.0.01.04
1-	-2	brown with gravel, loose, gray slag at 2.0'	S1	ss		2.0'		0.0'-2.0' S1 PID: 0.0 2.0'-4.0' S2
3-1	4	2.0'-4.0' SLAG brick, ash and cinders, solvent odor	S2	ss		1.5'		PID: >100
4-	\vdash	4.0'-6.0' ASH			1	<u>′</u>		4.0'-6.0' S3
5-	-6	slag, brick, concrete	S3	ss		1.5'		PID: 0.0
6-		6.0'-8.0' ASH	-		(1		6.0'-8.0' S4 PID: 0.0
7	-8	slag, brick, concrete, very damp at 8.0', green clayey silt, organic	S4	SS		2.0'		8.0'-10.0' S5
9	40	8.0'-10.0' CLAYEY SILT olive green to brown, organic, wet	-85	ss		2.0'		PID: 25.0
10-1-3	-10	`	!	<u>:</u>				WATER LEVELS:
11-		End of Borehole						After Drilling: 24-Hr.:
13-4								
14	1					!		
15_								
165								
18_			!	1		!	! 	
19_6			.					
21-					! :	1		
22 — 23 — 7			:		:	} !		
24-			i		;	:		ļ
25-			<u>:</u>	1	<u>: </u>	!	<u> </u>	

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Charled by: F. Saidli

Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-151

Elevation:

Total Depth: 10.0' Start: 12/3/99 Complete: 12/3/99

Weather: Cold, Clear, 35 Deg. F.

	SUBSURFACE PROFILE SAMPLE							
Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value	Remarks
0 TT TTO	0 :	Ground Surface		1	(
1_	-2	0.0'-2.0' SILTY SAND brown, with some gravel, loose, dry	S1	SS		1.5'		0.0'-2.0' \$1 PID: 0.0 2.0'-4.0' \$2
3-1	-4	2.0'-4.0' SILTY SAND as above, at 3.0' brick, at 3.5'-4.0' silty sand, black, ashes, slag	S2	ss		2.0'		PID: 3.0
5-	-6	4.0'-6.0' SILTY SAND as above, slag, cinders, ash	S3	ss	i	1.2'		4.0'-6.0' S3 PID: 10.0
6— 7——2	-8	6.0'-8.0' SILTY SAND as above, organic, clayey silt at 8.0', very damp	S4	ss		1.7'		6.0'-8.0' S4 PID: 3.0
8- 9- 103	-10	8.0'-10.0' CLAYEY SILT brown, organic, wet at 9.5'	; S5	ss		1.0'		8.0'-10.0' S5 PID: 0.0
11— 12— 13— 4 14— 15— 16— 5 17— 18— 19— 6 20— 6		End of Borehole			,			WATER LEVELS: After Drilling: 24-Hr.:
22— 23—— 7 24— 25—						:		

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-152

Elevation: Total Depth: 8.0' Start: 12/1/99 Complete: 12/1/99

Weather: Cold, Clear, 35 Deg. F.

			SUBSURFACE PROFILE		SA	MPLE				
	Deptu	Elevation	Description	Number	Туре			"N" Value	90	Remarks
0."	m _o	0	Ground Surface 0.0'-2.0' SILTY SAND	1			<u>:</u> :		1 !	- : 0.0'-2.0' S1
1-	1		brown, loose, some gravel at 1.5', cinders, slag	S1	SS		1.5'			PID: 0.0
2- 3-		-2	2.0'-8.0' CINDERS ash slag, loose, slight fuel odor	S2	ss		2.0'			2.0'-4.0' \$2 PID: 50.0
4-	Γ',	1	p		<u> </u>	1		!	11	4.0'-6.0' S3
5-				S3	ss		1.8'	4 1 1 1 1 1 1 1 1		4.0'-6.0' S3 PID: 28.0
6 -	-2			S4	i		1.3'			6.0'-8.0' S4 PID: 10.0
8_	1	-8	End of Borehole		!	:	:		1	- 8.0' - Refusal Wood at 8.0'
9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23-					The second secon					WATER LEVELS: After Drilling: 24-Hr.:
24 - 25 -									· · · · · · · · · · · · · · · · · · ·	-

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-153

Elevation:

Total Depth: 10.0' Start: 12/2/99

Complete: 12/2/99

Weather: Cold, Clear, 35 Deg. F.

	_		SUBSURFACE PROFILE	Π	SA	MPLE			:
Depth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value 10 30 50 70 90	Remarks
0.11	^{b}L	0 :	Ground Surface 0.0'-2.0' SILTY SAND	1	!	-	! !		1
1-		-2	brown, loose, some gravel at 1.0', black cinder fill	S1	ss	! !	2.0'		0.0'-2.0' S1 PID: 0.0
3-	ℷ┞		2.0'-4.0' FILL cinder ash, some brick and gravel, fuel odor	S2	ss	 !	2.0'		2.0'-4.0' S2 PID: 61.9
4	Ľ	-4				<u> </u>	<u>i</u>		i ⊣ 4.0'-6.0' S3
5-		-6	4.0'-6.0' FILL cinder ash, some brick and gravel, fuel odor, brown silty sand and 1" gray clay lense at 6.0'	S3	ss		1.0'		PID: 20.0
6-	₂┝	i	6.0'-8.0' SILTY SAND			:			- 6.0'-8.0' S4 PID: 21.6
7 -		-8	black to dark brown, cinders, ash, slight fuel odor, very damp at 8.0'	S4	SS		1.8'		8.0'-10.0' S5
9_	3	-10	8.0'-10.0' CINDER and ASH wet, sheen สักิป fuel odor at 9.5', olive green organic clay	S5	ss				PID: 0.0 WATER LEVELS: After Drilling:
1	Г		End of Borehole	1		į	į		E-111
11-	1			-			! i		
12-	1								1
13——	4					:			
14-				i			1		
15_	İ					i			
	5	1				!			Ì
17		!				İ			
18-		İ				1	!		
19-	6	i	•			İ	i		
20-	ا			!	1	:	1		<u></u>
21-		!		!					
	7	!	•	:			i		
24-						<u> </u>			Ţ
25-		!		;	i	:	!		

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 **Drilled by:** B. Yoak - JCA **Drill rig:** Geoprobe

Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-154

Elevation:

Total Depth: 12.0' Start: 12/2/99

Complete: 12/2/99

Weather: Cold, Clear, 35 Deg. F.

			SUBSURFACE PROFILE	BSURFACE PROFILE SAMPLE				!	
	Depur	Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value 10 30 50 70 90	Remarks
οπ	LO.	٥	Ground Surface	١.			- 1	! ! 	
1_		-2	0.0'-2.0' SILTY SAND brown, with some gravel, loose, stained black at 2.0'	S1	ss		1.0'		0.0'-2.0' \$1 PID: 0.0
3_	-1	-4	2.0'-4.0' SANDY SILT dark brown to black, cinders, ash, some gravel, slight fuel odor	S2	ss	:	2.0'		2.0'-4.0' S2 PID: 35.2
5			4.0'-6.0' FILL cinder and ash, silght odor	S3	ss		2.0'	;	4.0'-6.0' S3 PID: 0.3
6 - -	-2	-6	6,0'-8.0' FILL ash and cinder	S4	1		1.5'		5.0'-8.0' S4 PID: 10.0
8 – 9–		-8	8.0'-10.0' FILL ash and cinder, very damp at 10.0'	S5	SS		1.0'		3.0'-10.0' S5 PID: 10.0
11-	_3	-10 -12	10.0'-12.0' ASH and CINDERS some olive green clay, wet	S6	ss		0.8'		10.0'-12.0' S6 PID: 0.0 WATER LEVELS: After Drilling
13-	-4		End of Borehole	:	İ				24-Hr.:
15-				: !	!		,		
16 -	5			:		!			
18 - 19-	1			i i					
20-	-6			:		:			
22-									:
23 - 24-	† 7			•	•				
25-	<u>L</u>		·		:	: !			

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-155

Elevation:

Total Depth: 12.0'

Start: 12/2/99

Complete: 12/2/99

Weather: Cold, Clear, 35 Deg. F.

			SUBSURFACE PROFILE		SAI	MPLE			
Depth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value 10 30 50 70 90	Remarks
0.11	m _o	0	Ground Surface						
1-		-2	0.0'-2.0' SILTY SAND dark brown to black, some ash, cinder at 2.0', coarse sand orange/brown	S1	ss		2.0'		0.0'-2.0' \$1 PID: 0.0
3-	_ 1	4	2.0'-4.0' SILTY SAND orange/brown, medium to coarse grained, brick at 3.8'-4.0'	S2	ss		1.5'		2.0'-4.0' S2 PID: 0.0
5-		-6	4.0'-6.0' SILTY SAND orange/brown, loose, medium to coarse grained, some black staining	S3	ss		2.0'		4.0'-6.0' S3 PID: 5.0
7-	-2	-8	6.0'-8.0' SILTY SAND orange/brown, loose, medium to coarse grained, some cinders and ash at 7.5'	S4	ss		1.1'		6.0'-8.0' S4 PID: 0.0
8 9 	-3	-10	8.0'-10.0' SILTY SAND orange/brown, cinder ash at 8.5', strong fuel odor, possible solvent	S5	ss	 	1.3		8.0'-10.0' S5 PID: 75
11-	- 3	-12	10.0'-12.0' ASH and CINDER olive green clay at 11.5, sand, medium grain, strong odor	S6	ss		1.8'		10.0'-12.0' S6 PID: >100 WATER LEVELS: After Drilling:
12-	ı		End of Borehole			i			24-Hr.:
13— 14— 15—	- 4					:	:		
16 -	- 5	:		!	1				
18				:	:	! !			
19 – 20 –	-6			:	i				
21 <u> </u>					;				
23-	- .7				:				
25 -					:		:		- - -

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-156

Elevation: Total Depth: 8.0' Start: 12/2/99

Complete: 12/2/99

Weather: Cold, Clear, 35 Deg. F.

		SUBSURFACE PROFILE		SAI	MPLE								
Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	10			alu	e '0 9	Remarks	····
0 11 110	0	Ground Surface	 -						1 1	-			
1-		0.0'-3.0' SILTY SAND brown; loose, some ash and cinders, dry	 S1	ss	<u>.</u>	1.0'						0.0'-2.0' S1 PID: 10 2.0'-4.0' S2	
3	-3	3.0-4.0 BRICK	S2	ss	 	2.0'						PID: >300	
4-	_	cinder, ash, gravel, strong odor, possible product					+	<u> </u>	1	+		4.0'-6.0' S3	
5-		4.0'-8.0' BRICK and CONCRETE crushed, ash cinders, strong odor, saturated	S3	SS	: : :	1.5'						PID: >500 6.0'-8.0' S4	
7-2	-8		S4	ss		1.0'	1					7 5' Refusal	
8-		End of Borehole					7		1 1	+		WATER LEVE	LS:
9- 10-3 11- 12- 13-4 14- 15- 16-5 17- 18- 20-6 21- 22- 23-7 24- 25-												24-Hr.:	

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 Drilled by: B. Yoak - JCA Drill rig: Geoprobe Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: SB-157

Elevation:

Total Depth: 10.0' Start: 12/2/99

Complete: 12/2/99

Weather: Cold, Clear, 35 Deg. F.

			SUBSURFACE PROFILE		SA	MPLE			:
Depth		Elevation	Description	Number	Туре	Blows/ft.	Recovery	"N" Value 10 30 50 70 90	Remarks
οπ	_0	0	Ground Surface			1	- 1		
1_		-2	0.0'-2.0' SILTY SAND brown, loose, at 0.5' black cinders and ash, at 2.0' brown silty sand	S1	SS		1.5'		0.0'-2.0' S1 PID: 0.0 - 2.0'-4.0' S2
3-	-1	-4	2.0'-4.0' FILL ash, cinders, brick, some orange/brown, medium to coarse sand 3.0'-3.5' then cinders	S2	ss		2.0'		PID: 2.0
4 - 5-		-6	4.0'-6.0' FILL cinder, slag, and ash	S3	SS		1.5'		4.0'-6.0' S3 PID: 5.0
6 -	-2	-8	6.0'-8.0' FILL cinder, slag, and ash, brown, clayey silt at 8.0', organic	S4	ss		1.8'		6.0'-8.0' S4 PID: 5.0
8 — 9 —	_3	-10	8.0'-10.0' CLAYEY SILT organic, brown to dark brown, wet at 9.0'	S5	ss	İ	2.0'		8.0'-10.0' S5 PID: 0.0
10— 11— 12—			End of Borehole	1					WATER LEVELS: After Drilling: 24-Hr.:
13_	-4			:	i :	1			
15_			· :		į				
16 - 17-	_5	!	:	•	:	! :			
18 — 19 —				:			!		
20 — 21 —	-6								
22 – 23 –	- 7						:		
24-							1		- : - :

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700 **Drilled by:** B. Yoak - JCA **Drill rig:** Geoprobe **Checked by:** E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: MW-115

Elevation:

Total Depth: 18.0' Start: 12/27/99 Complete: 12/27/99

Weather: Cold, overcast, 20-30 deg. F

		SUBSURFACE PROFILE		SAI	WPLE			
Depth	Elevation	Description	Number	Type	Blows/ft.	Recovery	"N" Value	Remarks
0 m m 0 1	-1.8	Ground Surface 0.0'-0.2' CONCRETE SIDEWALK 0.2'-1.8' SAND brown, fine to medium-grained, light to dark with orange flecks 1.8'-2.0' CINDERS AND ASHES black	S1	ss	13		3	0.0'-2.0' S1 Blows: 4-9 PID: 0.0
5—1 5—6—2 7—8—9—	-5 -7 -8	5.0'-5.5' SAND fine to medium-grained, light to dark brown 5.5'-7.0' SAND fine to medium-grained, light brown with orange mottling 7.0'-8.0' SAND fine to medium-grained, brown to dark brown, lens of black cinders and ash at 7.6'-7.8'	S2	ss	7 20		20	5.0'-7.0' S2 Blows: 3-3-3-4 PID: 0.0 7.0'-9.0' S3 Blows: 9-9-11-9 PID: 0.0
10——3 11— 12— 13——4	-12	8.0'-9.0' SAND medium to coarse-grained with gravel, round, medium, large, light brown to orange to white, dry 12.0'-14.0' SILTY SAND light brown, orange, damp	S4	ss	16		J 5	12.0'-14.0' S4 Blows: 5-4-8-8 PID:0.0 14.0'-16.0' S5
15— 16— 5 17—	-16 -18	fine to medium-grained, light brown with orange mottling, damp, wet 16.0-18.0' SAND fine to medium-grained, light brown with orange mottling, saturated	i į	ss	11		1	Blows: 3-3-5-6 PID: 0.0 - 16.0'-18.0' S6 Blows: 2-2-2-2 PID: 0.0
19— 20—6 21— 22— 23—7		End of Borehole						WATER LEVELS: After Drilling: 24-Hr.:
25_					:	<u>.</u>		-

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: MW-11M

Elevation:

Total Depth: 52.0' Start: 12/28/99 Complete: 12/28/99

Weather: Cold, Snow, 20-30 deg. F

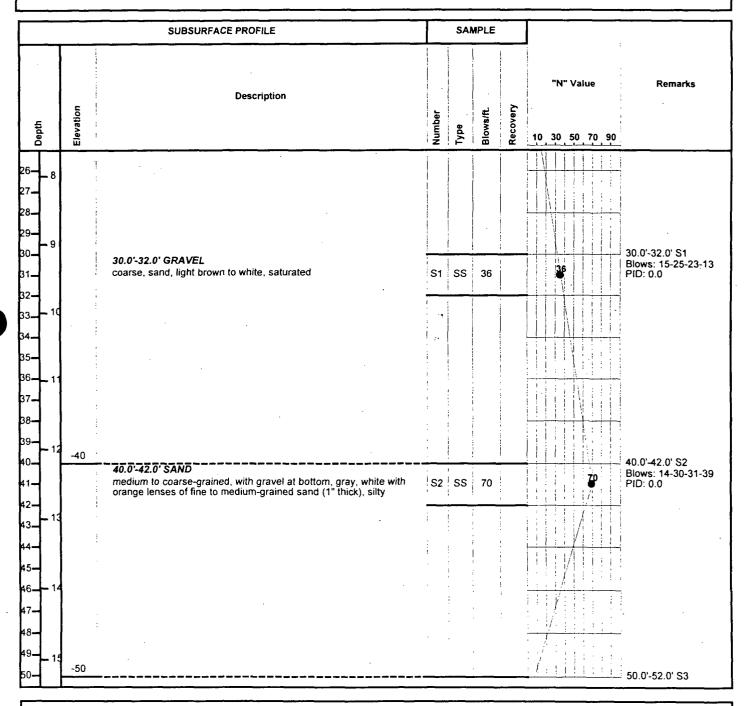
	SUBSURFACE PROFILE	SAM	IPLE		
Depth Elevation	Description	Number Type	Blows/ft. Recovery	"N" Value	Remarks
0 m m 0 0 1	Ground Surface				

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ


Log of Borehole: MW-11M

Elevation:

Total Depth: 52.0' Start: 12/28/99

Complete: 12/28/99

Weather: Cold, Snow, 20-30 deg. F

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Client: NJDEP

Project Location: Camden City, Camden County, NJ

Log of Borehole: MW-11M

Elevation:

Total Depth: 52.0' Start: 12/28/99

Complete: 12/28/99

Weather: Cold, Snow, 20-30 deg. F

	· · · · · ·	SUBSURFACE PROFILE		SAI	MPLE	1						
Depth	Elevation	Description	Number	Туре	Blows/ft.	Recovery	10			′alue	0 90	Remarks
51-	-52	50.0'-52.0' SAND medium to coarse-grained, with gravel, light brown, orange	S3	ss								Blows: 32-64 PID: 0.0
52 - 16		End of Borehole		<u>. </u>	i	i				+	П	-
53-					f I							
54-												WATER LEVELS: After Drilling: 24-Hr.:
55 56 17			1									24-11
57 -			1].
58.				!								
59 18												
60-		•					\perp	11	\parallel			
6 1_	·			!								
62				!		İ	-	11				_
63 – - ``]		į	1		!						
64	٠.		:	!			+	+				_
65 —					ļ							
66-	1			i			H	++	╁			
67-			1	: !								
68 - 2] :		:	;					-			-
p ₃] .		:	1		i !			į			
70-			i	:					Ī	П		
71-] .			:	!	i			1			
73-2	1	•	· · · · · · · · · · · · · · · · · · ·	:	•	!			i			
74-			,				· :	1	:	! !		:
75-		•	:	:	:							

L.Robert Kimball and Associates 615 W. Highland Ave. Ebensburg, PA 15931 (814) 472-7700

Drilled by: B. Yoak - JCA
Drill rig: Geoprobe
Checked by: E. Sciulli

Memorandum

TO:

Juan Salguero-

FROM:

Greg Letzo GR

SUBJ.:

Martin Aaron Permeability Sample

PROJ.:

96-1322-A123

DATE:

August 18, 1997

This memo presents the results of permeability testing requested by you. The material for testing was a combination of three jar samples collectively known as GS-1. Since there are no compaction requirements for this material, we remolded the samples to an approximate density of 106.6 pcf for testing. This test was performed according to the Army Corp of Engineers Method EM 1110-2 Falling Head Permeability. Results of this testing are on table below.

If you have any questions please call.

SAMPLE MIDENHIFICATIONS	MOISHURE CONNENT (%)	SPECIE(C =) (GRAVITY	F (19) SKSU(0) L0 L0)	-((048849)64874- Pagys: \\(\)18074-
GS-1	16.3	2.64	106.6*	4.1 X 10 ⁴

* Note: As per Juan Salguero, there are no compaction requirements.

Memorandum

TO:

Ed Scuilli

FROM:

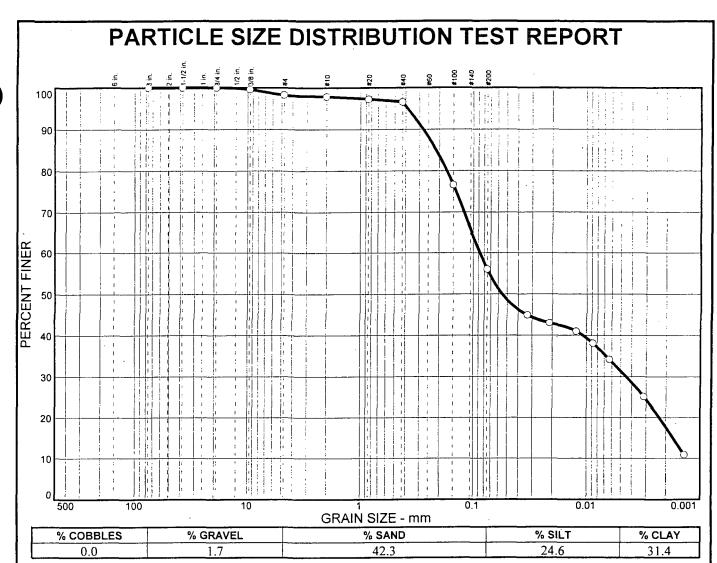
Greg Letzd

SUBJECT:

Martin Aaron Laboratory Test Results

DATE:

1-13-00


Attached are results to testing performed on a jar sample delivered to our lab on January 3, 2000 by Frank Catherine. Testing requested by Frank consisted of one classification performed according to ASTM D2487, using the Unified Soil Classification System (USCS) and one Natural Density, performed according to ASTM D2937. Note that we deviated slightly from this method. A spoon sample was used instead of a drive cylinder.

If you have any questions, call me at extension 268.

New Jersey DEP Martin Aaron Laboratory Test Results 96-1322-G123

January 13, 2000

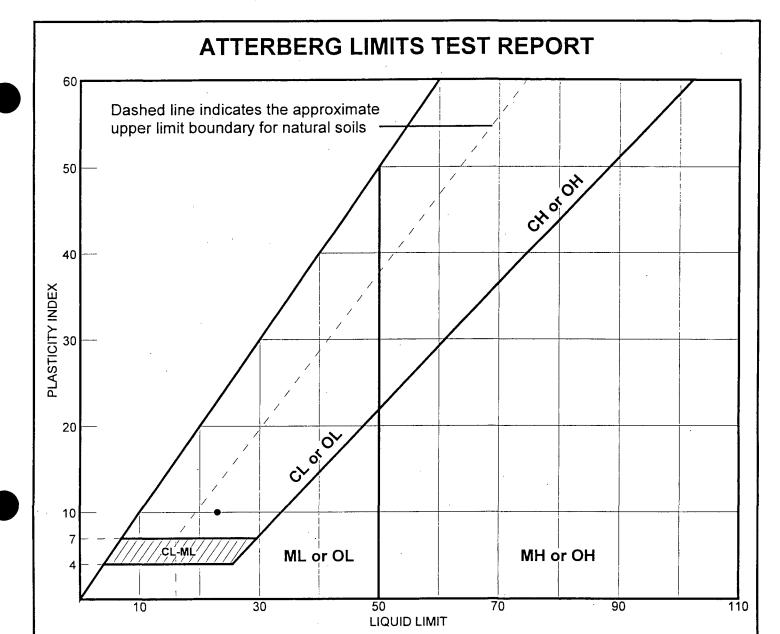
Boring ? Number:	Sample Identification	Depth	Dry Density (pcf)					USCS Classification
MW-11	M-1	55.0-57.0	107.4	17.5	23	10	2.66	CL

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 1.5 .75 .375 #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 99.6 98.3 97.9 97.3 96.6 76.6 56.0	-	

Tan Sandy Clay	Soil Description						
PL= 13	Atterberg Limits LL= 23	PI= 10					
D ₈₅ = 0.213 D ₃₀ = 0.0045 C _u =	Coefficients D ₆₀ = 0.0871 D ₁₅ = 0.0017 C _c =	D ₅₀ = 0.0552 D ₁₀ =					
USCS= CL	Classification AASHT(O=					
Specific Gravity	WSCS= CL AASHTO= Remarks Moisture Content: 17.5% Specific Gravity: 2.66 USCS Classification: Sandy Lean Clay						

(no specification provided)

Sample No.: M-1 Location: -- Source of Sample: MW-11


Date: 1-13-00 **Elev./Depth:** 55.0'-57.0'

L. ROBERT KIMBALL

& ASSOCIATES, INC.

Client: New Jersey DEP
Project: Martin Aaron

Project No: 96-1322-G123

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	MW-11	M-1	55.0'-57.0'	17.5	13	23	10	CL			

ATTERBERG LIMITS TEST REPORT

L. ROBERT KIMBALL & ASSOCIATES, INC.

Client: New Jersey DEP

Project: Martin Aaron

Project No.: 96-1322-G123

72	72
	_ Z
	3

NATURA	L DENSITY MO	STURE CONTENT	
PROJECT NAME: Wart. PROJECT NUMBER: 96-1 BORING NUMBER: MV-11 SAMPLE DESCRIPTION: -	n Afron 322-6123-6∞3 SAMPLE NUMBE	DATE: 1-6-50	
MOISTURE CONTENT: TARE NO.: 328 WET SOIL + TARE: 193 7 DRY SOIL + TARE: 173 9 WATER: 19.64 TARE: 74.42 DRY SOIL: 99.17 MOISTURE CONTENT: 19.5 NOTE: THIS MOISTURE CO REFLECT THE M Content of the	09 gm gm gm gm % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	INITIAL CONDITIONS VOLUME V 57.59 VOLUME SOLIDS Vs 37.28 / VOLUME VOIDS VV 30.31 / VOLUME WATER VW 19.64 / VOID RATIO e 0.544 / SATURATION % S 96.7 / STARTING WT 118.81 gm WET UNIT WEIGHT: 128.7 pcf DRY UNIT WEIGHT: 107.4 pcf SPECIFIC GRAVITY: 2.66 /	
SAMPLE DIMENSIONS: INITIAL DIAMETER (Do) INITIAL AREA (Ao) INITIAL LENGTH (Lo) INITIAL VOLUME (Vo)	$\frac{3.73}{\text{cm}^2}$ cm $\frac{5.27}{\text{cm}^3}$ cm	SKETCH:	
TECHNICIAN	CALCULATIONS BY	CHECKED BY	

Well Coord. or ID	MW1S			_	Date	8/14/9	7
Site Description	Martin Aaron		_	<u>.</u>	Sample ID	MW1S	5-1
Time16:47	_Temperature	90s		_	Weather	Partly Cloudy	
Analysis Requested	VOC, SV, TAI	.; Pest/PCB					
Well Depth		14	ft	Well Diame	ter	4	<u>in</u>
Water Depth	•	5.54	ft	Casing Heig	ght	N/A	ft
Height of Water (HOW)		8.46	ft	Sandpack D	iameter	8	in.
Equivalent Volume of Stan	iding Water	5.9	gal			•	
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/i 4" Diam (10.2 cm) = 0.7 gal 6" Diam (15.2 cm) = 1.5 gal	/ft (0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	<u> </u>	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	30	min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		30	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		30	gal		•		
Cal Ref.	Time	рН	Temp	(C)	Cond (uOHM/cm	1)	
Initial T (0)	16:47	7.7	17.79	9	2.286	····	,
During			-				
During							
Final	17:10	7.47	19.5	3	1.963		
Site Sketch		,					
SEE SITE PLA	AN						!
		,					
Comments:							
				1			

Well Coord. or ID	MW2S			_	Date		8/15/97	
Site Description	Martin Aaron			_	Sample ID		MW2S-I	· · ·
Time	_Temperature	90s		_	Weather		Clear/Sunny	у
Analysis Requested	VOC; SV; TAI	L; Pest/PCB						
Well Depth		16	ft	Well Diame	ter		4	_in.
Water Depth		13.28	ft	Casing Heig	ght	N/A		_ ft
Height of Water (HOW)		2.72	ft	Sandpack D)iameter		8	_in.
Equivalent Volume of Stan	ding Water	1.9	gal					
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/f 4" Diam (10.2 cm) = 0.7 gal 6" Diam (15.2 cm) = 1.5 gal	/ft (0.81 L/m)						·	
Volume of Bailer		N/A	gal/L	or	Pump Rate		1	_gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time		9.5	_min.
Well Went Dry?	No						•	
No. of Bailers		N/A		or	Pump Time	N	I/A	_min.
Volume Purged		9.5	gal		Rec. Time	N	!/A	_min.
Purge Again?	No	·						
Total Volume Removed		9.5	gal					
Cal Ref.	Time	рН	Temp	(F/C)	Cond (uOH!	M/cm)		
Initial T (0)	*	*		•				
During								
During								
Final	*	*	·	<u> </u>				
Site Sketch]
SEE SITE PLA	\N							:
					•			:
•								:
								;
Comments: * Due to stro	ng odor and disc	oloration of water, i	t was dec	cided not to in	nmerse delicate	monitoring	g instrument int	o it.

Well Coord. or ID	MW3S			_	Date		8/15/97	
Site Description	Martin Aaron			_	Sample ID	ample ID MW3S-		<u></u>
Time 07:30	_Temperature	90s		-	Weather		Clear/Sun	ı <u>y</u> .
Analysis Requested	VOC; SV; TAL	.; Pest/PCB						
Well Depth		16	ft	Well Diame	ter		4	in.
Water Depth		10.98	ft	Casing Heig	ht	N/A		ft
Height of Water (HOW)		5.02	ft	Sandpack D	iameter		8 .	in.
Equivalent Volume of Stan	ding Water	3.51	gal					
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/f 4" Diam (10.2 cm) = 0.7 gal/6" Diam (15.2 cm) = 1.5 gal/	ft (0.81 L/m)							
Volume of Bailer		N/A	gal/L	or	Pump Rate		1	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time		11	_ min.
Well Went Dry?	No							
No. of Bailers		N/A		or	Pump Time		N/A	min.
Volume Purged		11	gal		Rec. Time		N/A	min.
Purge Again?	No							
Total Volume Removed		11	gal					
Cal Ref.	Time	рН	Temp	(C)	Cond (uOH	M/CM)		
Initial T (0)	07:30	6.99	17.04	1	0.824	1		
During	07:37	6.99	16.28	8	0.61	<u> </u>		
During								
Final	07:40	6.99	16.10	5	0.580) .		
Site Sketch								
SEE SITE PLA	.N						•	
Comments:								

L. Robert Kimball & Associates, Inc. 615 W. Highland Avenue Ebensburg, PA 15931

Phone: (814) 472-7700 Fax: (814) 472-7712

Well Coord. or ID	MW4S			_	Date	8/15	/97
Site Description	Martin Aaron			_	Sample ID	MW	4S-1
Time 09:20	_Temperature	90s_			Weather	Clear/S	Sunny
Analysis Requested	VOC; SV; TAL	; Pest/PCB					
Well Depth		14	ft	Well Diar	neter	4	in.
Water Depth		5.25	ft	Casing H	eight	N/A	ft
Height of Water (HOW)		8.75	ft	Sandpack	. Diameter	8	in.
Equivalent Volume of Stan	ding Water	6.13	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/f 4" Diam (10.2 cm) = 0.7 gal/6" Diam (15.2 cm) = 1.5 gal/	/ft (0.81 L/m)	·					
Volume of Bailer		<u>N/A</u>	gal/L	or	Pump Rate	11	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	20	min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		20	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		20	gal				
Cal Ref.	Time	рН	Temp	(C)	Cond (uOHM/cr	n)	
Initial T (0)	09:20	6.80	18.4	1	1.096		
During							
During							
Final	09:40	6.66	_21.2:	5	1.023		
Site Sketch	•				····		
SEE SITE PLA	۸N						
							,
							:
Comments:							

Well Coord. or	r ID	MWIM			_	Date	8/14/9	7
Site Descriptio	n	Martin Aaron	4.04		_	Sample ID	MWIM-1&N	MW1M-2(dup)
Time	17:40	_Temperature	90s		_	Weather	Partly Cloud	ly
Analysis Requ	ested	VOC; SV; TAL	.: Pest/PCB					
Well Depth			60	ft	Well Diameter		4	_in.
Water Depth			13.84	ft	Casing Height		N/A	_ft
Height of Wate	er (HOW)		46.16	ft	Sandpack Diar	neter	8	_ in.
Equivalent Vo	lume of Stan	ding Water	32.31	gal				
Volume of Wat 2" Diam (5.8 cr 4" Diam (10.2 c 6" Diam (15.2 c	n) = 0.2 gal/f cm) = 0.7 gal/	/ft (0.81 L/m)						
Volume of Bai	ler		N/A	gal/L	or	Pump Rate	4	_gal/min.
Total No. of Ba	ailers (5EV)		N/A	gal/L	or	Pump Time	22.5	_min.
Well Went Dry	y?	No						
No. of Bailers			N/A		or	Pump Time	N/A	_min.
Volume Purge	đ		90	gal		Rec. Time	N/A	_min.
Purge Again?		No						
Total Volume	Removed		90	gal				
Cal Ref.		Time	рН	Temp	(C)	Cond (uOH)	M/cm)	
Initial T (0)		17:40	6.82		16.68	0.902		
During				-				
During							· ·	
Final		17:48	6.76		16.06	0.903		
Site Sketch								
	EE SITE PLA	N						
		•						!
								:
								:
Comments: _								

Well Coord. or ID	MW2M			_	Date	8/15/9	97
Site Description	Martin Aaron			<i>-</i>	Sample ID	MW2M	-1
Time 11:18	_Temperature	90s		_	Weather	Clear/Sun	ny
Analysis Requested	VOC; SV; TAI	.; Pest/PCB					
Well Depth		62	ft	Well Diameter		4	in.
Water Depth		14.0	ft	Casing Height		N/A	ft
Height of Water (HOW)		48.0	ft	Sandpack Diar	neter	8	in.
Equivalent Volume of Stan	ding Water	33.6	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/f 4" Diam (10.2 cm) = 0.7 gal/6" Diam (15.2 cm) = 1.5 gal/	'ft (0.81 L/m)						,
Volume of Bailer		N/A	gal/L	or	Pump Rate	4	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	25	_min.
Well Went Dry?	No	•					
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		100	gal		Rec. Time	N/A	_min.
Purge Again?	No						
Total Volume Removed		100	gal				
Cal Ref.	Time	рН	Temp	(C)	Cond. (uOH	M/cm)	
Initial T (0)	11:20	6.81		17.03	0.845	5	
During	11:26	6.67		16.29	0.947	1	
During							
Final	11:35	6.68		16.86	0.964	<u> </u>	
Site Sketch							
SEE SITE PLA	.N					,	
							· · · · ·
Comments:					, ,		
					•		

Well Coord. or ID	MW3M		·		-	Date	8/15/9	7
Site Description	Martin Aaron				_	Sample ID _	MW3M-	·1
Time 07:46	_Temperature		90s			Weather	Clear/Sunr	ny
Analysis Requested	VOC; SV; TAL	.; Pest/PCB						· · · · · · · · · · · · · · · · · · ·
Well Depth		57	1	ft	Well Diameter		4	_in.
Water Depth		15.24		ft	Casing Height		N/A	_ ft
Height of Water (HOW)		41.76		ft	Sandpack Dia	meter	8	in.
Equivalent Volume of Stan	ding Water	29.23	<u> </u>	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/f 4" Diam (10.2 cm) = 0.7 gal 6" Diam (15.2 cm) = 1.5 gal	/ft (0.81 L/m)		1 1				•	
Volume of Bailer		N/A		gal/L	or	Pump Rate	6	_gal/min.
Total No. of Bailers (5EV)		N/A		gal/L	or	Pump Time _	20	_min.
Well Went Dry?	No							
No. of Bailers		N/A	· 		or	Pump Time _	N/A	min.
Volume Purged		120	1	gal		Rec. Time	N/A	_ min.
Purge Again?	No							
Total Volume Removed		120	1	gal			·	
Cal Ref.	Time	рН	1	Temp	(C)	Cond.(uOHM/	cm)	
Initial T (0)	07:49	7.19	1		14.88	0.409		
During	07:53	6.68	<u>;</u>		15.40	0.853	_	
During			·		<u> </u>		-	
Final	08:05	6.77	! 		15.78	0.871	-	
Site Sketch			i					
SEE SITE PLA	AN	-					·	
					,			
			,					
Comments:								

Well Coord, or ID	Camden City W	Vell #7		-	Date	8/15/9	77
Site Description	Martin Aaron			-	Sample ID	CW7-1 & C	CW7-2(dup)
Time	_Temperature	90s		-	Weather	clear/Sunr	ıy
Analysis Requested	VOA (524.2); I	Low Level BN; Low	Level T	AL; Pest/PCBs (508)		
Well Depth		N/A	ft/m	Well Diameter		N/A	ft/m
Water Depth		N/A	ft/m	Casing Height		N/A	ft/m
Height of Water (HOW)		N/A	ft/m	Sandpack Dian	neter	N/A	_ft/m
Equivalent Volume of Stan	ding Water	N/A	gal/L				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/fi 4" Diam (10.2 cm) = 0.7 gal/ 6" Diam (15.2 cm) = 1.5 gal/	ft (0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	N/A	_gal(L)/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	N/A	_min.
Well Went Dry?	Yes/No				-	•	
No. of Bailers		N/A		or	Pump Time	N/A	_min.
Volume Purged		N/A	gal/L		Rec. Time	N/A	_min.
Purge Again?	Yes/No						
Total Volume Removed		N/A	gal/L				
Cal Ref.	Time	рН	Temp	(F/C) Co	ond. (uMHO	/cm)	,
Initial T (0)	N/A	N/A	N/A		N/A		
During	N/A	N/A	N/A		N/A		
During	N/A	N/A	N/A		N/A		
Final							
Site Sketch		- And Same				,	
SEE SITE PLA	.N						
			•				

Comments: Sampled from:	sampling port						

Well Coord, or ID	MW1S			_	Date	9/16	/97
Site Description	Martin Aaron			_	Sample ID	MW	1S-2
Time 13:30	Temperature	90s		-	Weather	Clea	r/Sunny
Analysis Requested	VOC; SV; TAL	.; Pest/PCB		····-			
Well Depth		14	ft	Well Diamete	er	4	in
Water Depth		5.9	ft	Casing Heigh	nt	N/A	ft
Height of Water (HOW)		8.1	ft	Sandpack Di	ameter	8	in.
Equivalent Volume of Stand	ding Water	5.67	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/fi 4" Diam (10.2 cm) = 0.7 gal/ 6" Diam (15.2 cm) = 1.5 gal/	ft (0.81 L/m)						
Volume of Bailer	·	N/A	gal/L	or	Pump Rate	2 .	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	9	min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		18	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		18	gal	•			
Cal Ref.	Time	рН	Temp	(C)	Cond (uOHM/cr	n)	
Initial T (0)	13:48	7.15	19.80)	1.853		
During							
During							•
Final	13:48	7.15	19.80)	1.853		
Site Sketch							i
SEE SITE PLA	N						
							i I
Comments:							i
							

Well Coord. or ID	MW2S			_ ,	Date	9/16	/97
Site Description	Martin Aaron			-	Sample ID	MW	2S-2
Time 10:50	Temperature	90s		-	Weather	Clea	r/Sunny
Analysis Requested	VOC; SV; TAI	.; Pest/PCB					
Well Depth		16	ft	Well Diamet	er	4	in.
Water Depth		13.7	ft	Casing Heig	ht	N/A	ft
Height of Water (HOW)		2.3	ft	Sandpack D	iameter	8	in.
Equivalent Volume of Star	nding Water	1.61	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ 4" Diam (10.2 cm) = 0.7 gal 6" Diam (15.2 cm) = 1.5 gal	l/ft (0.81 L/m)	. •					
Volume of Bailer		N/A	gal/L	or	Pump Rate	2	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	6	min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		12	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		12	gal	•			
Cal Ref.	Time	рН	Temp	(F/C)	Cond (uOH)	M/cm)	
Initial T (0)	*			·		. ,	
During							
During							
Final	*	*.		<u> </u>		• •	
Site Sketch							
SEE SITE PL.	AN .						
:							
Comments: * Due to stro	ong odor and disc	oloration of water, it	was dec	ided not to im	merse delicate	monitoring instrur	nent into it.

Well Coord. or ID	MW3S	·		_	Date	9/16/	97
Site Description	Martin Aaron			_	Sample ID	MW3	S-2
Time 09:00	Temperature	90s		_	Weather	Clear/S	unny
Analysis Requested	VOC; SV; TAI	L; Pest/PCB					
Well Depth		16	ft	Well Dia	meter	4	in.
Water Depth		11.6	ft	Casing H	eight	N/A	ft
Height of Water (HOW)		4.4	ft	Sandpaci	k Diameter	8	in.
Equivalent Volume of St	anding Water	3.08	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 ga 4" Diam (10.2 cm) = 0.7 g 6" Diam (15.2 cm) = 1.5 g	gal/ft (0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	2	gal/min.
Total No. of Bailers (5EV	v)	N/A	gal/L	or	Pump Time	66	min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		12	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		12	gal				•
Cal Ref.	Time	рН	Temp	(C)	Cond (uOHM/C	М)	
Initial T (0)	09:05	6.87	18.0	1	0.663		
During							
During					,		
Final	09:05	6.87	18.0	1	. 0.663	·	
Site Sketch		<u> </u>				·	
SEE SITE P	LAN						
:							
Comments:				•			

Well Purging and Sampling Form

Well Coord. or ID	MW4S			-	Date	9/16/97	
Site Description	Martin Aaron			=	Sample ID	MW4S-2	2
Time 08:30	Temperature	90s		-	Weather	Clear/Sun	ny
Analysis Requested	VOC; SV; TAL	; Pest/PCB	_				
Well Depth		14	ft	Well Diamete	er	4 .	in.
Water Depth		5.6	ft	Casing Heigh	t	N/A	ft
Height of Water (HOW)		8.4	ft	Sandpack Diameter		8	in.
Equivalent Volume of Standi	ing Water	5.88	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	2	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	10	min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		20	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		20	gal				
Cal Ref.	Time	рН	Temp	(C)	Cond (uOHM/cm)		
Initial T (0)	08:40	6.85	20.11		0.791		
During	 						
During _							
Final _	08:40	6.85	20.11		0:791		
Site Sketch	-						
SEE SITE PLAN	Ī						
		,					
<u></u>							
Comments:							

96-0123\RI\Wellog2.wk1

300306

Well Coord. or ID	MW1M			_	Date	9/16/9	7
Site Description	Martin Aaron			_	Sample ID	MW1M-3 & 1	MW1M-4(dup)
Time 13:50	_Temperature	90s		-	Weather	Clear/Sunn	у
Analysis Requested	VOC; SV; TAI	.: Pest/PCB					
Well Depth		60	ft	Well Diameter		4	_ín.
Water Depth		13.80	ft	Casing Height		N/A	_ft
Height of Water (HOW)		46.20	ft	Sandpack Diam	meter	8	_in.
Equivalent Volume of Stan	ding Water	32.34	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/fi 4" Diam (10.2 cm) = 0.7 gal/fi 6" Diam (15.2 cm) = 1.5 gal/fi	ft (0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	5	_gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or .	Pump Time	20	_min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	_min.
Volume Purged		100	gal		Rec. Time	N/A	_min.
Purge Again?	No						
Total Volume Removed		100	gal	•			
Cal Ref.	Time	рН	Temp	(C)	Cond (uOH)	M/cm)	
Initial T (0)	14:10	7.06		16.4	0.868	<u> </u>	
During							
During							
Final	14:10	7.06		16.4	0.868		
Site Sketch SEE SITE PLA	N						
Comments:							

Well Coord. or ID	MW2M			<u>.</u>	Date _	9/16/	97
Site Description	Martin Aaron			_	Sample ID _	MW2M	-2
Time 11:20	Temperature	90s		_	Weather _	Clear/Sun	ny
Analysis Requested	VOC; SV; TAI	.; Pest/PCB					
Well Depth		62	ft	Well Diameter	_	4	in.
Water Depth		14.1	ft	Casing Height	_	N/A	ft
Height of Water (HOW)		47.9	ft	Sandpack Dian	neter	8	in.
Equivalent Volume of Star	nding Water	33.53	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ 4" Diam (10.2 cm) = 0.7 ga 6" Diam (15.2 cm) = 1.5 ga	l/ft (0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate _	5	gal/min.
Total No. of Bailers (5EV)	l	N/A	gal/L	or	Pump Time _	20	min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time _	N/A	min.
Volume Purged		100	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		100	gal				
Cal Ref.	Time	рН	Temp	(C)	Cond. (uOHM	/cm)	
Initial T (0)	*	*	-	*	-	_	
During						-	
During						_	
Final	*	*		. *		-	
Site Sketch		· · · · · · · · · · · · · · · · · · ·	· ·				
SEE SITE PL.	AN						
; ;							
:							
						,	

Well Coord. or ID	MW3M			.	Date	9/16/9	97
Site Description	Martin Aaron			-	Sample ID	MW3M	-2
Time 09:40	Temperature	90s		-	Weather	Clear/Sunr	ny
Analysis Requested	VOC; SV; TAI	.; Pest/PCB					
Well Depth		57	ft	Well Diameter		4	in.
Water Depth		15.4	ft	Casing Height		N/A	ft
Height of Water (HOW)		41.6	ft	Sandpack Dia	meter	8	in.
Equivalent Volume of Stan	ding Water	29.12	gal	al		,	
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/f 4" Diam (10.2 cm) = 0.7 gal/f 6" Diam (15.2 cm) = 1.5 gal/f	ft (0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	4	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	20	min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		80	gal		Rec. Time	N/A	min.
Purge Again?	No .	•					
Total Volume Removed		80	gal				
Cal Ref.	Time	pН	Temp	(C)	Cond.(uOHM/o	em)	
Initial T (0)	09:45	6.76		16.53	0.825		
During	,			<u>.</u>			
During							
Final	09:45	6.76		16.53	0.825		
Site Sketch				····			
SEE SITE PLA	.N						
			•				
•							
Comments:							

Well Coord. or ID	Camden City V	Vell #7		-	Date	9/16/97	
Site Description	Martin Aaron			_	Sample ID	CW7-3	
Time 10:15	_Temperature	90s_		_	Weather	clear/Sunn	<u>y</u>
Analysis Requested	VOA (524.2); I	Low Level BN; Low	Level T	AL; Pest/PCBs ((508)		···-
Well Depth		N/A	ft/m	Well Diameter	r	N/A	_ft/m
Water Depth		N/A	ft/m	Casing Height	t	N/A	_ft/m
Height of Water (HOW)		N/A	ft/m	Sandpack Dia	meter	N/A	_ft/m
Equivalent Volume of Stan	ding Water	N/A	gal/L	•			
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/fi 4" Diam (10.2 cm) = 0.7 gal/ 6" Diam (15.2 cm) = 1.5 gal/	ft (0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	N/A	_gal(L)/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	N/A	_min.
Well Went Dry?	Yes/No						
No. of Bailers		N/A		or	Pump Time	N/A	_min.
Volume Purged		N/A	gal/L		Rec. Time	N/A	_min.
Purge Again?	Yes/No						
Total Volume Removed		N/A	gal/L				
Cal Ref.	Time	рН	Temp	(F/C) C	Cond. (uMHO	/cm)	
Initial T (0)	N/A	N/A	N/A		N/A		
During .	<u>N/A</u>	N/A	N/A		N/A		
During	<u>N/A</u>	N/A	N/A		N/A		
Final							
Site Sketch SEE SITE PLA	N						
Comments: Sampled from	sampling port						

Well Coord, or ID	MWIS			-	Date `_		11/10/98
Site Description	Martin Aaron			=	Sample ID _	MW	S-3
Time 13:20	Temperature	50s		-	Weather _		Partly Cloudy, Cool
Analysis Requested	VOC; SV; TAL;	Pest/PCB					
Well Depth		14	ft	Well Diameter	_	4	in
Water Depth		6.5	ft	Casing Height		N/A	ft
Height of Water (HOW)		7.5	ft	Sandpack Diam	eter _	8	in.
Equivalent Volume of Standing	g Water	5.25	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate _	1.5	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time _	10.7	min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		16	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		16	gal				
Cal Ref.	Time	рН	Тетр (C) Con	nd (uOHM/cm)		
Initial T (0)	11:30	7.96	17.71	<u> </u>	4.81		
During							
During	·						
Final	11:45	8.29	17.22	<u>!</u>	4.65		
Site Sketch							
SEE SITE PLAN	ī	•					
						•	
Comments:							
						·	

Well Coord. or ID	MW1M				Date	11/10/9	3
Site Description	Martin Aaron			_	Sample ID	MW1M-3 & MV	V1M-4(dup)
Time 12:20	Temperature	50s		_	Weather	Partly C	oudy, Cool
Analysis Requested	VOC; SV; TAL:	Pcst/PCB	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Well Depth		60	ft	Well Diameter	-	4	_in.
Water Depth		6.48	ft	Casing Height	-	N/A	_ft
Height of Water (HOW)		53.5	. ft	Sandpack Diame	ster	8	_in.
Equivalent Volume of Stand	ling Water	37.45	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ 4" Diam (10.2 cm) = 0.7 gal 6" Diam (15.2 cm) = 1.5 gal	l/ft (0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	1.5	gel/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	64	_min.
Well Went Dry?	No						
No. of Bailers		N/A	-	or	Pump Time	N/A	_min.
Volume Purged		96	gal		Rec. Time	N/A	_min.
Purge Again?	No						
Total Volume Removed		96	gal				
Cal Ref.	Time	рH	Temp ((C)	Cond (uOHM/	cm)	
Initial T (0)	10:45	7.73		16.14	1.385		
During						_	
During			-				·
Final	11:45	7.71		15.83	1.451		
Site Sketch SEE SITE PL	AN					·	
Comments:							

Well Coord. or ID	MW2S		·····	_	Date	11	/10/98
Site Description	Martin Aaron			_	Sample ID	MW2S	-3
Time 14:45	_Temperature	50s		_	Weather	Pa	rtly Cloudy, Cool
Analysis Requested	VOC; SV; TAL;	Pcst/PCB					
Well Depth		16	ft	Well Diamete	×	. 4	in.
Water Depth		14.2	ft	Casing Heigh		N/A	ft
Height of Water (HOW)		1.8	ft	Sandpack Dis	nmeter	8	in.
Equivalent Volume of Standin	ng Water	1.26	gal			,	
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/f 6" Diam (15.2 cm) = 1.5 gal/ft	t (0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	1.5	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	2.5	min.
Well Went Dry?	No :						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		3.8	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed	•	3.8	gal				
Cal Ref.	Time	рН	Temp (F/C) C	ond (uOHM/cm)		
Initial T (0)	13:32	10.6	14.9	·	2.07		
During					·		
During							
Final	13:34	10.69	14.9)	2.069		,
			_				
Site Sketch SEE SITE PLAI	N						,
Comments:						·	

Well Coord. or ID	MW2M			-	Date	11/10/98
Site Description	Martin Aaron			_	Sample ID	MW2M-3
Time 15:30	Temperature	50s		_	Weather	Partly Cloudy, Cool
Analysis Requested	VOC; SV; TAL;	Pcst/PCB		· 		
Well Depth		62	ft	Well Diameter		4 in.
Water Depth		14.4	ft	Casing Height		N/A ft
Height of Water (HOW)	•	47.6	ft	Sandpack Diame		8 in.
Equivalent Volume of Standing	; Water	33.32	gal			
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)					
Volume of Bailer		<u>N/A</u>	gal/L	or	Pump Rate	4 gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	25 min.
Well Went Dry?	No	,				
No. of Bailers		N/A		or	Pump Time	N/A min.
Volume Purged		100	gal	•	Rec. Time	N/A min.
Purge Again?	No					
Total Volume Removed		100	gal			
Cal Ref.	Time	рН	Temp ((C)	Cond. (uOHM/cm)	
Initial T (0)	14:40	8.91		15.96	1.529	
During	***************************************					
During						
Final	15:00	7.28		15.78	1.43	
Site Sketch SEE SITE PLAN						
Comments:				·		

·	W3S		-	Date	11/1.	1/98
Site Description Ma	artin Aaron		_	Sample ID	MW3S	-3
Time 10:35 Tes	mperature50s	s	- .	Weather	Clou	dy,Rain, Cool
Analysis Requested VO	oc			_		
Well Depth	16	_ ft	Well Diameter	·	4	in.
Water Depth	12.52	_ ft	Casing Height		N/A	ft
Height of Water (HOW)	3.48	_ ft	Sandpack Diam	neter	8	in.
Equivalent Volume of Standing Wa	ater 2.44	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft (0.23 4" Diam (10.2 cm) = 0.7 gal/ft (0.8) 6" Diam (15.2 cm) = 1.5 gal/ft (1.72	1 L/m)	•				
Volume of Bailer	N/A	_ gal/L	or	Pump Rate	2	gal/min.
Total No. of Bailers (5EV)	N/A	_ gal/L	or	Pump Time	4	min.
Well Went Dry? No	•					
No. of Bailers	N/A	_	or	Pump Time	N/A	min.
Volume Purged	8	_ gal		Rec. Time	N/A	min.
Purge Again? No	•					
Total Volume Removed	8	_ gal				
Cal Ref. Tim	те рН	Temp ((C)	Cond (uOHM/C	M)	
Initial T (0)	10:00 8.19	16.51		1.094	<u> </u>	
During						
During						
Final	10:10 7.39	16.3	5	1.088	· ·	
Site Sketch						
SEE SITE PLAN						
Comments:						

Well Coord. or ID	MW3M			<u></u>	Date	11/11/98
Site Description	Martin Aaron			_	Sample ID	MW3M-3
Time 10:30	_Temperature	50s		_	Weather	Cloudy,Rain, Cool
Analysis Requested	voc					
Well Depth		57	ft	Well Diameter		4in.
Water Depth		15.7	ft	Casing Height		N/A ft
Height of Water (HOW)		41.3	ft	Sandpack Diame	ter	8 in.
Equivalent Volume of Standing	g Water	28.91	gal			
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft (4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)					
Volume of Bailer		N/A	gal/L	or	Pump Rate	3 gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	29 min.
Well Went Dry?	No					
No. of Bailers		N/A		or	Pump Time	N/A min.
Volume Purged		87	gal		Rec. Time	N/A min.
Purge Again?	No					
Total Volume Removed		87	gal			
Cal Ref.	Time	рН	Temp ((C)	Cond.(uOHM/cm)	
Initial T (0)	9:21	7.49		14.81	1.26	
During						
During						
Final	9:46	6.45		14.82	1.242	
Site Sketch	· · · · · · · · · · · · · · · · · · ·					
SEE SITE PLAN						
Comments:						

Well Coord. or ID	MW4S			_	Date		11/10/98
Site Description	Martin Aaron			_	Sample ID	<u> </u>	/W4S-3
Time 19:00	Temperature	50s		_	Weather		Partly Cloudy, Cool
Analysis Requested	VOC; SV; TAL;	Pest/PCB					
Well Depth		14	ft	Well Diameter		4	in.
Water Depth		6.15	ft	Casing Height		N/A	ft
Height of Water (HOW)		7.85	ft	Sandpack Diam	eter	8	in.
Equivalent Volume of Standing	g Water	5.5	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)						
Volume of Bailer		N/A	gal/L	or .	Pump Rate	11	gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	16.5	min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		16.5	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		16.5	gal				
Cal Ref.	Time	На	Temp (C)	Cond (uOHM/cm)	1	
Initial T (0)	18:15	7.42	17.94	<u> </u>	1.381		
During			****				
During							
Final	18:25	7.09	17.16	<u> </u>	1.213	·	
Site Sketch SEE SITE PLAN	I						
Comments:	· · · · · · · · · · · · · · · · · · ·						

Well Coord. or ID	MW5S_			_	Date	11/10/9	3
Site Description	Martin Aaron			_	Sample ID	MW5S-3	
Time 14:45	_Temperature	50s		-	Weather	Partly C	oudy, Cool
Analysis Requested	VOC; SV; TAL:	Pest/PCB					
Well Depth		16	ft	Well Diameter		4	_in.
Water Depth		12.35	ft	Casing Height		N/A	_ft
Height of Water (HOW)		3.65	ft	Sandpack Diame	ter	8	_in.
Equivalent Volume of Standing	g Water	2.55	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)	N/A	~/ 10		Down Boto	1	a al fra in
Volume of Bailer		N/A	. gal/L	or	Pump Rate	1	_gal/min.
Total No. of Bailers (5EV)	.	N/A	. gal/L	or	Pump Time	7.7	_min.
Well Went Dry?	No	NI/A			D T	N/A	min.
No. of Bailers		N/A		or	Pump Time	N/A	_
Volume Purged		7.7	. gal		Rec. Time	IV/A	_min.
Purge Again?	No	2.2					
Total Volume Removed		7.7	gal .		•		
Cal Ref.	Time	рН	Temp ((C)	Cond (uOHM/cn	1)	
Initial T (0)	15:35	8.07	· -	19.3	3.849	_	
During						_	
During				·		-	
Final	15:45	8.15		19.6	4.052	_	
Site Sketch SEE SITE PLAN	ī						
Comments:							

Well Coord. or	ID	MW6S			_	Date _	. 11	/10/98
Site Description		Martin Aaron			_	Sample ID _	MW6S	-3
Time _	16:45	Temperature	50s			Weather _	Pa	rtly Cloudy, Cool
Analysis Reques	ted	VOC; SV; TAL;	Pest/PCB		·			
Well Depth			16	ft	Well Diameter	-	4	in
Water Depth			14.4	ft	Casing Height	· _	N/A	ft
Height of Water	(HOW)		1.6	ft	Sandpack Dia	meter _	8	in.
Equivalent Volu	me of Standing	Water	1.12	gal				
Volume of Water 2" Diam (5.8 cm 4" Diam (10.2 cm 6" Diam (15.2 cm	0.000 = 0.2 gal/ft (m) = 0.7 gal/ft	(0.81 L/m)						
Volume of Baile	r		N/A	gal/L	or	Pump Rate	0.5	gal/min.
Total No. of Bai	ilers (5EV)	•	N/A	gal/L	or	Pump Time	6.8	min.
Well Went Dry?	•	No				•		
No. of Bailers			N/A		or	Pump Time _	N/A	min.
Volume Purged			3.4	gal		Rec. Time	N/A	min.
Purge Again?		No						
Total Volume R	emoved	•	3.4	gal				
Cal Ref.		Time	рН	Temp	(C) C	ond (uOHM/cm)		
Initial T (0)		16:15	7.86	16.4		2.915		
During								
During .								
Final		16.21	7.48	16.5	<u> </u>	2.81		
Site Sketch	EE SITE PLAN						·	
Comments:								
		· · · · · · · · · · · · · · · · · · ·						

Well Coord. or ID	MW7S			-	Date	11/10/9	8
Site Description	Martin Aaron			_	Sample ID	MW78-3	
Time 17:15	_Temperature	508		_	Weather	Partly C	loudy, Cool
Analysis Requested	VOC; SV; TAL;	Pest/PCB					
Well Depth		16	ft	Well Diameter	_	4	_in.
Water Depth		12.96	ft	Casing Height		N/A	_ft
Height of Water (HOW)		3.04	ft	Sandpack Diame	ter	8	_in.
Equivalent Volume of Standing	, Water	2.13	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	0.5	_gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	12.8	_min.
Well Went Dry?	`No						
No. of Bailers		N/A		or	Pump Time	N/A	_min-
Volume Purged		6.4	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		6.4	gal				
Cal Ref.	Time	рН	Temp ((C)	Cond. (uOHM/cn	1)	
Initial T (0)	16:50	7.82		15.67	4.907	•	
During						-	
During				·		•	
Final	17:00	7.8		15.73	1.368	-	
Site Sketch							
SEE SITE PLAN							.
					,		
Comments:							

Well Coord. or ID	MW8S	····	•	_	Date _	11/10/9	98
Site Description	Martin Aaron			-	Sample ID	MW8S-3	
Time 18:00	Temperature	50s		_	Weather	Partiy (Cloudy, Cool
Analysis Requested	VOC; SV; TAL;	Pest/PCB					
Well Depth		14	ft/m	Well Diameter	_	4	ft/m
Water Depth		6.32	ft/m	Casing Height	_	NA	ft/m
Height of Water (HOW)		7.68	ft/m	Sandpack Diam	eter	8	ft/m
Equivalent Volume of Standing	g Water	5.38	gal/L				ŭ.
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	1	gal(L)/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	16.1	min.
Well Went Dry?	Yes/No						
No. of Bailers		N/A		or	Pump Time	N/A	min.
Volume Purged		16.1	gal/L		Rec. Time	N/A	min.
Purge Again?	Yes/No						
Total Volume Removed		16.1	gal/L				
Cal Ref.	Time	рН	Temp (F/C) C	ond. (uMHO/cm)		
Initial T (0)	17:30	7.48		17.51	2.423	_	
During				·····			·
During						-	
Final	17:40	6.95		17.3	2.556	_	
Site Sketch							· · ·
SEE SITE PLAN	N						
Comments: Sampled from sa	ampling port						

Well Coord. or ID	MW9S			_	Date	11/1	1/98
Site Description	Martin Aaron			_	Sample ID	MW9S-3	
Time 12:40	_Temperature	50s		_	Weather	Clou	dy,Rain, Cool
Analysis Requested	VOC; SV; TAL; Pe	st/PCB				- 1	
Well Depth	_	26	ft	Well Diameter	-	4	in.
Water Depth	_	15.53	ft	Casing Height		N/A	ft
Height of Water (HOW)	_	10.47	ft	Sandpack Diam	eter	8	in.
Equivalent Volume of Standing	g Water	7.33	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)						
Volume of Bailer	-	N/A	gal/L	or	Pump Rate	1	gal/min.
Total No. of Bailers (5EV)	—	N/A	gal/L	or	Pump Time	22	min.
Well Went Dry?	No						
No. of Bailers	-	N/A		or	Pump Time	N/A	min.
Volume Purged	_	22	gal		Rec. Time	N/A	min.
Purge Again?	No						
Total Volume Removed		22	gal				
Cal Ref.	Time	рН	Temp ((F/C) Cor	nd (uOHM/cm)		
Initial T (0)	11:45	7.4	18.53	3	1.215	 .	
During							
During		· ·					
Final	12:05	6.83	16.4	1	1.491		
Site Sketch							
SEE SITE PLAN	1						
Comments:							

Well Coord, or ID	MW9D			<u>-</u>	Date	11/11/98
Site Description	Martin Aaron			-	Sample ID	MW9D-3
Time 12:00	_Temperature	50s		-	Weather	Cloudy, Rain, Cool
Analysis Requested	VOC; SV; TAL;	Pest/PCB	······································			
Well Depth		54.5	ft	Well Diameter	-	4in.
Water Depth		15.43	ft	Casing Height	-	N/A ft
Height of Water (HOW)		39.07	ft	Sandpack Diame	ter .	8 <u>in</u> .
Equivalent Volume of Standing	Water	27.35	gal			
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)	·				
Volume of Bailer		N/A	gal/L	or	Pump Rate	3 gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	27.3 min.
Well Went Dry?	No					
No. of Bailers		N/A		or	Pump Time	N/A min.
Volume Purged		82	gal		Rec. Time	N/A min.
Purge Again?	No					
Total Volume Removed		82	gal			
Cal Ref.	Time	рН	Тетр (C)	Cond. (uOHM	U cm) ,
Initial T (0)	11:15	7.01		15.95	1.287	<u> </u>
During						
During						
Final	11:35	6.81		15.86	1.377	
Site Sketch						
SEE SITE PLAN						
						•
Comments:						

Well Coord. or ID	MW10S			-	Date	11/11/98	3
Site Description	Martin Aaron			-	Sample ID	MW10S-3	
Time 13:30	_Temperature	50s		-	Weather	Cloudy,	Rain, Cool
Analysis Requested	VOC; SV; TAL; P	Pest/PCB					
Well Depth		18	ft	Well Diameter		44	_in.
Water Depth		13.82	ft	Casing Height		N/A	_ft
Height of Water (HOW)		4.18	ft	Sandpack Diam	<u></u>	8	_in.
Equivalent Volume of Standing	Water	2.93	gal				
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft (4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)						
Volume of Bailer		N/A	gal/L	or	Pump Rate	1	_gal/min.
Total No. of Bailers (5EV)		N/A	gal/L	or	Pump Time	9	_min.
Well Went Dry?	No						
No. of Bailers		N/A		or	Pump Time	N/A	_min.
Volume Purged		9	gal		Rec. Time	N/A	_min_
Purge Again?	No				•		
Total Volume Removed		9	gal				
Cal Ref.	Time	рН	Temp (C)	Cond. (uOHM/cm)		
Initial T (0)	13:15	8.61		21.37	1.731		
During							
During							
Final	13:25	7.4		21.41	1.657		
Site Sketch					· · · · · · · · · · · · · · · · · · ·		
SEE SITE PLAN				·			
Comments:							

WELL SAMPLING FORM

Well Coord. or ID#		MW1S			Date	1/18/00		
Site Description		Martin Aaron			Sample ID	MW1S-4		
Project Number					Sampler _	AES - RJ	к	
Time 11:40)	Temp.	30 - 40		Weather _	CLEAR	COLD	
Analysis Requested						· · · · · · · · · · · · · · · · · · ·		
Well Depth			14 ft		Well Diameter		··	ſſ
Water Depth			5.85 ft	·	Screen Length			ft .
Height of Water (HOW)			8,15_ft		Sandpack Diam	eter		ſſ
Equivalent Volume of Standin	ng Water		5.32 gal					
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft (4" Diam (10.2 cm) = 0.7 gal/ft (6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L /m)			•				
Volume of Bailer			gal	or	Pump Rate		gal/min.	
Total No. of Bailers (5EV)			gal	or	Pump Time _		min.	
Well Went Dry?		Yes / No						
No. of Bailers				or	Pump Time		mìn.	
Volume Purged			16 gal		Rec. Time		min.	
Purge Again?		Yes / No						
Total Volume Removed			16 gal					
Cal Ref.	Time	рН	Cond. (uMHO/cm)	Temp. C	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0)	10:30	6.88	1345	15.01	0.68	19.44	-121.3	
During	10:35	7.04	1637	15.33	0.83	18.46	-120.7	
During	10:40	7.09	2353	15.73	1.22	17.65	-117,3	

15.57

1.28

14.00

-114.8

Final

10:45

7.16

WELL SAMPLING FORM

			WELL SAMPLING	roku				
Well Coord. or ID#		MWIM	·		Date	1/19/00	·	_
Site Description		Martin Aaron			Sample ID	MWIM	l-6	_
Project Number					Sampler	AES - I	UK	_
Time 11	:15	Тетр.	30 - 40		Weather	CLEAR	COLD	-
Analysis Requested								_
Well Depth			<u>60</u> ft		Well Diameter			_ft
Water Depth			13.58_ft	•	Screen Length		····	_(1
Height of Water (HOW)			46.42 ft		Sandpack Diam	eter		_ft
Equivalent Volume of Stan	ding Water		30 gal					
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/f 4" Diam (10.2 cm) = 0.7 gal 6" Diam (15.2 cm) = 1.5 gal	/ft (0.81 L/m)							
Volume of Bailer			gal	or	Pump Rate _		gal/min.	
Total No. of Bailers (5EV)			gal	or	Pump Time		min.	
Well Went Dry?		Yes / No						
No. of Bailers				or	Pump Time		min.	
Volume Purged			90 gal	J,	Rec. Time		min.	
Purge Again?		Yes / No			_		 -	
Total Volume Removed			90 gal	•		•		
Cal Ref.	- Time	рН	Cond. (uMHO/cm) -	Temp. C	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0)	9:55	6.02	955	15.36	0.47	7.38	-17.2	
During	10:00	6.15	929	15.41	0.47	5.39	-74.9	
During	10:05	6.18	922	15,36	0.47	4.87	-74.9	

0.47

4.71

-75.1

15.37

Final

10:,10

6.19

Well Coord. or ID#		MW10S				Date _	1/18/00		_
Site Description		Martin Aaron		•		Sample ID	MWI	10S-4	-
Project Number		,	<u></u>			Sampler _	AES	- RJK	- ,
Time	15:00	Temp.	30 - 40			Weather _	CLE,	AR, COLD	-
Analysis Requested									
Well Depth			18_ft			Well Diameter			-ft
Water Depth			12.93 ft			Screen Length			_ft
Height of Water (HOW	v)		5.07_ft			Sandpack Diam	eler		ft
Equivalent Volume of S	Standing Water		3.31 gal						
Volume of Water 2* Diam (5.8 cm) = 0.2 g 4* Diam (10.2 cm) = 0.7 6* Diam (15.2 cm) = 1.5	gal/ft (0.81 L/m)			· ·				,	
Volume of Bailer			gal		or	Pump Rate		gal/min.	
Total No. of Bailers (5E	EV)		gai	•	or	Pump Time _	· · · · · · · · · · · · · · · · · · ·	min.	
Well Went Dry?	•	Yes / No							
No. of Bailers						5 . 75°			
Volume Purged			10 gal	•	or	Pump Time		mia. mia.	
Purge Again?		Yes / No							
Total Volume Removed	d		10 gal						
Cal Ref.	Time	рН	Cond. (uMHO/cm)		Temp. C	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0)	15:20	7.34	1758		14.54	0.90	12.59	-41.0	
During	15:22	7.42	1758		16.22	0.89	12.23	-56.9	
During	15:24	7.42	1772		16.22	0.90	10.01	-56.4	
Final	15:26	7 44	1755		16.33	0.87	10.49	-56.9	

WELL SAMPLING FORM

Well Coord. or ID#		MW9D			Date	1/18/00		
Site Description		Martin Aaron			Sample ID	MW	/9D-4	•
Project Number					Sampler	AES	S - RJK	
Time	14:30	Temp.	30 - 40		Weather	CLI	EAR, COLD	
Analysis Requested								
Well Depth			54.5_ft		Well Diameter			ft
Water Depth			14.76_ft	•	Screen Length			ft
Height of Water (HOV	*) .		39,84_ft		Sandpack Diar	neter	·····	ft
Equivalent Volume of	Standing Water		26_gal					
Volume of Water 2" Diam (5.8 cm) = 0.2 4" Diam (10.2 cm) = 0.6" Diam (15.2 cm) = 1.5	7 gal/ft (0.81 L/m)							
Volume of Bailer			gai	or	Pump Rate		gal/min.	
Total No. of Bailers (5	EV)		gal	or	Pump Time		min.	
Well Went Dry?		Yes / No						
No. of Bailers				or	Pump Time		min.	
Volume Purged			80 gal	U	Rec. Time		min.	
Purge Again?		Yes / No						
Total Volume Remove	d .		80 gal					
Cal Ref.	Time	рН	Cond. (uMHO/cm)	Temp. C	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0)	13:45	7.57	1511	11,25	0.76	20.03	4.2	
During	13:50	7.31	1426	11,26	0.75	13.09	-8	
During	13:55	7.23	1616	15.24	. 0.82	12.13	-26.5	
Final	14:00	7.18	1616	15,34	0.82	14.03	-26.5	

WELL SAMPLING FORM

							-			
Well Coord. or ID#		MW9S				Date	1/18/00	<u> </u>		
Site Description		Martin Aaron				Sample ID		MW9S-4		
Project Number			<u>.</u>			Sampler		AES - RJK		
Time 14:	45	Temp.	30 - 40			Weather		CLEAR, COLD		
Analysis Requested										
Well Depth			26	ft		Well Diameter				ft
Water Depth			14.63	ft	*	Screen Length				ft
Height of Water (HOW)			11.37	ft		Sandpack Dias	meter		-	ft
Equivalent Volume of Stand	ing Water		7.5	gal						
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/f 6" Diam (15.2 cm) = 1.5 gal/f	t (0.81 L/m)									
Volume of Bailer				gal	or	Pump Rate		gal/min.	•	
Total No. of Bailers (5EV)	•			gal	or	Pump Time		min.		
Well Went Dry?		Yes / No								
No. of Bailers					or	Pump Time		min.		
Volume Purged	•		22	eal .	UI	Rec. Time		min.	•	
Purge Again?		Yes / No		B -						
Total Volume Removed			22	gal						
Cal Ref.	Time	рН	Cond. (uMHO/cm)		Temp. C	Salinity (ppt)	Dissolved Oxygen	Pote	lation ential eV)	Dissolved Oxygen (%)
Initial T (0)	14:10	7.05	1367	·	15.24	0.69	13.79		7.1	
During	14:15	7.00	1359		15.25	0.68	12.42	30	0.0	
During -	14:20	7.00	1360		15.27	0.67	12.4	31	1.0	

11.7

0.67

11.99

40.0

Final

7.00

14:25

WELL SAMPLING FORM

Well Coord. or ID#	MW11S			Date	1/18/00		_
Site Description	Martin Aaron			Sample ID	м	W11S-4	_
Project Number				Sampler	A£	ES - RJK	_
Time 12:30	Temp.	30 - 40		Weather _	CI	EAR COLD	_
Analysis Requested				.	·	· · · · · · · · · · · · · · · · · · ·	-
Well Depth		21_ft		Well Diameter			_fi
Water Depth		13.23_ft		Screen Length			_ft
Height of Water (HOW)		7.77 ft		Sandpack Diame	eter	·	_ (t
Equivalent Volume of Standing Water					,		
Volume of Water 2° Diam (5.8 cm) = 0.2 gal/ft (0.23 L/m) 4° Diam (10.2 cm) = 0.7 gal/ft (0.81 L/m) 6° Diam (15.2 cm) = 1.5 gal/ft (1.73 L/m)							
Volume of Bailer		gal	or	Pump Rate		gal/min.	
Total No. of Bailers (5EV)		gal	or	Pump Time		min.	
Well Went Dry?	Yes / No		•				
No. of Bailers			or	Pump Time		min.	
Volume Purged		15 gal	3.	Rec. Time		min.	
Purge Again?	Yes / No						
Total Volume Removed		15 gal					
Cal Ref. Time	pН	Cond. (uMHO/cm)	Temp.	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0) 12:00	7.61	1496	11.49	0.76	20.03	97.2	
During 12:05	7.42	1490	11.5	0.75	19.93	91	

11.45

11.49

0.75

0.75

19.81

19.72

84.3

81.7

During

Final

12:10

12:15

7.3

WELL SAMPLING FORM

Well Coord. or ID#		MWIIM			Date	1/18/00		
Site Description		Martin Aaron	·		Sample ID	MWII	M-4	_
Project Number	·				Sampler	AES -	rjk	
Time 1	2:15	Temp.	30 - 40	•	Weather	CLEA	R COLD	_
Analysis Requested		<u></u>			· 			_
Well Depth			56 ft		Well Diameter	· .		ft
Water Depth			13.25_ft		Screen Length	ı		ft
Height of Water (HOW)			42.75 ft		Sandpack Dia	meter	······································	_ft
Equivalent Volume of Stat	nding Water	•						
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ 4" Diam (10.2 cm) = 0.7 gal/ 6" Diam (15.2 cm) = 1.5 gal/	l/ft (0.81 L/m)	·						
Volume of Bailer			gal	or	Pump Rate		gal/min.	
Total No. of Bailers (5EV)			gal .	or	Pump Time		min.	
Well Went Dry?		Yes / No						
No. of Bailers				,	p. 2"		t-	
Volume Purged		•	92	, or	Pump Time Rec. Time		min.	
Dune Acces		Yes / No	83_ gal	•	Rec. Time		mid.	
Purge Again?		1657 110	93 aut					
Total Volume Removed			83 gai					
Cal Ref.	Time	рН	Cond. (uMHO/cm)	Temp.	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0)	11:35	7.26	2265	14.19	1.17	16.02	166.2	
During	11:40	7.15	2135	14.64	1.1	11,53	162.6	
During	11:45	7.06	2124	14.46	1.09	9.35	156.3	

14.52

1.09

7.74

155.2

Final

11:50

7.1

Well Coord. or ID#		MW8S			Date _	1/19/00		_
Site Description		Martin Aaron			Sample ID _	MW8S-4		_
Project Number					Sampler _	RJK		-
Time 16	:30	Temp.	30 - 40		Weather _	CLEAR	COLD	_
Analysis Requested				· 		····-		_
Well Depth			12.8_ft		Well Diameter			_ft
Water Depth			5.76_ft		Screen Length			_n
Height of Water (HOW)		•			Sandpack Diam	eter		_n
Equivalent Volume of Stan	ding Water		4.5 gal					
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/fit 4" Diam (10.2 cm) = 0.7 gal/fit 6" Diam (15.2 cm) = 1.5 gal/	ft (0.81 L/m)							
Volume of Bailer			gal	or	Pump Rate _		gal/min.	
Total No. of Bailers (5EV)			gal	or	Pump Time	·	min.	
Well Went Dry?		Yes / No		-				
No. of Bailers								
Volume Purged			. 14	or	Pump Time _ Rec. Time		min. min.	
Purge Again?		Yes / No	14 gal		Ket. Hille			
Total Volume Removed			<u>14</u> gal					
Cal Ref.	Time	рН	Cond. (uMHO/cm)	Temp. C	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0)	16:10	6.63	1729	15.19	0.88	26.41	-83.3	,
During	16:13	6.48	1495	15.15	0.85	26.69	-95.2	
During	16:16	6.48	1404	15.77	0.71	24.85	-95.3	
Fig. 1	16:10	4.40	1266	16.72	0.40			

Well Coord. or ID#		MW6S				Date	1/19/00	. 	_
Site Description		Martin Aaron				Sample ID		MW6S-4	-
Project Number						Sampler _		ruk	-
Time	15:00	Temp.	30 - 40			Weather		CLEAR COLD	_
Analysis Requested									_
Well Depth			16	ft		Well Diameter	-		_ft
Water Depth			13.48	fı		Screen Length	-		_ft
Height of Water (HOW)			2.52	ft		Sandpack Diam	eter .		_ft
Equivalent Volume of St	anding Water		1.6	gal					
Volume of Water 2* Diam (5.8 cm) = 0.2 ga 4* Diam (10.2 cm) = 0.7 g 6* Diam (15.2 cm) = 1.5 g	al/ft (0.81 L/m)							·	
Volume of Bailer			!	gal	or	Pump Rate		gal/min.	
Total No. of Bailers (5EV	[†]	· · · · · · · · · · · · · · · · · · ·		gai	or	Pump Time		min.	
Well Went Dry?		Yes / No							
No. of Bailers				•	Or	Pump Time		min.	
Volume Purged			6	gai		Rec. Time		mis,	
Purge Again?		Yes / No						-	
Total Volume Removed			6	gal					
Cal Ref.	Time	рН	Cond. (uMHO/cm)		Temp. C	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0)	14:05	7.28	. 34	 -	13.02	0.02	8.58	-98.7	
During	14:08	7.22	43		13.39	0.02	11.44	-100.1	
During	14:11	6.91	3161		15.04	0.02	34.36	-101.1	
Final	14:14	6.88	3124		14.7	0.02	39.74	-101.5	

Well Coord. or ID#	·	MW5S				Date	1/19/00		_
Site Description		Martin Aaron				Sample ID	MW5S-4		-
Project Number						Sampler	RJK_	_	-
Time 14	45	Temp.	30 - 40			Weather	CLEAR C	COLD	-
Analysis Requested							<u>-</u> -		-
Well Depth			16	't		Well Diameter			ft
Water Depth			6.93	't		Screen Length			ft
Height of Water (HOW)			9.07	't		Sandpack Diame			ft
Equivalent Volume of Stand	ling Water		6	gal			•		
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	t (0,81 L/m)								
Volume of Bailer			1	gal	or	Pump Rate		gal/min.	
Total No. of Bailers (5EV)			8	şal	Or	Pump Time		min.	
Well West Dry?		Yes / No							
No. of Bailers					or	Pump Time		min.	
Volume Purged			18 g	ral .	Of .	Rec. Time	- · · ·		•
Purge Again?		Yes / No		,		-		_	
Total Volume Removed			18_g	gal					
Cai Ref.	Time	pH	Cond. (uMHO/cm)		Temp. C	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0)	13:35	7.88	3003		15.09	1.58	26.13	-51.7	
During	13:38	7.71.	3186		15.4	1.66	29.02	-127.9	
During	13:41	7.55	3299		16.56	1.78	35.12	-176.3	
Final	13:44	7.54	3368		15.70	1.77	34.81	-175.2	

Well Coord. or ID#		MW2M			Date	1/19/00		-
Site Description		MARTIN AAR	ON		Sample ID	MW2M-4		-
Project Number	 				Sampler	rjk		_
Time '	13:4	5 Temp.	30 - 40		Weather	CLEAR, COLD		-
Analysis Requested								_
Well Depth			62 ft		Well Diamete	г	·	_ft
Water Depth			13.7 ft		Screen Lengt	h		<u>_</u> ft
Height of Water (HOW)			48.3_ft		Sandpack Dia	ometer		ft
Equivalent Volume of Stan	ding Water		31 gai					
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) = 0.7 gal/ 6" Diam (15.2 cm) = 1.5 gal/	ft (0.81 L/m)							
Volume of Bailer			gal	or	Pump Rate		gal/min.	
Total No. of Bailers (5EV)			gal	or	Pump Time		min.	•
Well Went Dry?		Yes / No						
No. of Bailers								
Volume Purged				or	Pump Time		min.	
Purge Again?		Yes / No	93 gal		Rec. Time		min.	
Total Volume Removed			93 gal					v.
Cal Ref.	Time	рН	Cond. (uMHO/cm)	Temp. C	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0)	12:25	6.45	1189	15.51	0.58	11.10	-92.0	
During	12:30	6.27	1106	15.46	0.55	6.54	-81.9	
During	12:35	6.25	1070	15.50	0.53	3.37	-89.0	
Finel	12:40	6.17	1050	15.65	0.51	4.13	72.7	

Well Coord. or ID#	MW2S		·		Date	1/19/00 .		-
Site Description	MARTIN AARO	ON			Sample ID	MW2S-4		-
Project Number					Sampler	RJK		-
Time13:0	ю	Temp.	30 - 40		Weather	CLEAR, COLD		-
Analysis Requested								-
Well Depth			16 ft		Well Diameter	r		_ft
Water Depth			12.85 ft		Screen Length	ı <u></u>		_ft
Height of Water (HOW)			3.15_ft		Sandpack Dia	meter		ft -
Equivalent Volume of Stand	ing Water		2.05 gal		٠			
Volume of Water 2" Diam (5.8 cm) = 0.2 gal/ft 4" Diam (10.2 cm) ≈ 0.7 gal/ft 6" Diam (15.2 cm) = 1.5 gal/ft	(0.81 L/m)							
Volume of Bailer			gal	OT	Pump Rate		gal/min.	
Total No. of Bailers (5EV)			gal	or	Pump Time		mia.	
Well Went Dry?		YES						
No. of Bailers				i e				
Volume Purged			6 gal	of	Pump Time		min. min.	
Purge Again?		NO						
Total Volume Removed			gal					1
Cal Ref.	Time	рН	Cond. (uMHO/cm)	Temp. C	Salinity (ppt)	Dissolved Oxygen	Oxidation Potential (mV)	Dissolved Oxygen (%)
Initial T (0)	13:00	9.69	1404	14.83	0.66	3.65	-288.7	
During				-				
During					<u> </u>	_		
Final								

BUILDING SAFETY INSPECTION REPORT

MARTIN AARON SITE, CANDEM CITY, CANDEM COUNTY, NJ

L. Background and Purpose:

Pursuant to Solicitation No. 95-X-22804, the State of New Jersey awarded a Remedial Investigation/ Remedial Alternatives Analysis Project to L. Robert Kimball and Associates, Inc. (Kimball). As part of the scope of work, the New Jersey Department of Environmental Protection (NJDEP) issued Addendum No. 2 which included the following:

"Prior to the beginning of any work inside the buildings, the area to be investigated will be inspected by a N. J. Licensed Professional Engineer who will evaluate and propose safety measures necessary to protect against possible structural deficiencies of the building and the stresses caused by the planned activities therein. Subsequent to the safety inspection, the Engineer shall submit to the NJDEP a report of the findings and recommendations.

Safety measures, which may entail shoring of walls, scaffolding as overhead protection, or other measures, shall be added to the contract via contract modification, if deemed necessary, upon NJDEP approval"

II. Methodology:

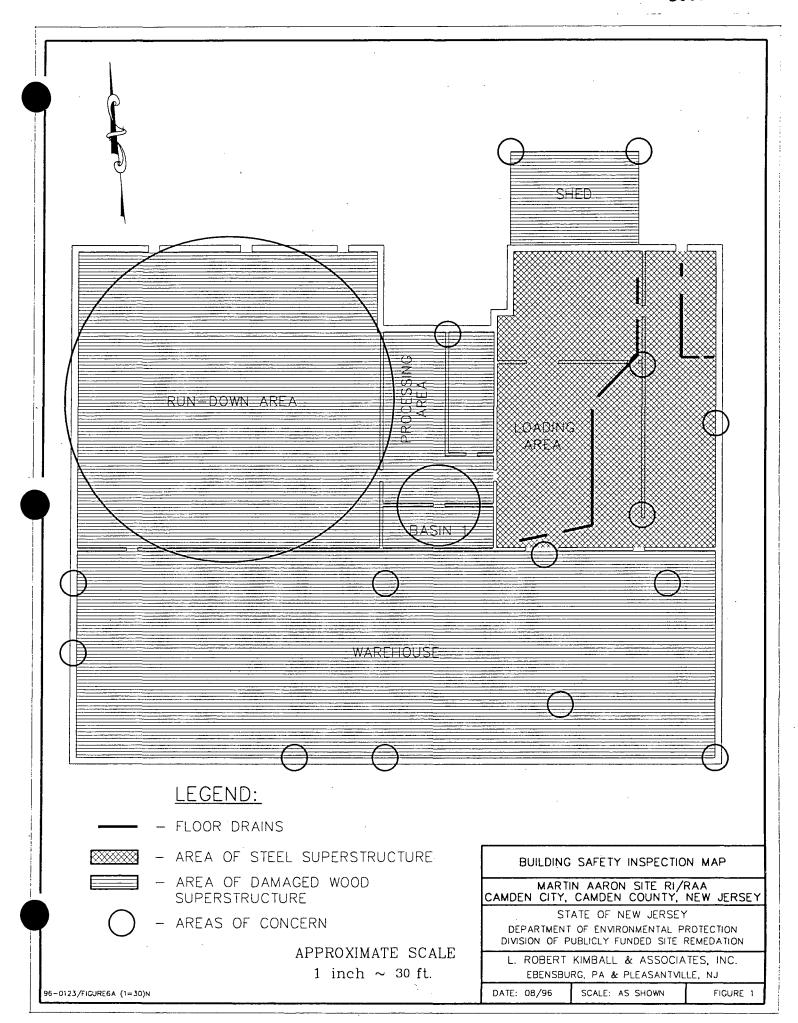
Kimball has engaged Mr. Juan Salguero, project manager and engineer of record, as a licensed professional engineer in the State of New Jersey (Lic. No. 38177) to perform the safety inspection. The safety inspection involves four main components:

- 1. Review of the scope of work and field inspection to evaluate structural integrity of approximately 35,000-square feet composite structure to safely perform the scheduled activities.
- 2. Historical review of the facility, other site inspections, and local agencies reports.
- 3. Issue professional opinion as to degree of safety, required modifications, work constraints, and recommendations to protect drilling and sampling personnel.
- 4. The guidance provided in the following documents was used in the performance of the safety inspection:
 - Title 29, Code of Federal Regulations, Part 1926, Construction Safety Standards
 - Technical Requirements for Site Remediation, NJAC 7:26 E, NJDEP.

- Construction Inspection Handbook, James J. O'Brien, PE, Van Nostrand Reinhold, 1974.
- The American Institute of Steel Construction Manual, AISC, Ninth Edition.
- Health and Safety Requirements for Employees Engaged in Field Activities, EPA Order 1440.2, USEPA, 7/12/91.
- Building Construction, Materials and Types of Construction, Whitney Clark Huntington and Robert E. Mickadeit, John Wiley and Sons, Fourth Edition, 1975.

In general, the requirements set forth in each one of the above listed documents are more strict than the structural assessment work performed at the Martin-Aaron Site. However, these documents provide latitude for a qualified person (e.g., professional engineer) to issue and opinion based on available information within the context of planned activities.

The collection of information in this particular evaluation included the following:


- Site visit during pre-bid meeting on July 12, 1995. During this visit a number of questions were asked about the structural integrity of the facility. NJDEP issued Addendum No. 2 requesting a safety inspection report as part of the scope of work.
- Draft Background Investigation report prepared by Kimball, March through July 1996.
- Several phone calls to local agencies. On March 18, 1996, Herb Leary, Camdem Fire Marshall indicated to William Stenger, Kimball's Environmental Specialist, that he had visited/inspected the site and determined that the buildings were structural unsound and were condemned or to be demolished (Please see Attachment 1)
- Letter issued to Chief Leary, dated March 19, 1996, requesting any written reports he may have on his structural assessment. No reports have been identified to date.
- Site Reconnaissance of the facility, the different environments, and areas of concern. Both video tape and photodocumentation of the visual and qualitative structural integrity assessment were performed on April 11, 1996. (Please see Attachment 2)

- Review of revised site activities. In meeting held on August 13, 1996, the Technical Team (NJDEP and Kimball) decided to try to use the inside of the building as drum staging areas. Before this work is performed, the enclosed recommendations should be implemented.
- List of assumptions and/or limitations of the safety inspection from the structural engineering point of view.
- Basic structural computations based on simplifying assumption and anticipated facility conditions. (Please see Attachment 3). No structural computations were attempted for the wood members because of their rotted condition.
- List of recommendations and professional opinion.

III. Assessment and Findings

The following structural concerns were identified during the site reconnaissance. The risks are listed in decreasing order of overall impact to the stability of the building. To facilitate the identification of the areas, Figure 1, Building Safety Inspection Map, was prepared.

- 3 1. Run-Down Area. Based on visual assessment of poor wall support (see Photos 1 and 2 in Attachment 2), extensive water damage that has created holes in a wooden floor, sagging roof, and buckling walls, this area should be avoided. Because of the non-uniform distribution of the water and structural damage, failure is expected to occur in discrete episodes, avoiding catastrophic failure and allowing enough time for personnel near this area (e.g., Warehouse Area) to evacuate the building. F No investigation or use of this area is anticipated in the investigation activities to be performed by Kimball.
- Proper assessment of this area is difficult because of the 3.2. Warehouse Area. anisotropic structural properties of wood, the uncertainty of degree of water damage, and the exhibited failure patterns. Photos 9 and 10 show two instances in which shoring of beams had to be performed to avoid total collapse of the girders and beams supporting the ceiling. This area has been proposed to be used as a drum staging area. Because of some drilling scheduled in the area and the potential use as storage of drums, this area should be secured in accordance to the enclosed recommendations before any significant work is initiated under wood damaged super-structures. The brick building surrounding this area provides for a more reliable and stable structure, but the extensive wood water damage that has created holes, perforations, and areas of impending failure are of concern. The most likely historic performance of the building indicates that failure has been discrete, isolated, and sudden. Measures should be taken to minimize exposure to sudden failure. Field intrusive evaluations and periodic monitoring should be implemented to determine likelihood of failure. Areas that have failed or are clear visual hazards should be cordoned off and avoided.

- 3.3 Processing Area. This area exhibits wood joists that have failed at the ends, where extensive water damage is exhibited. The plywood underlayment above the joists have also failed, shearing in what appears to be a load failure (Please see Photos 11 and 12 in Attachment 2). Subsurface investigation with a block and tackle tripod is scheduled in this area. Before any intrusive subsurface investigation commences, this area should be secured in accordance to the recommendations included at the end of this report.
- 3.4.Loading Area. The area designated as Loading Area will be used as a temporary staging area for drums. Based on visual inspection, this area appears to be secured because of steel girders that support steel joists that support corrugated metal sheeting. However, damage to the support points of the beams on the masonry contact, removal of equipment through a perforation in a brick supporting wall, and demolition of a side wall on the east side have reduced that stability of the Loading Area. Because of the calculations shown in Attachment 3, it is believed that this area is safe except under six feet of snow (an unlikely situation). To avoid masonry failure, this area should be selectively monitored as recommended later in this report.
- 3.5 Improperly supported pipes and general debris. This is not a structural flaw perse; however, the miscellaneous debris on the floor, the hanging pipes and obstacles from the ceiling throughout the entire facility represents a hazard. These debris and hanging obstacles should be removed or secured before significant work is initiated inside the facility.
- 3.6 Exterior Shed. This is an add-on structure of temporary nature. It is unknown how long has it been in service, but it is clear it was intended for permanent use. The posts supporting this structure should be secured through struts or shoring before work is initiated under this roof.
- 3.7. Building above the Warehouse. This area is not structurally safe, it shows extensive water damage and it is loaded with miscellaneous debris, equipment, and drums. It is an off-limits area for the investigation.
- 3.8 Overall roof stability. The overall roof stability is poor. In discrete environments or zones it is not safe to work beneath without some kind of protection or shelter. All roofs show signs of weatherization and failure points (e.g., leaking, failure points, sagging). The capping on top of the concrete masonry units is rotted wood, the flashing has lifted and is bent out of shape. The freeze-thaw cycle effects are obvious in the roof/masonry interface.
- 3.9. Critical Stress Points. There are half a dozen critical stress points that, although they appear to be statically safe, should be monitored. These include:
 - Beam support under opening on east side of Loading Area.
 - Lintels on top of doors in the Loading and Warehouse Areas

- Supports on top of boiler opening that redistributed stresses on supporting three brick wythes wall.
- Two shored or underpinned points in the Warehouse Area.
- Failing joists or rafters throughout the processing and warehouse areas.
- Multiple large cracks exhibited on the bricks and concrete masonry units of the north and east walls.

IV. Assumptions and Limitations.

The above list constitutes only the most obvious and visually apparent physical hazards that involve stability; however, given the limited information and the limited time dedicated to evaluate overall stability of the building, it must be acknowledged that not all hazards were identified. The listed hazards were assessed within the following context:

- There is no specific knowledge of as built conditions, historical practices that may have damaged the building (e.g., pouring acid directly on walls), construction quality documentation, material strength, performance documentation and failure history.
- No analysis for wooden structure was attempted because of the lack of adequate information and the inherent structural qualities of wood. No analysis for wind loads, seismic loads, differential settlement, fatigue conditions, creep conditions, corrosive environment conditions, redistribution of stress, redistribution of moments, singular points and soil/foundation interface was attempted. Heavy snow loads of six (6) feet were evaluated.
- In the absence of better data, reasonable and customary assumptions had to be made with respect to strength of materials, deformations, joint connections, and modeling of field conditions.
- No heavy construction will be performed at the site. No ditches, trenches, test pits, or structural removal is scheduled inside the building. No equipment will be suspended from the superstructure of the building.
- Conservative, simplified, limited structural analyses was performed in which the following assumptions were made:
 - ⇒ The rough site dimensions represent acceptable tolerance given the uncertainty of the other parameters.
 - ⇒ Standard dimensions and strength characteristics of commercially available structural elements were used in the analysis.

- ⇒ Widely accepted principles and guidelines were applied to reduce uncertainty or err on the conservative side; thus, integrating a higher factor of safety in the process.
- The short term, low-impact (minimizing vibrations) type of work to be performed for characterization was considered when writing conclusions and recommendations

V. Conclusions and Recommendations:

The following recommendations are considered the minimum requirements to protect the welfare of personnel entering the facility for purposes of environmental characterization. If activities are planned after six months or during the winter months, each one of the recommendations should be revisited to assess continued stability hazard.

- 5.1. The entire building has been deemed condemned and the author of this report concurs with that evaluation, however, for purposes of a short term investigation, a number of measures can be implemented that will secure the building and minimize the potential of catastrophic failures, chain reactions, and bodily harm to Kimball employees and Its subcontractors.
- 5.2. No work should be performed in the Run-Down Area. This area should be deemed off limits. Since no work is to be performed in this area, no monitoring is required, except for evaluation of type and frequency of failures (e.g., falling debris, holes in brick walls, and points of water entry). Any significant failure that may jeopardize the integrity of neighboring structures should be brought to the attention of the professional engineer of record.
- 5.3. To monitor behavior of the structure in the Loading and Warehouse Areas a system of fifteen to twenty monitors should be installed in critical point such as:
 - support areas with deformation or critical for structural integrity
 - wide and apparently recent cracks in carrying walls
 - extreme fibers of critical wooden beams that may contribute to failure
 - struts, scaffold or temporary members that will carry weight
 - door lintels and support frames in wall openings

The monitors shall be Avongard Calibrated Crack, Slope, and Movement Monitors or equal (Please see Attachment 4). The monitors should be installed under the supervision of a structural engineer and a Standard Operating Procedure should be developed to read them at least twice a day and determine what movement is due to heat or natural daily stresses, and what movement represents potential failure.

5.4. The Processing Area will have to receive a wooden plank and 4"x4" shoring under the failed joist ends. The location of the struts and planks should be field verified by a structural engineer in the field. The structural engineer should run checking

- calculations that the proposed shoring system is adequate to support the superstructure in case of complete failure.
- 5.5 Before drums are moved into the Warehouse Area, a destructive/qualitative test of the supporting beams should be carried out with a regular 8-oz hammer. The hammer should bounce off the beam, if it doesn't, if it penetrates the beam after a regular swing, that area should be marked off as being off limits and the structural engineer should be called in for further instructions. Even if the hammer bounces, leaving a small indentation, the Avongard monitors should be installed at the half point of the span of the beam, at the bottom face, in the center.
- 5.6. The entire building should be deemed a "debris falling" hazard area. Before drilling or sampling activities are started, a detailed visual evaluation of potential debris, pipes, water, and other elements falling should be performed. The trajectory of objects swinging down when they fail at different support areas should be assessed (i. e., one extreme of a pipe breaks but it falls in a circular fashion because it is fastened at the other end). A buffer area that includes the falling object's trajectory and the areas directly below potentially falling objects should be roped or cordoned off and avoided. If these areas must be entered, a protective pipe scaffold with wood planks (min. 2"x12"xL) should be erected and personnel should work beneath the scaffold protection.
- 5.7 The twenty monitors should be installed as per manufacturer's instructions and as directed by the on-site structural engineer. Monitors should be read twice a day for three (3) days, and if no movement has been recorded, daily for the duration of the work. Any movement in excess of 1-mm should be reported to the engineer of record. Any unexplained movement of 3-mm will require a stop of work order and evacuating the premises.

ATTACHMENT 1

L. Robert Kimball & Associates

TELEPHONE RECORD

Project: MARTIN - HARON RI/RAA	Date: 3 - 18 - 96	Time: 11.30 p.a.
Name: SEE BELOW	Proj. No: 96-1322-013	23 -000i
CITY OF CAMPIEN - DIVISION OF COMPANY: ENGINEERSTING - ENVIRONMENTAL AFFAIRS	Phone No.: (609) 757 -	7025
Discussion: LICENSE & INSTRUCTION (ROBERT SUCLES)	(1.09) 757 -	
ZONING OFFIC	E* (609) 757 -	- 7191
(ED LUILLIAMS)		
FIRE MARSHAL	(609) 757	- 7529
(METE START)	·	
() ENVIRONMENTAL AFFAILS DIVISION HAS	NO RECORDS/INFO	014
MARTIN - AFRON SITE		
E, LICENSE & INSPECTION OFFICE HAS	NO RECOLDS/INF	70 ON
MARTIN - AARON SITE	·	
(3) ALL ZONING PROPEDS MAPS ET	C. ACE AVAILABLE	UZ FOR
INSPECTION IN DM 419 3 CAME	DEN CITY HALL	
9 FIRE MARSHAU WILL PROVIDE CO	PIES OF INSPEC	TION
PLEPOLIS AND VIOLATION HISTORY	UPOH WRITTEN	REQUEST.
(5) FIRE MARSHALL (HERR LEARY) TOLD	ME HE HAD VISITE	D/INSPECTED
THE SITE AND DETERMINED THAT TH		•
UNSOUND AND WELL CONDEMED O	R TO BE DEMOLISHED	>.
Action Required: WRITE LETTER TO FIRE	MARSHALL	
VISIT ZONING OFFICE	O AM 419 CITY H	1466
	· · · · · · · · · · · · · · · · · · ·	
Employee: BILL STENGER.	a: File	

*

L & ASSOCIATES, INC.

L. ROBERT KIMBALL & ASSOCIATES

ARCHITECTS & ENGINEERS 615 W. Highland Ave., P.O. Box 1000 Ebensburg, Pennsylvania 15931 Telephone: 814-472-7700 Fax: 814-472-7712

E., P.O. BOX 1000, EBENSBURG, PENNSYLVANIA 15931 - PHONE (814) 472-7700 FAX (814) 472-7712

March 19, 1996

Fire Headquarters 3rd & Federal Streets Camden, NJ 08101

Attn: Mr. Herb Leary

Chief Fire Marshall

Inspection/Violation Data Re:

> Martin Aaron Site 96-1322-0123

Dear Chief Leary:

Pursuant to our phone conversation on 03/19/96, L. Robert Kimball and Associates (LRKA) hereby requests copies of any records or files you have concerning the Martin - Aaron property, located at 1542 S. Broadway, Camden City, N.J. 08104. LRKA is presently conducting an Environmental Investigation of this site for the New Jersey Department of The data you provide will be used in the compilation of the Environmental Protection. background report for the site, as well as aid in the ensuing assessment.

If you have any questions or need additional information, please call me at (814) 472-7700 Ext. 338. As time is a critical factor in our reconnaissance endeavores, any effort to expedite this information would be greatly appreciated.

Sincerely,

William E. Stenger **Environmental Specialist**

Wille E. Strye

cc:E. Sciulli WES/mms h\96-0123\e\d\96LT0319.1

mask with the state

ATTACHMENT 2

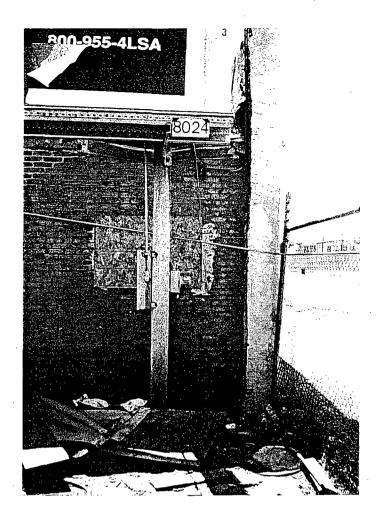


Photo 1 -Exterior corner of Run Down Area. Notice buckling of fascia, loose mortar in bricks and exterior wall out of plumb.

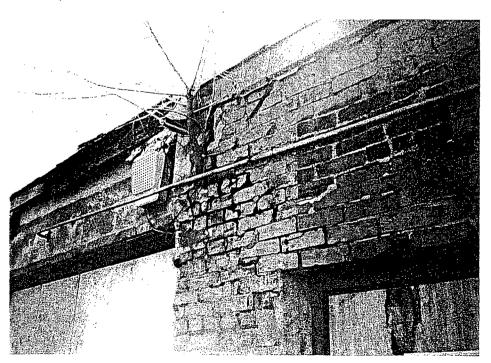
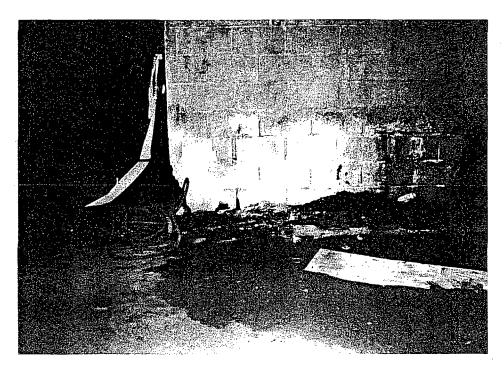
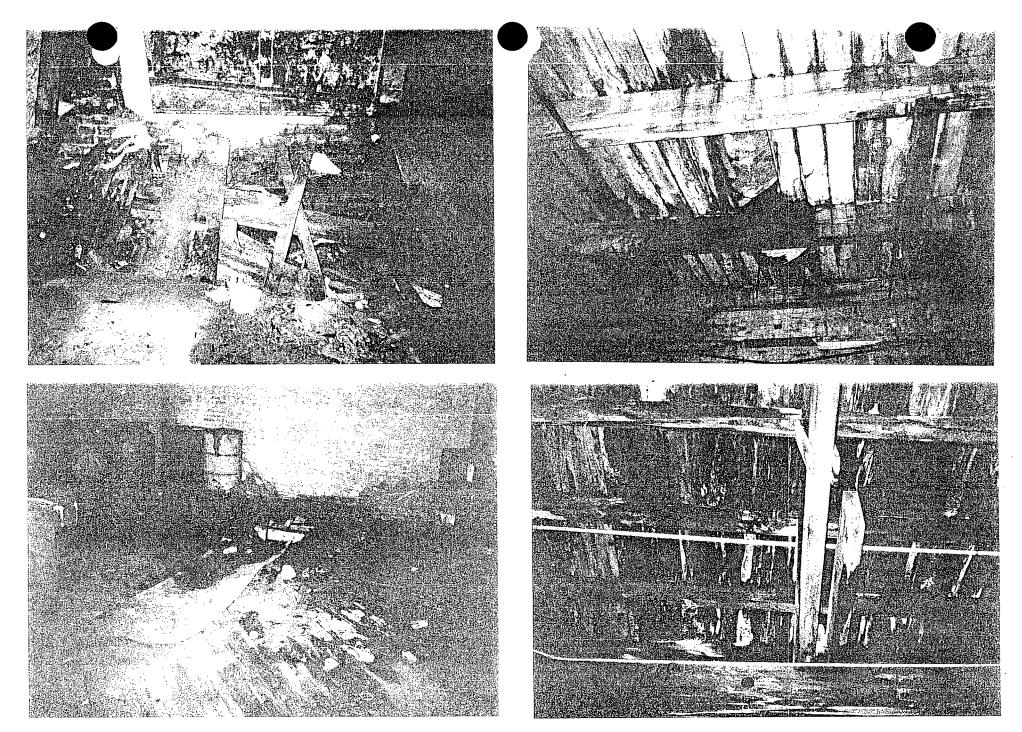
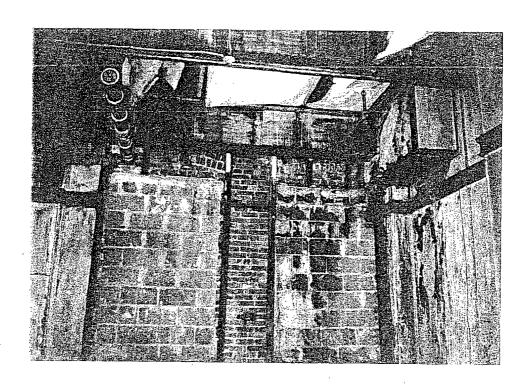


Photo 2 - Rotted wood, vegetative intrusion and disintegration of bricks are part of the extensive damage on the exterior of the Run Down Area.


Photo 3 - Block mortar joints and concrete masonry unit disintegration in bearing wall of Storage Area.

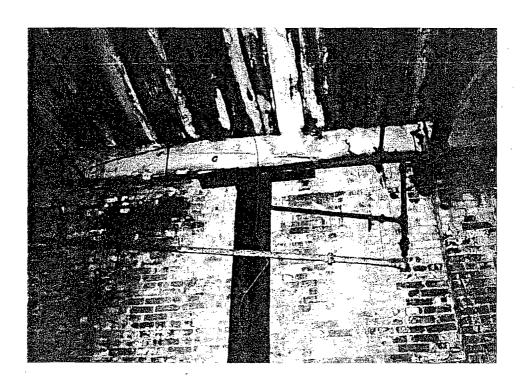
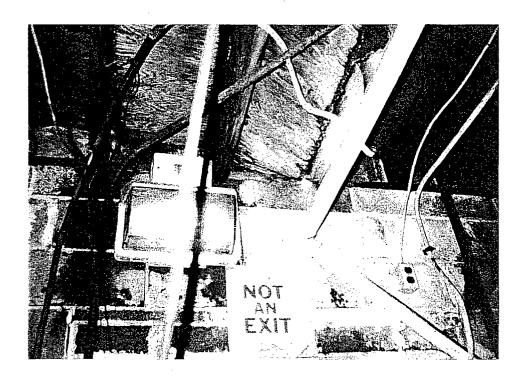


Photo 4 - Corroded steel door frame in Storage Area is an example of extreme corrosive environment.

Photos 5-8 - Examples of extensive water damage in the Warehouse Area. Photos from above and below ceiling.



Photos 9 and 10 - Examples of temporary underpinning to prevent ceiling collapse in the Warehouse Area.

2-4 300352

Photos 11 and 12 - Wooden joists end-failure and underlayment sheeting rupture in the Processing Area.

2-5 300353

ATTACHMENT 3

L. ROBERT KIMBALL & ASSOCIATES, INC. Consulting Engineers Ebensburg, Pennsylvania	RISK ARRESEMENT MARTIN ADRON SITE	BY CHKD	DATE	SHEET OF 5
PURPOSE:	To determine safe critical beam section		irryina ca	pacity of
METHODOLOG	1 =			
0	A critical section the field doring the beam dimensions	ne site	was selection	ted in The
				
	W8XZ8 8"	V/	14×370	v 18"
	120 0120			
			Distribut	ed load w
	V8x2B PIN Supported	SE	PARAJED @	20'0.6
(2) CALCUC	ATION OF PEAD LOAD	8		
1	weigh of beam (use w		seigth)	370 lbs/lf.
<u> </u>	Weight of plaster board Section 6" x 12" x 12"			
	GOPCFYLC = xZO	Space o.		900 lbs/l.f.
	TOPE + 201			200 lbs/1f.
	TOTAL DEAD WEIG	эНТ		1,470 plf
****	CATION OF SHOW LO			
	GZ,4 + 0.5 + ZC	~ 6 ¹ of	WATER	624 p.l.f
	PROBABLE LOAD IN	WINTER	~	2.094 pl1.
Note: ign	nore live loads since in this project.	. 1007	ton bloods	be walked

CALCULATION OF MAXIMUM MOMENT 4 SHEAR W= 2,100 plt = 172 ppi x 1.5 (Pead Load Factor) Letter Simulated fixed The simulated fixed Member III 263 ppi L= 120" JE 98 14 L= 29,000 Est Mi R= Ps = wl = 263 × 120 = -15.8 kips	—
Hember 11 263 PPC L= 120" The property of the peach of t	
## F2 = wl = 263 * 120 = -15.8 kips	
## For the part of	· · · · · · · · · · · · · · · · · · ·
Member 11	
T= 98;4 M, T= 29,000 Esc MZ T= P2 = WL = 263 + 120 = -15.8 Eips	
$R_1 = R_2 = 100 = 263 + 120 = -15.8 \text{ kips}$	
$P_1 = P_2 = wl = 263 + 120 = -15.8 \text{ kps}$	
$P_1 = P_2 = wl = 263 + 120 = -15.8 \text{ kips}$	
	-1-
$M_{\text{max}} = M_1 = M_2 = W_1 = \frac{263 \times 120}{2} = \frac{316 \cdot 26}{12}$	
Member [2]	
$M_3 = 120''$ $M_3 = 5440i^4$	
$\frac{1}{R_2}$	
B= B= Wl = -15.8 Rips	
$M_z = M_z = -316 z$	
4.2 Converting to Node Loads as per sign convention	
MEMBER NODE L' LOAD NODE J' LOAD Y Z Y Z /	
2	
300356	

M

5. RUNNING PROGRAM

DATA INPUT

Title Card

Number of Members, Number of Restraints, Number of Restrained Joints, Modulus of Elasticity Member Properties

Member Number, Lenght in x-direction, Moment of Inertia about z-axis

. . . .

Support Restraints

Node Number, Y-restraint, Z-restraint

.

Loading Data

Number of Loaded Joints (If 0, skip), Number of Loaded Members

Member No., Equivalent fixed end reactions (Y1, Z1, Y2, Z2)

. . . .

STABILITY RISK ASSESSMENT; CRITICAL SECTION

2 3 2 29000.0

MEMBER PROPERTIES

1 120.0 98.0

2 120.0 5440.0

SUPPORT RESTRAINTS

1 1 0

3 1 1

LOADING DATA

0 2

1 -16.0 -320.0 -16.0 320.0

2 -16.0 -320.0 -16.0 320.0

Program Used:

BEAMS.FOR

Method:

Matrix Analysis of Framed Structures (Stiffness Matrix Option)

All Units in Kips, in, Kips-in, and radians

STABILITY RISK ASSESSMENT; CRITICAL SECTION

NO OF MEMBERS = 2

NO OF RESTRAINTS = 3

NO OF RESTRAINED JOINTS = 2

MODULUS OF ELASTICITY = 29000.000

NUMBER OF JOINTS = 3

DEGREES OF FREEDOM = 3

MEMBER PROPERTIES

- 1 120.000 98.000
- 2 120.000 5440.000

SUPPORT RESTRAINTS

- 1 1 0
- 3 1 1

LOADING DATA

NUMBER OF LOADED JOINTS= 0 NUMBER OF LOADED MEMBERS = 2

ACTIONS AT ENDS OF RESTRAINED MEMBERS DUE TO LOAD

MEMBER	AML1	AML2	AML3	AML4

- 1 -0.1600E+02 -0.3200E+03 -0.1600E+02 0.3200E+03
- 2 -0.1600E+02 -0.3200E+03 -0.1600E+02 0.3200E+03

JOINT DISPLACEMENTS AND SUPPORT REACTIONS

JOINT Y Z REACT-Y REACT-Z

- 1 0.0000E+00 0.5714E-02-0.1354E+02 0.0000E+00
- 2 (0.1247E+00) -0.1554E-02 0.0000E+00 0.0000E+00
- 3 0.0000E+00 0.0000E+00 -0.5046E+02 0.4431E+04

ACTIONS AT END OF MEMBERS

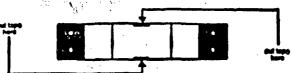
MEMBER AM1 AM2 AM3 AM4

- 1 -0.1354E+02 -0.3658E-04 -0.1846E+02 0.2957E+03 2 0.1846E+02 -0.2957E+03 -0.5046E+02 0.4431E+04
- 300358

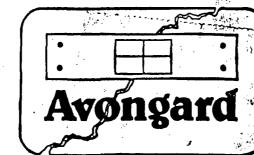
L. ROBERT KIMBALL & ASSOCIATES, INC. Consulting Engineers Ebensburg, Pennsylvania	SUBJECT STABILITY RISK ASSESSMENT	BY		SHEET 0F_ PROJECT NO. 9 1340-002
6 INTERP	RETATION OF RES	OUTS		
6.1	The Maximum Mome			- <u>·</u> ·
		4,500 R-		
6.2	The Maximum Shez	501	ZiPS	
/ 3	Assome an Fu=3	(-bei 12	11.01 12 71	o-because
	of age (use as w			
	Meanum Displace	<u> </u>	0.12" C	X/20: 2
		·	. 00,57 rad 2	
ALLOWS	0 VERT = 240" = 0	,67">	11: 1 0	actor of 5
	3.14 = 0.0057 =	=>	120 * 0.0057 .	
	783		3.74	
6,6			atic Condi	Hons
	Extreme Fiber Stre		4,500 k-i *	
	T = //) c	5 4 40 ,4	= 7.44
	FS = 1 +6	20	= 2.69	
	7	7,44		
	Bolt Shear Stres. 50k	_ ;	bolts = 8	133 kgs
			~ ~ ~ ~ · · · · · · · · · · · · · · · ·	
	V = 8.33 7 (0.6	- 4 '	8.33 = 2	6.87
The second secon	2(95	}-A>	Building.	HOT SAFE
				FEET OF
			SNOW	
	26.9 2	36 >	IF BEAMS	ARE IN
			GOOD CON	DiTION
	SIGNIF		DEFORMA-	TON WILL
				300350

M

ATTACHMENT 4


Fixing Instructions:-

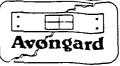
1. Position Monitor over crack with vertical Oline on scale parallel with the crack to be measured



2. Fix Monitor with screws or adhesive

3. Cut the transparent tape with a sharp knife

4. The degree of movement either side of the crack will now be measured as the two plates slide independently of one another



2836 Osage, Waukegan, IL 60087

core Indictor

ORDER DIRECT 312-244-4179

847 249 - 4179

2836 Osage Waukegan, IL 60087

Fax:312-244-6685

CALIBRATED CRACK MONITOR PROGRESS SHEET

Project:

Location
of Monitor:

20mm 10 20mm 10 20 10 20 10 ⊞ Notes 0 Date of Reading: Date of Reading: 20mm 20mm 10 0 10 10 10 20 20 Ⅲ田 10 10 0 0 Date of Reading: Date of Reading: 20mm 10 0 Date of Reading: Date of Reading: 20mm 10 10 20mm 20 10 10 ∏<u></u> 10 $oxed{oxed}$ 0 Date of Reading: Date of Reading: 20mm 20 Π⊞ 10 110日10 **0** 1::11<u>||||||</u> Date of Reading: Date of Reading:

Coef. of Thermal Expansion 3.80 X 10 -5 in/in/oF (6.84 X 10 -5mm/mm/oC)

Project Name:		Martin Aaron RI	Project No.: 96-1322-0123		Pit No.: TP01
Inspector	<u> </u>	A. Edward Sciulli	Ground Elevation:		Date: 08/04/97
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Model 100 Trac-E		
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	15:30	
Weather:		Sunny, Hot, 90's			<u> </u>
Depth	Sample No.	:			
(feet)	and Type	Description	FID		Remarks
		Sand Brown Loose	50 ppm		
1					
		Plastic, Wood, Brick, Debris	500 ppm		
2					
		Sand, Ash, Cinders, Brick			
3		Structures			
	TP01-1 @3.5'		1500 ppm	Analyses Req	uested: VOC; SV;
4	Grab	Brick Structure		TAL Metals, I	Pesticides & PCBs
		Ash and Cinders		•	
5	-	Drum Labels			
		TD=5'			
6					
7					<u> </u>
					•
8					
9					
	-				
10					
					*
11					
40					
12				<u> </u>	
Comments					
	North End of	pit, red labels were encountered (oil & grea	se), also solidified cau	lking-type mat	enal.
		•			
					•

Project Na	ame:	Martin Aaron RI	Project No.: 96-1322-0123 Pit No.: TP		Pit No.: TP02
Inspector	:	A. Edward Sciulli	Ground Elevation: Date: 08/05/9		Date: 08/05/97
Location:		1542 S. Broadway, Camden, NJ	Equipment Used	Bobcat Mo	del 100 Trac-Excav.
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	09:00	<u>-</u>
Weather:		Sunny, Hot, 90's			
Depth	Sample No.				
(feet)	and Type	Description	FID		Remarks
		Sand Brown Loose			
1					·
		Layer of Plastic/Wood	10 ppm		
2					
_		Sand w/Cinders, Stained Black, Bricks			
3		Bricks, Conc.			
		Former Foundation w/Steel Pipe Running	52 ppm		
4		parallel to trench at 5.5'. Also Steel Box 1'X1' in Brick Foundation.			
5		1 AT III Brick Foundation.			
. 6		TD=5.5'		•	
7					
8			,		
9					·
	·				
10					
11					
12					
Comments	:				
		,			

Project Na	ame:	Martin Aaron RI	Project No.: 96-1322-0123 Pit No.: 7		Pit No.: TP03
Inspector	\ 	A. Edward Sciulli	Ground Elevation: Date: 08/05/9		Date: 08/05/97
Location:		1542 S. Broadway, Camden, NJ	Equipment Used:Bobcat Model 1100 Trac-		
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	10:30	
Weather:		Sunny, Hot, 90's			
Depth	Sample No.				
(feet)	and Type	Description	FID		Remarks
1		Sand, Brown, Some Plastic & Loose Bricks	5 ppm		
3		Brick Structure, Possible Pipe Run in east half of Trench			
4		Black Sand w/Cinders, Wood, Brick,	65 ppm		
5.		former structures			
6					
7		TD=6'			
8		. *			
9					
10		·			
11					
12					
Comments:					

Project Name:		Martin Aaron RI	Project No.: 96-1322-0123		Pit No.: TP04
Inspector	:	A. Edward Sciulli	Ground Elevation:		Date: 08/05/97
Location:	ocation: 1542 S. Broadway, Camden, NJ Equipment Used Bo			Bobcat Mo	del 100 Trac-Excav.
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	14:00	
Weather:		Sunny, Hot, 90's			
Depth	Sample No.	 •			
(feet)	and Type	Description	FID		Remarks
1		Orange Sand, Loose, Damp, Lg. Conc. Chunks, Drum Bung in top 2', Lg Conc.	200 ppm		
2		Blocks			
3		Redish Brown Debris, Brick, Conc.	200 ppm		
4		TD=3.5'			
5					
6					
7					
8					
9					
10					
11					
12	<u> </u>				
Comments					

Project Name:		Martin Aaron RI	Project No.: 96-1322-0123		Pit No.: TP05
Inspector	:	A. Edward Sciulli	Ground Elevation: Date: 08/0		Date: 08/05/97
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Model 100 Trac-E		
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	14:45	
Weather:		Hard Rain			
Depth	Sample No.				
(feet)	and Type	Description	FID		Remarks
		·			
1					
		Sand, Brown, Some Blk. Staining, Debris,			
2		Conc., Structure Along North End of Pit			
3	TD05 1 02 4			4 D D	TALL VOC SV TAL
4	1P05-1@3-4* Grab	@ end of Pit Purple Stained Soil		Metals, Pest./	uested: VOC, SV, TAL
•	Glau	TD=4'		Wictais, Test./	1 CBs
5		15-4			
6					
		•			
7		·			
				· · <u>-</u>	
8					
9					
10					
	4	·			
11					
		•			
12					
Comments	:				
			·		
Water entering pit from surface runoff due to hard rain.					

Project Name: Martin Aaron RI		Martin Aaron RI	Project No.: 96-1322-0123		Pit No.: TP06
Inspector		A. Edward Sciulli	Ground Elevation: Date: (Date: 08/06/97
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Model 100 Trac-Ex		
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	10:00	
Weather:		Sunny, Hot, 90's			
Depth	Sample No.				
(feet)	and Type	Description	FID		Remarks
		Sand, Brown, Loose Gravel			
1		Layer of Debris @ 1'	50 ppm		
2					
	TP06-1@2-3'	Sand, Blk. ash, Cinders, Brick and Conc.		Analysis Requ	nested: VOC; SV; TAL
3	Grab	Frags.,Pipe Run Running North/South	1000 ppm	Metals; Pest./	PCBs
		in Center of Pit			
4					
5					
		TD=5'			
6					
7					
. 8					
9					
10					
11					
			·		
12	<u> </u>				
Comments	:				
					·

Project Na	ame:	Martin Aaron RI	Project No.: 96-1	322-0123	Pit No.: TP07		
Inspector		A. Edward Sciulli	Ground Elevation: Date: 08/06/97				
Location:		1542 S. Broadway, Camden, NJ	Equipment Used	Bobcat Mo	del 100 Trac-Excav.		
	Groundwat		Time:	15:00			
Weather:		Sunny, Hot, 90's					
Depth	Sample No.						
(feet)	and Type	Description	FID		Remarks		
1		Sand, Brown	250 ppm				
2		Plastic, Wood Brick, Slag, Blk. Cinders	250 ppm				
4		Slag, Cinders, Lt. Brown to Tan	500 ppm				
5		Sand, Brown, Loose	2000 ppm				
7		TD=6'					
8		·					
9 10							
11							
12 Comments	12 Comments:						

					
Project N	ame:	Martin Aaron RI	Project No.: 96-1322-0123 Pit No.: TP0		Pit No.: TP08
Inspector	:	A. Edward Sciulli	Ground Elevation		Date: 08/06/97
Location:		1542 S. Broadway, Camden, NJ			odel 100 Trac-Excav.
Depth To	Groundwat	ter (ft.): +/- 5.25'	Time:	15:00	
Weather:		Sunny, Hot, 90's			· · · · · · · · · · · · · · · · · · ·
Depth	Sample No	I	}	•	
(feet)	and Type	Description	FID		Remarks
		Sand, Brown, Loose, Pipe Run or			
1		Foundation Encountered @ East	100 ppm		
		End of Pit	1		
. 2		·			· · · · · · · · · · · · · · · · · · ·
		Ash, Cinders, Brick, Conc. Rubble, Blk.	1500 ppm		
3		Slag, Some Grease & MEK Labels			
		Encountered, Gloves & Boots			
4					· · · · · · · · · · · · · · · · · · ·
		Concrete Slab			
5		TD=4.5'		· 	
		•			
6					
7					
-					
8.					
9					
			1		
10					
			,		
11		·			
12					· · · · · · · · · · · · · · · · · · ·
Comments	:		,		
		•			
				•	

Project Na	ame:	Martin Aaron RI	Aaron RI Project No.: 96-1322-0123		Pit No.: TP09
Inspector	:	A. Edward Sciulli	Ground Elevation:		Date: 08/07/97
Location:		1542 S. Broadway, Camden, NJ	Equipment Used	del 100 Trac-Excav.	
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	09:00	
Weather:		Sunny, Hot, 90's			
Depth	Sample No.				
(feet)	and Type	Description	FID		Remarks
		Sand, Brown, Loose			
1		Pipe Run @ 1'	100 ppm		
				<u> </u> 	
2					
		Ash, Cinders, Brick w/ Purple Staining,			
3		Some Drum Rings @ 3', Condiut Pipe	1500 ppm		
	·	Running East-Westencountered, Conc.	,		uested: VOC, SV,
4	Grab	Slab @ 4'		TAL Metals,	Pest/PCBs
_		TD=4'			
5					
6					
7					
'					-
8					
9					
		·			
10					
11		·			
12					
Comments	•				
					·
			·	5	

Project Name:	Martin Aaron RI	Project No.: 96-1322-01	23 Pit No.: TP10
Inspector:	A. Edward Sciulli	Ground Elevation:	Date: 08/07/97
Location:	1542 S. Broadway, Camden, NJ	Equipment Used Bobcs	at Model 100 Trac-Excav.
Depth To Groundwa	ter (ft.): +/- 5.25'	Time: 11:	00
Weather:	Sunny, Hot, 90's		
Depth Sample No).		
(feet) and Type	Description	FID	Remarks
1	Sand, Brown, Gravelly		
2	Sand, Ash, Cinders, Grey, Gravelly, Layer of Plastic Beneath Ash. 2" Metal Pipe		
3	in Center of Pit		
4	Hole Caving below 3'		
5	Sand, Black, Cinders, Ash, Strong Odor Debris and Metal/ Scrap Water Entering Pit - Sheen	2000 ppm	
6	TD=5.5'		
7			
8	 -		
9	_		
10			
11			
12			
Comments:			

Project Na	ect Name: Martin Aaron RI Project No.: 96-1322-0123		Pit No.: TP11			
Inspector		A. Edward Sciulli	Ground Elevation: Date: 08/07/		Date: 08/07/97	
Location:		1542 S. Broadway, Camden, NJ	Equipment Used	Bobcat Mo	del 100 Trac-Excav.	
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	14:30		
Weather:		Sunny, Hot, 90's				
Depth	Sample No.					
(feet)	and Type	. Description	FID		Remarks	
1		Sand, Brown to Orangish Brown, Loose				
2			0.0 ppm			
. 3		Sand with Green Streaks	10 ppm			
4		2 Tires, Boots, Gloves, Several Empty				
5		Drum Liners, Brick, Concrete Debris	45 ppm			
6		TD=5.5'				
7						
8						
9				:		
10	<u>.</u>		,			
11						
12						
	Comments: Drum liners produced no FID readings. Liners were removed from excavation.					
						

Project Na	ame:	Martin Aaron RI	Project No.: 96-1322-0123 Pit No.: Tl		Pit No.: TP12
Inspector	<u>:</u>	A. Edward Sciulli	Ground Elevation: Date: 08/07/97		Date: 08/07/97
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Model 100 Trac-Exc		
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	16:20	
Weather:		Sunny, Hot, 90's			
Depth	Sample No.				
(feet)	and Type	Description	FID		Remarks
1		Sand, Orangish Brown, Loose	10 ppm		
2					· · · · · · · · · · · · · · · · · · ·
3					
4	·				
5					
6					
7		·			
8					
9					
10					
11					
12					
Comments	:				

Test Pit Log

Project Na	ame:	Martin Aaron RI	Project No.: 96-1	322-0123	Pit No.: TP13
Inspector		A. Edward Sciulli	Ground Elevation:		Date: 08/08/97
Location:		1542 S. Broadway, Camden, NJ	Equipment Used:	Bobcat Mo	del 1100 Trac-Excav.
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	08:30	
Weather:		Sunny, Hot, 90's			
Depth	Sample No.				
(feet)	and Type	Description	FID		Remarks
		Sand, Brown to Orangish Brown	20 ppm		
1					
2		Ash, Cinders, Metallic Slag, Some Gravel	45 ppm		
3					
4			•		
5		Silt, Some Gray Clay, Cohesive	10 ppm		
5	<u> </u>				
6		TD=5.5'			
		12 3.3		<u> </u>	
7					
8			,		
9					
10					
11					
		,			
12	~ <u></u>				
Comments	:				

Very few bricks and concrete pieces. Crushed drum and drum pcs. encountered @ 2'.

Project Name:		Martin Aaron RI	Project No.: 96-1322-0123 Pit No.: TP14				
Inspector		A. Edward Sciulli	Ground Elevation: Date: 08		Date: 08/08/97		
Location:		1542 S. Broadway, Camden, NJ	Equipment Used:Bobcat Model 1100 Trac-Excav.				
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	10:15			
Weather:		Sunny, Hot, 90's					
Depth	Sample No.	:					
(feet)	and Type	Description	FID		Remarks		
1		Brown Sand, Debris					
2			7		•		
3		Slag, Layer of gray and black Brick					
	TP14-1	Slag, 3" dia. pipe @ 3.5' in south end					
4	@3-4' Grab	of pit					
			1500 ppm				
5		Conc. footing, slab encountered			·		
		in north end of pit, also in east face					
6		TD=5.5'					
7							
8				<u> </u>			
•		·					
. 9	,	,		-			
10							
11							
12							
Comments	·			•			

Project Na	ime:	Martin Aaron RI	Project No.: 96-1322-0123 Pit No.: TP15			
Inspector:		A. Edward Sciulli	Ground Elevation: Date: 08/08/97			
Location:		1542 S. Broadway, Camden, NJ	Equipment Used: Bobcat Model 1100 Trac-Excav.			
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	12:00		
Weather: Sunny, Hot, 90's						
Depth	Sample No.					
(feet)	and Type	Description	FID		Remarks	
1		Sand, Gravel, brn., very hard rock at surface, dk. purple in color, brick, construction rubble, Foundation at		· · · · · · · · · · · · · · · · · · ·		
2		start of trench				
3						
4		Alternating gray and black ash				
5		cinders, slag turning to sand @ 6', brown with streaks of green 2" dia. pipe @ 4' through pit				
6						
7		TD=6'				
8						
9						
10						
11						
12						
Comments						

Project Na	ame:	Martin Aaron RI	Project No.: 96-1322-0123 P		Pit No.: TP16		
Inspector	:	A. Edward Sciulli	Ground Elevation:		Date: 08/11/97		
Location:		1542 S. Broadway, Camden, NJ	Equipment Used:Bobcat Model 1100 Trac-Excav.				
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	09:00			
Weather: Sunny, Hot, 90's							
Depth	Sample No.						
(feet)	and Type	Description	FID		Remarks		
1			400 ppm				
2		Sand, brown to dk. brown, some brick frags, gravel					
3		·			_		
4							
5		Alternating layers of black and gray slag, ash, cinders, Brick and wood	3000 ppm :				
6		2" dia. pipe @ 3.5' mid-point of trench runs north-south in pit					
7		TD=6'					
8							
9							
10							
11		!					
12							
Comments	Comments:						

Project N	ame:	Martin Aaron RI	Project No.: 96-1	Pit No.: TP17		
Inspector	:	A. Edward Sciulli	Ground Elevation: Date: 08/11/9		Date: 08/11/97	
Location:	- · · · · · · · · · · · · · · · · · · ·	1542 S. Broadway, Camden, NJ	Equipment Used: Bobcat Model 1100 Trac-Excav.			
Depth To Groundwater (ft.): +/- 5.25'		Time:	10:30			
Weather:		Sunny, Hot, 90's				
Depth	Sample No.	;				
(feet)	and Type	escription	FID	<u> </u>	Remarks	
1		Sand, brown, gravel, some brick fragment	400 ppm			
•		Alta	> 2000			
2		Alternating grey and black slag and cinders@2.0'. Crushed drum encountered	>2000 ppm			
3		west 1/3 of trench. No other metal.			,	
4	TP17-1			Analysis rec	quested: CLP SV, CLP	
				·	PCB, TAL CN	
5					,	
6		Sand, brown with green tint	200ppm			
7		TD = 6.0 FT				
8						
9						
10						
11						
12						
Comments	3:					

Project Na	ame:	Martin Aaron RI	Project No.: 96-1322-0123 Pit No.: TP18		Pit No.: TP18
Inspector: A. Edward Sciulli		Ground Elevation: Date: 08/11/97		Date: 08/11/97	
Location: 1542 S. Broadway, Camden, NJ		Equipment Used Bobcat Model 100 Trac-Excav.			
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	14:00	
Weather:		Sunny, Hot 90's			
Depth	Sample No.				
(feet)	and Type	escription	FID		Remarks
ı	i				·
1					
		Sand, brown, some brick gravel			
2	_			At 2.0 FT, I	Drum lid encountered
		Alternating grey and black ash and cinder			
3		slag		ļ 	·
4	TP18-1			At 4.0 FT, 2	pipes encountered
				1 - 8 IN diar	n., 1-3 IN diam. running N-S
5		·		through pit.	Located directly under EM
				Anomaly	
6		TD = 5.5 FT		Analysis rec	quested: CLP VOA, CLP SV,
İ		·		TAL CN, PI	EST/ PCB
7					
8		·			
	l				
9					
:	i				
10	! !				
		·			
11					
:					
12					······
Comments	:				
	1			•	

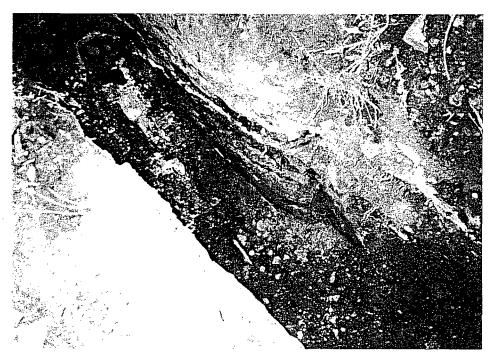
Project N	ame:	Martin Aaron RI	Project No.: 96-1	322-0123	Pit No.: TP19	
Inspector:		A. Edward Sciulli	Ground Elevation: Date: 08/12/97		Date: 08/12/97	
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Model 100 Trac-Excav.			
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	08:00		
Weather:		Sunny, Hot, 90's		,		
Depth	Sample No.					
(feet)	and Type		FID		Remarks	
1		Sand and silt, brown, loose, w/ roots, organic matter and wood	50 ppm			
2		Alternating grey and black ash, cinders, slag, roots evident	500 ppm		•	
3		o,				
4					4 IN diam. pipe running N-S	
		TD = 4.5 FT		in to the peri	iniciel fence	
5		·				
6						
. 7						
8						
9						
10						
11						
12						
Comments	:					

Project Na	ame:	Martin Aaron RI	Project No.: 96-1	322-0123	Pit No.: TP20	
Inspector		A. Edward Sciulli	Ground Elevation	n:	Date: 08/12/97	
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Model 100 Trac-Excav.			
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	09:30		
Weather:		Sunny, Hot, 90's				
Depth Sample No.			, i			
(feet)	and Type	escription	FID		Remarks	
1		Sand and silt, brown, hard, some pockets of green clay, brick and concrete			·	
2		fragments, foundation (brick and concrete) @ S end				
3		Black cinders, slag, ash, hard				
4	TP20-1			i	equested analysis: CLP VOA, LL CN, PEST/PCB	
5		White granular clayey material, ash and cinder as above, more loose, wet at 6.5'				
6						
7		TD = 6.5 FT				
8						
9		·				
10			:			
11						
12						
Comments	:					

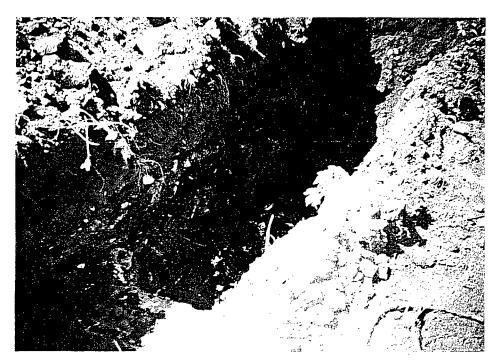
Project Na	ame:	Martin Aaron RI	Project No.: 96-1	322-0123	Pit No.: TP21
Inspector		A. Edward Sciulli	Ground Elevatio	n:	Date: 08/12/97
Location:		1542 S. Broadway, Camden, NJ	Equipment Used	Bobcat M	lodel 100 Trac-Excav.
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	11:00	
Weather:		Sunny, Hot, 90's		·	
Depth	Sample No.	I			
(feet)	and Type	escription	FID	<u> </u>	Remarks
1		Sand & gravel, brown, hard, some brick	100 ppm		
2		Alternating grey and black ash, cinder,	>2000 ppm		
3		slag			•
•	TP21-1			3.5' - Plastic	buckets encountered, also
4	TP21-2			several drun	m liners w/ small amount of
5					n rings, particle fiber drums al @ tree trunk
		TD - 5.0 FT		4.0' - White	powder in bucket from drum
6				liner, slight	blue yellow tint
:		,			alysis requested: CLP VOA,
7					AL CN, PEST/ PCB, RCRA
				Compatabil	
8		·		1	alysis requested: TCL VOA, AL CN, PEST/PCB
9					
10					f
11					
12					
Comments	:				
				•	
					•
I					

Project Na	ame:	Martin Aaron RI	Project No.: 96-1322-0123		Pit No.: TP22			
Inspector:		A. Edward Sciulli	Ground Elevation:		Date: 08/13/97			
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Model 100 Trac-Excavat					
Depth To Groundwater (ft.): +/- 5.25' Time: 09:00								
Weather: Sunny, Hot, 90's								
Depth	Sample No.							
(feet)	and Type	escription	FID		Remarks			
		Sand, brown, loose, some small metal	50 ppm					
1		pieces	.,					
			·					
2								
		Black ash, cinder, slag, brick structure	500 ppm					
3		length of pit encountered @ 3.0'		-				
		Black cinders and slag as above, grading						
4		to brown sand @ 5.5 '		 				
5								
6		TD = 5.5 FT						
				1				
7								
8								
9								
·								
10								
11								
12								
Comments	:							
		,						
		•						

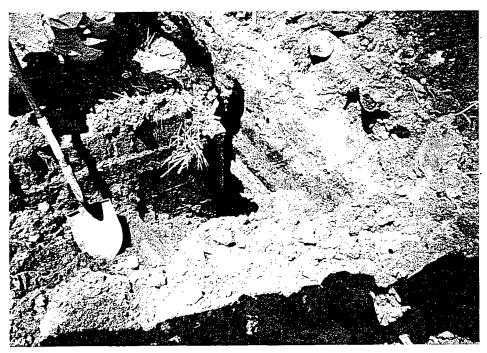
Project N	ame:	Martin Aaron RI	Project No.: 96-1	322-0123	Pit No.: TP23	
Inspector: A. Edward Sciulli		Ground Elevation: Date		Date: 08/13/97		
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Model 100 Trac-Excav.			
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	10:30		
Weather:		Sunny, Hot, 90's				
Depth	Sample No.	:				
(feet)	and Type	Description	FID		Remarks	
		Sand, brown, w/ silt, loose				
1						
_						
2		Black cinders, slag, ash, strong odor, wet	>2000 ppm			
3		at 5.5', green buckets encountered @ 3.5'. Extend to E end of pit, some wood,				
3		piece of RR railencountered. Some				
4		drum liner material @ W end of pit.				
•		,				
5						
6		TD = 5.5 FT				
7					.,	
_						
8						
9		·				
'						
10						
11		, ·				
12						
Comments	::					


Project Name:		Martin Aaron RI	Project No.: 96-1322-0123 Pit No.: T		Pit No.: TP24	
Inspector: A. Edward Sciulli		Ground Elevation: Date: 08/13/97		Date: 08/13/97		
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Model 100 Trac-Excavator			
Depth To	Groundwat	er (ft.): +/- 5.25'	Time:	12:00	<u> </u>	
Weather:		Sunny, Hot, 90's				
Depth	Sample No.	1				
(feet)	and Type	escription	FID		Remarks	
		Sand, layer of black and grey ash, cinders,	>1000 ppm			
1		slag, some brick, wood				
2				ļ		
			·	1	nalysis requested: CLP VOA,	
3	TP24-1			 	AL CN, PEST/PCB	
				1	ncrete slab the length of pit.	
4				1	tical pipe near NW corner of pit	
_		TD = 4.0 FT	·	1	pelow surface concrete	
5			·		nduit pipe on south wall of pit	
				across from	large pipe.	
6						
7						
•						
8						
9						
	\ <u></u>					
10						
11						
12						
Comments	:					
				•		

Project Name:		Martin Aaron RI	Project No.: 96-1322-0123		Pit No.: SE01				
Inspector:		A. Edward Sciulli	Ground Elevation:		Date: 08/05/97				
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Mode		del 100 Trac-Excav.				
Depth To Groundwater (ft.): +/- 5.25' Time: 12:15									
Weather: Sunny, Hot, 90's									
Depth Sample No.					·				
(feet)	and Type	Description	FID		Remarks				
1		Sand, Brown, Some Brick	200 ppm						
2		Pipe @ 2'							
3		Black Cinders, Ash, Some Brick, Conc., Rubble, Strong Odor	1500 ppm	Analyses Reg	uested: VOC, SV,				
4	SE01-2*	attacers, according a teat		TAL Metals,					
	Grab @ 2-3'				Pest./PCBs				
5	below pipe	Sand, Brown w/Greenish Lenses, Stained	1500 ppm						
6		Black, Strong Odor - Water @ 6' From Below Basin							
		TD=6'							
7					· · · · · · · · · · · · · · · · · · ·				
8									
9									
10									
11									
12	_			<u> </u>					
* Sample plus duplicate.									


Project Name:		Martin Aaron RI	Project No.: 96-1322-0123		Pit No.: SE03						
Inspector:		A. Edward Sciulli	Ground Elevation:		Date: 08/12/97						
Location:		1542 S. Broadway, Camden, NJ	Equipment Used Bobcat Model 100 Trac-Excavato		odel 100 Trac-Excavator						
Depth To Groundwater (ft.): +/- 5.25'			Time: 14:15								
Weather: Sunny, Hot, 90's											
Depth Sample No.											
(feet)	and Type	escription	FID		Remarks						
		Silt and sand, brown, moist, abundant.	200 ppm	•							
1		brick, concrete and other rubble									
2											
3											
4	SEO3-1				et pipe, analysis requested:						
_					CLP SV, TAL CN, PEST/PCB						
5				White powde	er sample reacting w/ methanol						
6	·	·									
. 7											
1											
. 8				i.							
9											
10											
		·									
11		•									
			·								
12											
Comment Explored inlet pipe to Rhodes basin and west wall of basin. Top of basin is brick, some collapsing											
Abandon pit @ 4.0'											

Test Pit #TP01
Showing soils and brick structures encountered.


Test Pit #TP02 Showing soils, brick, concrete structure and pipe encountered.

Test Pit #TP03
Showing brick and concrete structure and possible pipe-run in foreground.

Test Pit #SE01 Showing soil adjacent to WADCO sewer basin.


Test Pit #SE01 Showing effluent pipe of Basin #2.

Test Pit #SE01 Showing stained soil from basin excavation.


Test Pit #TP04
Showing soil and debris encountered.

Test Pit #TP05
Showing soil (stained purple) and debris encountered.

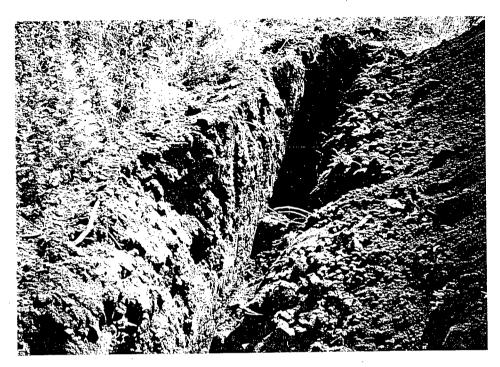
Test Pit #TP06
Showing soil and subsurface concrete structure (possible pipe run).

Test Pit #TP07 Showing layered fill encountered.

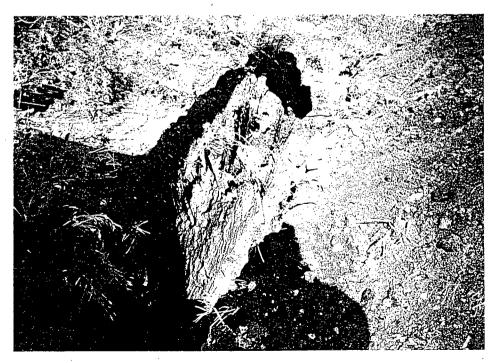
300393

Test Pit #TP08
Showing soil and debris encountered.

Test Pit #TP09
Showing soil and debris. Pipe run West end of pit.



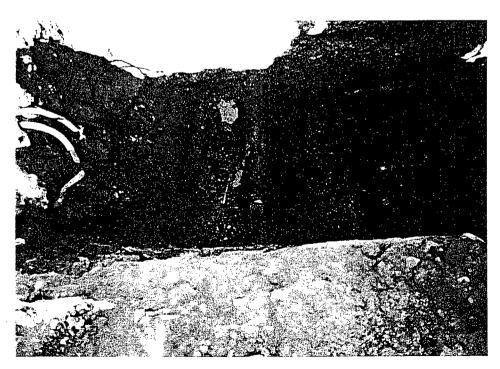
Test Pit #TP10
Showing groundwater encountered, concrete footer at East end of pit.



Test Pit #TP11 Showing drum liners encountered.

300395

Test Pit #TP12 Showing soil encountered.

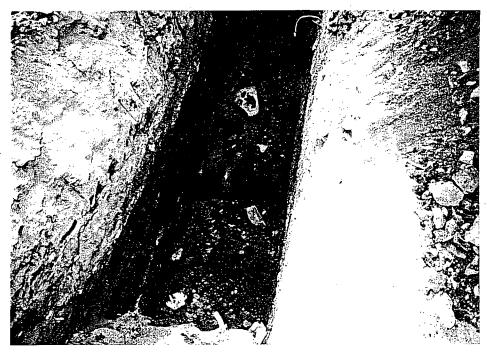


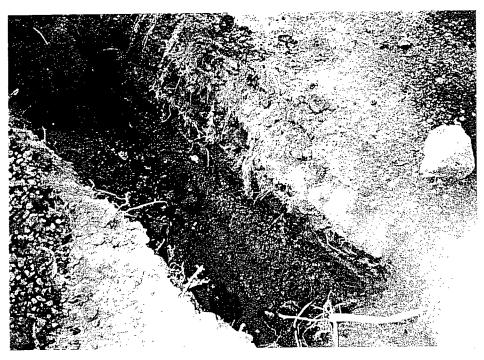
Test Pit #TP13 Showing soil encountered.

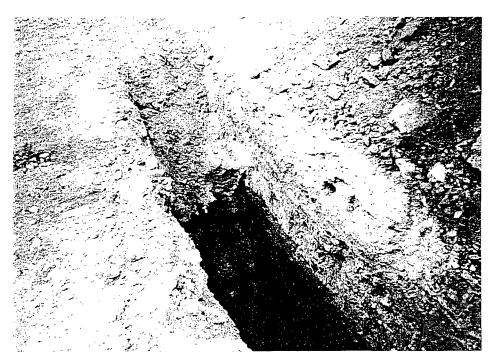
300396

Test Pit #TP14
Showing soil and concrete structure encountered.

Test Pit #TP14
Showing soil, pipe and drum rings encountered.


Test Pit #TP15
Showing layered fill and pipe encountered.

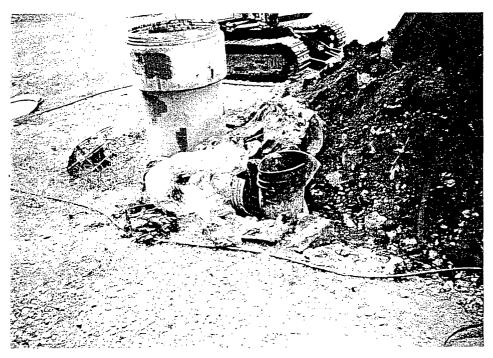

Test Pit #TP16
Showing soil and pipe encountered.


Test Pit #TP17
Showing soil and layered fill encountered.

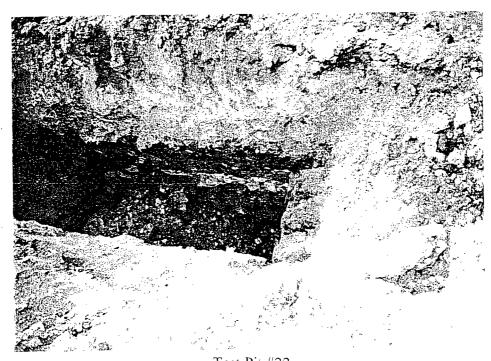
Test Pit #TP18
Showing soil, approximate 3" diameter and 8" diameter pipes encountered.

Test Pit #TP19
Showing soil and pipe encountered.

Test Pit #TP20
Showing layered fill, brick structure. South end of pit encountered.


Test Pit #TP21 Showing soil and debris encountered.

Test Pit #TP21 Showing white solid substance encountered.


Test Pit #TP21 Showing drum rings, liners and skimmer belts encountered.

Test Pit #TP21 Showing drum liners and buckets encountered.

Test Pit #SE03 Showing soil and West wall of Rhodes basin encounter.

Test Pit #22 · Showing soil and brick structure encountered.

Test Pit #TP23 - Showing stained soil and green (5 gal.) containers encountered.

Test Pit #TP24 - Showing soil; approx. 8" diameter. Vertical pipe encountered.

va L. Robert Z Z	r kimball & A	ASSOCIATES	5		IITORING V LATION S			
OJECT:	MA	ARTIN AAF	RON RI/	RAA		MONITORING	G WELL NUMBER	MW1S
	y:JA	MES C. A	NDERSO	N ASSO	CIATES, INC.	WELL PERM	IIT NUMBER	31-51432
	70						WELL INSTALLATION	07/08/97
	Wit						VELL DEVELOPMENT	07/11/97
À				·			TELL DE VEGO MEIV	
GEOLOGIC UNITS	ELEVATION E (M.S.L.) FROM	DEPTH OR HE W GROUND S	EIGHT URFACES			FLUSH-MOUN	T COVER	
					/ WELL	CAP W/LOCK	OF CONCRETE DAD	24" DIA.
	10.10	0.0				- DIMENSIONS	OF CONCRETE PAD	SOIL
	10.19	0.0	4				GROUND SURFACE	
	9.94		F			— TOP OF C	ASING	
				<u> </u>				
	•		(8)			TYPE OF	SURFACE SEAL	CONCRET
		1.0'						
				4	1	.D. OF RISER		4.0"
	- FILL MATERIA	L				TYPE OF RISER	•	PVC
								GROUT
						TYPE OF	BACKFILL MENT METHOD	POURED
							METTIOS	
					3			
					1	- BOREHOLE	DIAMETER	8.0"
		•			1			•
					$\langle \rangle$			
7 7 4 4 7 8 4 8 7 1 1	_	2.5'			1	— TOP OF FI	NE SAND	
				15 7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1				#00 H0DI
						TYPE OF FINE	SAND	#00 MORI
	_	<u>3.0'</u>)		3	TOP OF S	SAND PACK	
	5.94	4.0'	}		.}			
	<u> </u>	7.0	}		\	TOP OF SCRE	EN	
)	I-I-I				
				-[-]				4.0"
	— SAND		{ [1	OF SCREEN	OPENING	0.01
	3AND		/ }		-1	E OF SCREEN		PVC
) [- <u></u> -				
			1	<u></u> -	-	- SIZE OF FIL		#1_MORIE
			([EMPLACEMEN	NT METHOD	POURED
	<u>-3.81</u>	14.0	{ }	}				
		14.0'	() [BOTTOM OF S		
		14.0'	است			BOTTOM OF B		
<u> </u>								
	EL MEASUREMEN	1		<u> </u>				
DATE COO	W 700 05	7/16/97	9/16/97	11/10/98				
DEPTH FRO WELL CASIN		9.01	5.90	6.48				
ELEVATION		0.93	4.04	3.46]			

MO L ROBERT KIMBA			MONITO	ORING W ATION SH			
COJECT:	MARTIN AAF	RON RI/F				WELL NUMBER :	MW1M
RILLING COMPANY:	JAMES C. A	NDERSO	N ASSOCIA	TES, INC.	WELL PERMI		31-51433
RILLER:	JOHN URBA				•	ELL INSTALLATION	06/26/97
SPECTOR:	A 50WA00		<u> </u>			CLL DEVELOPMENT	07/03/97
GEOLOGIC ELEVATIO							
UNITS (M.S.L.)	FROM GROUND S	URFACES			FLUSH-MOUNT CAP w/LOCK	COVER	
				/ WELL !		F CONCRETE PAD	24" DIA
10.1	9 0.0 _					GROUND SURFACE	SOIL
		4					
9.7	0_)	- TOP OF CA	SING	
FILL I	MATERIAL						20112053
	_1.0 '	\ •			TYPE OF S	URFACE SEAL	_CONCRE]
				I,	D. OF RISER		4.0"
				. т	YPE OF RISER		PVC
					- TYPE OF B	ACKFILL	GROUT
SILT				•		ENT METHOD	POURED
							-
					- BOREHOLE	DIAMETER	<u>8.0"</u>
	47.0'				TOP OF FIN	E SAND	
							_#00_MOR
	•				TYPE OF FINE	SAND	_#00 11013
	48.0')	-		— TOP OF SA	NND PACK	
					·		
<u>–39.</u>	<u>50.0'</u>	}			TOP OF SCREE	N -	
		\	<u></u>				
							4.0"
SAND		{ }			OF SCREEN OF SCREEN O	PENING	0.01
		 	<u></u>	TYPE	OF SCREEN		PVC
		\ \[\]			SIZE OF FILTE	. CAND	#1. MORU
) [EMPLACEMEN		POURED
_49	. <u>8</u> 1 <u>60.0'</u>		}				
<u>-49</u>		([BOTTOM OF SO		
<u>-49</u>		است			BOTTOM OF WE BOTTOM OF BO		•
WATER LEVEL WELL	HOENENTS						
DATE		9/16/97	11/10/98				
DEPTH FROM TOP O	F 13.02	13.83	14.34				
WELL CASING (FEET	13.32	13.83	17.54	1		ļ ļ	1

W L ROBER	RT KIMBALL &	ASSOCIATES	•		ITORING N			
-	· M	ARTIN AAR	ON RIZ		LATION S			MW2S
DJECT:	1.				CIATES, INC.		ING WELL NUMBER	31-51435
LLING COMPAI		OHN URBAI					RMIT NUMBER	07/08/97
LLER:						57112 67	WELL INSTALLATION	07/11/97
PECTOR:	<u>W</u>	ILLIAM E. S	SIENGER	ζ		DATE OF	WELL DEVELOPMENT	
GEOLOGIC UNITS	ELEVATION (M.S.L.) FRO	DEPTH OR HE			TOP OF	FLUSH-MO	INT COVER	
					WELL WELL	CAP W/LOC	CK .	_
					/ / /-	- DIMENSION	S OF CONCRETE PAG	•
	9.73	0.0	Some				GROUND SURF	FACE SOIL
	9.47					(X/X/X/	>//	
	<u> 9.47</u>				-	TOP OF	CASING	
					a }			20110257
		1.0'	\		-	TYPE 0	F SURFACE SEAL	CONCRET
		1.0'		2	<u>- </u>	I.D. OF RISE	9	4.0"
	FILL MATERIA	A)				TYPE OF RIS		PVC
1/1	FICE MATERIA	- N.	Y		$\langle \rangle$	4		GROUT_
					 -		F BACKFILL	_
					7	EMPLAC	EMENT METHOD	POURED
					1			
			-12		7_	BOBELLO	LE DIAMETER	8.0"
						BUKENU	LE DIAMETER	<u></u>
								•
7.24 - 55		3.0'				TOP OF	FINE SAND	
		•	(3)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		101 01	THE DANS	#00 NOBI
				, i	}	TYPE OF FI	NE SAND	#00 MORI
		4.0')	TOP OF	SAND PACK	
					}			
	<u>3.73</u>	6.0*	- }:-		}	T00 05 50	DE 544	
			1			TOP OF SC	KEEN	
)	-I-I-	1			
					LD.	OF SCREEN		4.0"
	SAND		(SIZ	E OF SCREE	N OPENING	0.01
			(: [(TYF	PE OF SCREE		PVC
			}]			0.75 05 6		#1 MORIE
)	-[-[-]			ILTER SAND IENT METHOD	POURED
*		_	\ \frac{1}{2}	<u></u>	}			
		16.0'		<u>-[-]</u>		BOTTOM OF	SCREEN	
		<u>16.0'</u>			ل	BOTTOM OF		
	<u>-6.27</u>	<u>16.0'</u>				- BOTTOM OF	BOREHOLE	
WATER LE	VEL MEASUREMEN	NTS		,		·····	· · · · · · · · · · · · · · · · · · ·	
DATE		7/16/97	9/16/97	11/10/98				
	OM TOP OF	13.68	13.65	14.20				
———	1	-4,21	-4.18	 			- - - - - - - - - - 	-

L ROBER	T KIMBALL &	ASSOCIATES	1		IITORIN: LATION				· · · · · ·		
	· •	ARTIN AAR	ON RL/					G WELL NUMBER	ı	MW2M	
/ KOOLO		AMES C. A							·	31-5	
DRILLING COMPAN		OHN URBAI		11 7330	SIA ILD.	1.40.			_	06/2	
DRILLER:								WELL INSTALLATI		07/0.	
INSPECTOR:		. EDWARD	SCIULLI				DATE OF N	WELL DEVELOPME	NT	0//0.	3/3/
GEOLOGIC UNITS	ELEVATION (M.S.L.) FR	DEPTH OR HE OM GROUND SI	IGHT URFACES				CAP W/LOCK				
							DIMENSIONS	OF CONCRETE I	PAD	:	24" DIA.
	9.73	0.0			/ /			GROUND SI	IRFACE		SOIL
F===				mining				× 01100110 21	SIG MOL		•
	9.45						— TOP OF (CASING		٠	
	— SILT	_1,0'	(8	•	-		— TYPE OF	SURFACE SEAL			ONCRETE
1757				7		1,0	D. OF RISER				4.0"
					1		MPE OF RISE		,		PVC
											GROUT
					1-		— TYPE OF				POURED
							EMPLACE	MENT METHOD			EQURED
	,				1						_
		·			-		- BOREHOLE	DIAMETER			<u>8.0"</u>
		49.0'			 		— TOP OF F	INE SAND			
		50.01				 1	YPE OF FINE	SAND		_#0	DO MORIE
10404		50.0'					— TOP OF :	SAND PACK			
	<u>-42.27</u>	52.0'				T	OP OF SCRE	EN			
				<u></u>	1			•			
						- ID C	F SCREEN				4.0"
	SAND		\ \ \			SIZE	OF SCREEN OF SCREEN	-			0,01 PVC
				 			SIZE OF FIL				1 MORIE POURED
	<u>-52.27</u>	62.0'	}		1				•		
	<u> </u>	62.0'	(1		BOTTOM OF S				
		62.0'	ئسا				BOTTOM OF N				
WATER LEY	VEL MEASUREME	INTS									
DATE		7/16/97	9/16/97	11/10/98							
DEPTH FRO		14.13	14.12	14.43							
ELEVATION		-4.68	-4.67	-4.98							

v L ROBERT I	KIMBALL & A	SSOCIATES	5		ITORING N			
ROJECT:	MA	RTIN AAF	ON RI/	RAA		MONITORIA	NG WELL NUMBER	MW3S
RILLING COMPANY:					CIATES, INC.		MIT NUMBER	31-51428
RILLER:		IN URBAI					WELL INSTALLATION	07/07/97
							WELL DEVELOPMENT	07/11/97
SPECTOR:	****	CIPAN C.	<u> </u>			DATE OF	WELL DEVELOPMENT	
GEOLOGIC ELE	VATION D M.S.L.) FROM	EPTH OR HE			TOP OF	FLUSH-MOU	NT COVER	
					/ WELL	CAP W/LOCK	(
						- DIMENSIONS	OF CONCRETE PAD	
	10.79	0.0					GROUND SURFACE	SOIL
	10.41					/>//>//>/		
	10.41					TOP OF	CASING	
			("		-	TYPE OF	SURFACE SEAL	_CONCRE
	-	1.0'			ર્મ			4.0"
						I.D. OF RISER TYPE OF RISE		PVC
	FILL MATERIAL					7.1. 2. 0. 1.1.0.		
					/	TYPE OF	BACKFILL	GROUT
				Y/	'	EMPLACE	MENT METHOD	POURÉE
					4			
		·	-//		}	BOREHOL	E DIAMETER	8.0"
					λ			
			Y		1			
		<u>3.0'</u>	\mathcal{L}		1	TOP OF I	FINE SAND	
	•		199)			#00 MOR
					1	TYPE OF FIN	E SAND	_#00_141013
		4,0 '			-	TOP OF	SAND PACK	
			1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		}			
	4.79	6.0 '	- }		1	TOD OF 500	55N	
			}			TOP OF SCR	LEN	
) [-			
						OF SCREEN		4.0"
	SAND		(.1	E OF SCREEN	OPENING	0.01
	SANO		/ }		TY	PE OF SCREEN	4	PVC
) [-[-[1			
			1	<u></u> -	(- SIZE OF FI		#1_MORI
			()			EMPLACEME	ENT METHOD	POUREI
	<u>-5.21</u> <u>1</u>	6.0 '	()	<u> </u>	{			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6.0'	(%)			BOTTOM OF		
3. T. 15		6.0'	ننا			BOTTOM OF		
	<u></u>					,		
	MEASUREMENT				·	<u> </u>		
DATE		7/16/97	9/16/97	11/10/98				
DEPTH FROM WELL CASING		11.65	11.64	12.52				
ELEVATION		-1.24	-1.23	-2.11		1		

V L ROBER	T KIMBALL & A	SSOCIATES			IITORING LLATION			•		
ROJECT:	MA	RTIN AAR	ON RI/					S WELL NUMBER	мwзм	
	Y:JAN								31-51429	
		HN URBAN			CIATES, IIV				07/02/97	
RILLER:								ELL INSTALLATION	07/03/97	
NSPECTOR:	WIL.	LIAM E. S	TENGER	ζ		_	DATE OF W	ELL DEVELOPMENT		
GEOLOGIC UNITS		EPTH OR HE			/ TOP	OF FLI	USH-MOUN	T COVER		
	•				/ WE	LL CA	P w/LOCK		_	
					///	DI	MENSIONS	OF CONCRETE PAD	24" D	<u>IA.</u>
	10.79	0.0	· • •			57757	*****	GROUND SURFACE	SOIL	
		<u>ل</u>				}}}		Ş		
	10.69		III F		H		TOP OF C	ASING		
	- FILL MATERIAL		(8)				TYPE OF S	SURFACE SEAL	_CONCR	ETE
		1.0'	\ • •					oom noe bene		
	_			<u>_</u>		- I.D.	OF RISER	•	4.0"	
						TYP	e of Riser		PVC	<u></u>
			Y/						GROU	ΙT
								BACKFILL .		
					7		EMPLACEM	ENT METHOD	Pouri	<u>-U</u> .
					1					
	SAND				1					
	JANO		-//		 		BOREHOLE	DIAMETER	8.0"	
					λ			•		
		4.0']					
	_4	4.0'	(3)		1		TOP OF FI	NE SAND		
						— TVI	PE OF FINE	SAND	_#00_MC	DRII
		5 al			1	, , ,	- C 01 1114E	SAND		
	_4	·5.0 '			-		TOP OF S	AND PACK		
				.0 t	. }					
	<u>-36.21</u> 4	7.0'	}			TO	P OF SCREE	FN		
			(0. 30			
			<i>\</i>	-I-I- (a)	-1				_	
1000					1	n OF	SCREEN		4.0	
0000	GRAVEL LAYER	₹	\	-I-I-]	1.1		F SCREEN (OPENING .	0.01	
			(1	TYPE C	OF SCREEN		PVC	<u> </u>
)	-[-[-]:	1				#1 MO	סוכ
)	I-I-I	†		IZE OF FILT		#1_MO POURI	
			\ \ \		;}	_	CHOCMEN	T. METITOD		
	<u>-46.21</u> 5	57.0'		<u> -</u> 그 그 ()	{	RU	TTOM OF S	CREEN		
	<u>-46.21 5</u>	57.0 '	(<u> </u>				TTOM OF W	•		
	<u>-46.21</u> 5	57.0 ' _	~				TTOM OF B			
WATER 15	El Mexamerica	5	,							
DATE	ÆL MEASUREMENT	7/16/97	9/16/97	11/10/98]
DEPTH FRO		15.36	15.38	15,71			1			1
WELL CASH	NG (FEET)	13.30	13.30	15.71			ļ	<u> </u>		-
ELEVATION		-4.67	-4.69	-5.02	i i					1

7 2 3					IITORING LLATION !			
OJECT:	MAF	RTIN AAF	RON RI/	RAA		MONITORIN	IG WELL NUMBER	MW4S
LLING COMPANY: _	JAM	ES C. A	NDERSO	N ASSO	CIATES, INC	- WELL PER	MIT NUMBER	31-51438
ILLER:	JOH	N URBA	N			_ DATE OF	WELL INSTALLATION	07/08/97
SPECTOR:	WILL	IAM E.	STENGER	₹		_ DATE OF	WELL DEVELOPMENT	07/11/97
GEOLOGIC ELEVA UNITS (M.S	ATION DE .L.) FROM	PTH OR HI GROUND S				F FLUSH-MOUI		
						DIMENSIONS	OF CONCRETE PAD	24"_DIA
<u> </u>	9.66 <u>(</u>	م _0.0	· Simi		A ANN	XVXVXVX	GROUND SURFACE	SOIL
		Ċ	4				>	
	9.44				 	TOP OF	CASING	
			(6)]-	TYPE OF	SURFACE SEAL	_CONCRE]
	_1	.0'			H			4.0"
				/	 	I.D. OF RISER		PVC
FII	LL MATERIAL					TYPE OF RISE	.R	
						TYPE OF	BACKFILL	GROUT
					1		MENT METHOD	POURED
					1			
					λ			
			[/]			BOREHOL	E DIAMETER	8.0"
					λ			
			Y		1			
	_2	<u>5'</u>	\mathcal{L}	12 14	[TOP OF F	FINE SAND	
					1	- 7005 05 511	5 5.440	#00 MOR
	_	-1	(3)			TYPE OF FIN	E SANU .	
	_3	<u>.0'</u>)		}-	TOP OF	SAND PACK	
				# to	}			
_5	.66 4	.0*	/			- TOP OF SCR	FFN	
			([}			
	,		/ [1			4.0"
					1.0	. OF SCREEN		4.0"
s/	AND		\		-1	ZE OF SCREEN TPE OF SCREEN		0.01 PVC
			())	re or someen		
			(:)			SIZE OF FII	TER SAND	_#1_MORI
			1		1		ENT METHOD	POURED
	A 3.4 ·	4.0'	()	- <u>-</u> - <u>-</u>	1			
		4.0'			+	- BOTTOM OF		
1 %	4.34 14 4.34 14		\		y	- BOTTOM OF		
	<u> </u>	T.U .				- BOTTOM OF	BUKENULE	
WATER LEVEL ME	EASUREMENTS	,						
DATE		7/16/97	9/16/97	11/10/98				
DEPTH FROM TOP		5,82	5.58	6.15		 		
WELL CASING (FE			 				1	
LECTATION		3.62	3.86	3.29		!		1 1

⊒ DJECT:		MARTIN	AARON -	- MOD 3			MONITORING	G WELL NUM	(BER		MW-5S	
	NY:		JCA					IIT NUMBER			31-54503	
LLER:			IOHN URBA	AN				ELL INSTAL		1	10/12/98	
PECTOR:		8	ILL STENG	ER				ÆLL DEVELO		1	10/14/98	
GEOLOGIC UNITS	ELEVATION (M.S.L.) FRO	DEPTH OR HE M GROUND SI	GHT JRFACES	/		OP OF FLU WELL CAP	w/LOCK	T COVER	TE PAD		20"X20) "
	11.57							GROUN	D SURFAC	E		
	11.46						TYPE OF	SURFACE S	EAL		CONCRE	πε
			\.								4*	
					1		OF RISER	,			PVC	_
					$\langle \rangle$	111-6	. OF KISEN	•			GROUT/PO	1.0
							TYPE OF				GROUT/FO	-
							EMPLACEN	ENT METHO	OO .			
			-		}		BOREHOLE	DIAMETER			8	
	-	NA					TOP OF FI	NE SAND		,		
		4'					E OF FINE	SAND SAND PÄCK			NA	
	-	····					101 01 3	, and i man			•	
	5,57	6'	}		1	7		 .				
)			10P	OF SCRE	EN				
						- 1.D. OF	SCREEN				4*	
			\ \ \ \ \		1	SIZE OF	SCREEN (OPENING			.010 PVC	
			(]			TTPE OF	- SCREEN					
					ļ	SI	ZE OF FILT	TER SAND			#0	_
			()		}	E₩	MPLACEMEN	NT METHOD			POURE	
		16'			}	—— вот	TOM OF S	CREEN				
	-4.43	16'	(::: <u>f</u>		J		TOM OF W					
		16'				ВОТ	TTOM OF E	OREHOLE				
WATER L	EVEL MEASUREMEN	TS										
DATE		10/12/98	10/14/98	11/10/98								
	ROM TOP OF	6.0*	8.6'	12.35'							1	
INNER CA	N N						ļ				ļ	

JECT:		MARTIN	AARON -	- MOD 3			IONITORING	WELL NUMBER	٠	MW-69	S
	NY:		JCA					T NUMBER		31-54	504
LLER:			OHN URBA	AN				ELL INSTALLAT	ON	10/12/9	98
PECTOR:		81	LL STENG	ER		D	ATE OF W	ELL DEVELOPM	ENT	10/14/9	38
GEOLOGIC UNITS	ELEVATION (M.S.L.) FRO	DEPTH OR HEI M GROUND SU	GHT RFACES			ELL CAP	SH-MOUNT W/LOCK IENSIONS (COVER OF CONCRETE	PAD	21	*x20*
	12.56							GROUND S	URFACE		
				•	-	<u> </u>	TYPE OF S	SURFACE SEAL		CON	ICRETE
							of Riser Of Riser	·	•		4° PVC
					-		TYPE OF E	IACKFILL ENT METHOD		GROUT	/POUR
			-			E	BOREHOLE	DIAMETER			8.
	· _	NA					TOP OF FIN				NA
	-	4'					E OF FINE				
	6.56	6'				ТОР	OF SCREE	:N			
							SCREEN SCREEN C SCREEN	PENING			4" 010 PVC
							E OF FILT				#0 HURED
	-3.44 -3.44 -3.44	16' 16'				— вот	TOM OF SO TOM OF WI	ELL			
WATER LE	VEL MEASUREMEN					— 30 1	. U Ur D				
DATE		10/12/98	10/14/98	11/10/98							
		1 1		1 1				, 1	ı	1	1

3		MARTIN A	ARON - MOD	TALLATIO				MW-7	'S
DJECT:		MARTIN A					WELL NUMBER	31-545	
LLING COMPA	ANY:		JCA IAL LIBBAN				IT NUMBER		
LLER:			IN URBAN			DATE OF W	ELL INSTALLATION	10/13/	
PECTOR:	· · · · · · · · · · · · · · · · · · ·	BILL	STENGER			DATE OF W	ELL DEVELOPMENT	10/16/	98
GEOLOGIC	ELEVATION	DEPTH OR HEIGI	HT		TOP OF FLU	NUOM-HZI	r COVER		
UNITS	(M.S.L.)	FROM GROUND SUR	FACES		WELL CAP			C) CVAT	-0 0011
		,		//	•		OF CONCRETE PAD	ELEVATE 24	DIA.
	11.19				/	.,,	GROUND SURFACE		
			7				<i>></i>		
	10.90	_		?					
			(0)	·		TYPE OF	SURFACE SEAL	CO	NCRETE
									4"
						of Riser : of Riser			PVC
								GROUT	T/POURE
						TYPE OF			·
						EMPLACEM	ENT METHOD		
						BOREHOLE	DIAMETER		8"
								4	
				1					
		NA		4-		TOP OF FI	NE SAND		
		•			TYP	E OF FINE	SAND	•	NA
		4'				TOP OF S	AND PACK		
				# 5 (101 01 3	AND I AGN		
	5.19	6'		[a]					
			<u> </u>		——— ТОР	OF SCREE	EN		
1)						
					1.D. O F	SCREEN			.010
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 1		SCREEN (PENING .		PVC
			(]		111 6	SOULCH			
			(1	Si	ZE OF FILT	ER SAND		# 0
			(= ====	<u> </u>	EN	MPLACEMEN	IT METHOD	P(DURED
	-4.81	16'		 }		TTOM OF S	CREEN		
	-4.81	16'				TOM OF W			
	-4.81	16'			во	TTOM OF B	OREHOLE		
	EVEL MEASUR	· · · · · · · · · · · · · · · · · · ·	40.400		<u> </u>	T		<u> </u>	
DATE	2011 -22 -5	10/16/98 11	/10/98	-					
DEPTH FE	ROM TOP OF	12.7' 1	2.96'		<u></u> _				
ELEVATIO	N	-1.80 -	-2.06						

<u>}</u>					LATION	SVEICH			
JECT:		MARTIN	AARON -	MOD 3		_ MONITORIN	NG WELL NUMBER	MW-8S	
LING COMPA	NY:		JCA			_ WELL PER	MIT NUMBER	31-5450	
LER:			IOHN URBAN	<u> </u>		DATE OF	WELL INSTALLATION	10/13/9	8
PECTOR:			ILL STENGE	R		_ DATE OF	WELL DEVELOPMENT	10/14/9	8
								,	
GEOLOGIC UNITS	ELEVATION (M.S.L.) FR	DEPTH OR HE OM GROUND SI	IGHT JRFACES		/ TOP C	F FLUSH-MOU	NT COVER		
					/ WEL	L CAP W/LOCK	:	20"	'X20"
					//_	- DIMENSIONS	OF CONCRETE PAD		-
•	10.06						GROUND SURFACE		
			- 2000				×		
	9.89		4		l\				
				-			•		
			<i>(</i> a)			TYPE OF	SURFACE SEAL	CON	CRETE
					}				
					}	I.D. OF RISER			4"
						TYPE OF RISE	R		VC ·
					7_	TYPE OF	DACKEILI	GROUT,	/POUR
							MENT METHOD	,	
					1				
			-//	//	}	BOREHOL	E DIAMETER		B*
1					1				
		NA				TOP OF I	FINE SAND		
									łA.
		~!			•	TYPE OF FIN	E SANU	 	
			1		-	TOP OF	SAND PACK	·	
					. •				
	6.06	4'	\			- TOP OF SCR	EEN		
			(<u></u> -			•		
		•							. -
			} <u> </u>			. OF SCREEN	ODENING		10
) [=			ZE OF SCREEN THE OF SCREEN		P	vc
			\ <u> </u>						
			(- [-	<u></u> 14		SIZE OF FIL			1050
			([<u></u>	}	EMPLACEME	ENT METHOD		JRED
	-3.94	14'					CODECN		
	-3.94	14'	(E			- BOTTOM OF			
	-3.94	14'	<i>ن</i>		<u> </u>	- BOTTOM OF			
WATER LE	EVEL MEASUREME	ENTS							
DATE		10/14/98	11/10/98						
	ROM TOP OF								\dashv
INNER CA		5.7'	6.8	ŀ	1	1	1 1 1		

?		==			ATION S	KEICH			*-
JECT:		MARTIN	AARON - N	MOD 3		MONITORIN	G WELL NUMBER		IW-9S
LING COMPANY:			JCA			WELL PERI	MIT NUMBER	31-	-54507
LER:			OHN URBAN			DATE OF	WELL INSTALLATION		/13/98
ECTOR:		B	LL STENGER			DATE OF	WELL DEVELOPMENT	10,	/15/98
CEOLOGIC FI	LEVATION	DEPTH OR HE	ICHT		•				
		OM GROUND SL			TOP OF	FLUSH-MOUN	IT COVER		
•					WELL	CAP W/LOCK		_	20"X20"
					/	- DIMENSIONS	OF CONCRETE PAD		
	10.81	ـــا	· Somm		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(XXXXXX)	GROUND SURFAC	Œ	
ŀ	10.63	Ċ				<i>>>>>>></i>	<i>"</i>		
								•	
						,			
			("	·		TYPE OF	SURFACE SEAL	-	CONCRETE
								_	4"
						.D. OF RISER TYPE OF RISE	R	_	PVC
			Y					G	ROUT/POUR
					4	TYPE OF		_	
						EMPLACE	MENT METHOD		
						00050.	:		8*
		··			4	BOREHOLE	L DIAMETER	_	.
		NA .				TOP OF F	INF SAND		
					_	101 01 1	INC SANO		NA
						TYPE OF FINE	SAND	_	
		11*)=1		-	TOP OF	SAND PACK		
	-3.19	14'			•	TOP OF SCRE	TEN		
				<u> </u>		TOP OF SCRE	EN.		
) [-]						
					I.D.	OF SCREEN		_	4*
			\ <u> </u> -	<u></u>		OF SCREEN		_	.010 P V C
		•	(]-		117	C OF SCREEN			
			(- SIZE OF FIL	TER SAND	_	#0
						EMPLACEME		_	POURED
	-13.19	24'	\						
	-13.19	24'	() -			BULL DE			
1	-13.19	26'				BOTTOM OF			
				•		- · · ·	- 		
WATER LEVE	L MEASUREME	NTS							
DATE		10/15/98	11/10/98						
DEPTH FROM	TOP OF	15.2'	15.43'					 	——
									1

ECT:	MARTIN AARON	1 - MOD 3	MONITORING WELL NUMBER	MW-90
ING COMPANY:	JCA		WELL PERMIT NUMBER	31-54509
.ER:	JOHN UF	RBAN	DATE OF WELL INSTALLATION	10/15/98
ECTOR:	BILL STE	NGER	DATE OF WELL DEVELOPMENT	10/16/98
GEOLOGIC ELEVATION DEL	TH OR HEIGHT	c	, TOP OF FLUSH-MOUNT COVER	
UNITS (M.S.C.) TROM	SINDUNU SUNI ACL	· /	, WELL CAP w/LOCK	20"X20"
			DIMENSIONS OF CONCRETE PAD	20 120
10.71			GROUND SURFA	.CF
		· ·		OL .
10.53				
	(B)	. []	TYPE OF SURFACE SEAL	CONCRETE
			, , , , , , , , , , , , , , , , , , ,	49
			I.D. OF RISER	
	\		TYPE OF RISER	
	· V		TYPE OF BACKFILL	GROUT/POUR
	K		EMPLACEMENT METHOD	
	8			
	<i>Y</i>			
	/		BOREHOLE DIAMETER	8"
	Y			
	NA (4 4-	TOP OF FINE SAND	
			TYPE OF FINE SAND	NA NA
	35' \(\)		•	
			TOP OF SAND PACK	
	· .			
<u>-28.79</u> <u>-3</u>	9.5'		TOP OF SCREEN	
	\			
	(s)	[===] /		4*
·	<u></u> {:`		I.D. OF SCREEN SIZE OF SCREEN OPENING	.010
),:	11	TYPE OF SCREEN	PVC
·) ;:	- []		
	\frac{1}{2}	[===] }	SIZE OF FILTER SAND	POURED
	(°.)	1-2-2-1	EMPLACEMENT METHOD	
-43.79 5	4.5')[-]-]({ <u>_</u>	BOTTOM OF SCREEN	
-43.79 5	<u>4.5'</u>		BOTTOM OF WELL	
<u>-43.79</u> 5	4.5'		BOTTOM OF BOREHOLE	
WATER LEVEL MEASUREMENTS				
DATE	10/16/98 11/10/	98		

72	T KIMBALL &	ASSOCIATES			ITORIN					
=					LATIO	n ske	. ICH			
OJECT:		MARTIN	AARON - I	MOD 3		· · · · -	MONITORING	WELL NUMBER	MW-1	
ILLING COMPAN	IY:		JCA				WELL PERM	31-54508		
ILLER:			HN URBAN				DATE OF W	ELL INSTALLATION	10/14	
SPECTOR:		81	L STENGER				DATE OF W	ELL DEVELOPMENT	10/16	/98
GEOLOGIC	ELEVATION	DEPTH OR HEI	GHT		. Т	DP OF FIL	JSH-MOUN1	r COVER		
UNITS	(M.S.L.) FRI	OM GROUND SU	REACES				P w/LOCK	o o ver	•	6"X19"
					//		-	OF CONCRETE PAD		
	10.02							GROUND SURFACE		
								2		
	9.64			~~~						
				-						
			(a	•	-		TYPE OF S	SURFACE SEAL		ONCRETE
			اد ا	-						4"
					1		of riser e of riser			PVC
					$\langle \rangle$	111	e or moen		CBO	JT/POUR
		•			/		TYPE OF E	BACKFILL	GROC) / POOK
		-					EMPLACEM	ENT METHOD		
	•				1					
.)					8"
							BOREHOLE	DIAMETER		-
					\rangle					
	•	NA			1_		TOP OF FI	NE SAND		
1 1							10/ 0/ //	TE SAND		NA
						TYI	PE OF FINE	SAND		
		7') [-		TOP OF S	AND PACK		
				.* 4.	}					
	2.02	8,	- } ,3:[то	P OF SCREE	FN		
			([-	<u></u>	}		0. 50			
			/ [<u>-</u>						-	4*
]	- <u>-</u>	}		SCREEN			.010
			\	<u></u>	1		F SCREEN (OF SCREEN	OPENING		PVC
			\ [=)				***************************************	
			(s	ZE OF FILT	ER SAND		10
1			\ <u> </u> -	<u></u>	}	£	MPLACEMEN	IT METHOD	<u></u>	POURED
	-7.98	18'	-	<u></u>	}		TT04 05 0	CREEN		
	-7.98	18'	(⊢	=======================================			ITTOM OF S ITTOM OF W			
	-7.98	18'					TTOM OF B			
	VEL MEASUREME					<u> </u>	T			
DATE	:	10/16/98	11/10/98							
DEPTH FRO	OM TOP OF	13.6	13.8'					<u> </u>		
ELEVATION		-3.96	-4.18							

New Jersey Department of Environmental Protection Bureau of Water Allocation

			Well Pen	mit No	31. 5143	91		
			Atlas She	et Coordina	tes <u>31</u> :	Ø1 : 951		
OWNER IDENTIFICATION - Owner		· · · · · ·			<u> </u>			
Address 1542 BROAD	WAY	N 7			7:- O-d-	 .		
CityCAMDEN	State	<u> </u>		<u> </u>	zip Code			
WELL LOCATION - If not the same as ow	ner please give address.	Owner	s Well No	5B11				
County CAMDEN	Municipality CAMDI	ON CITY	Lo	t No. <u>1</u>	Block N	No. 46Ø		
Address 1542 BROADWAY					LL STARTED <u>6</u>			
TYPE OF WELL (as per Well Permit Cate	gories) BORING			DATE WELL	COMPETED	124 197		
Regulatory Program Requiring Well	PUBLICLY FUNDED ST	ik Mari	· Case I.	D.#N	13014623854			
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)				Tele. #	· .		
WELL CONSTRUCTION	Note: Messure all depths	D4-4-	Donth to	Diameter		Wat /Rating		
Total depth drilled 630 ft. Well finished to 1/1 ft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)		
well linished toit.	Single/Inner Casing	NA	NA	NA	NA	MIL		
Borehole diameter: Top	Middle Casing (for triple cased wells only)				1			
Bottom <u>4.</u> ☐ in. Well was finished: □above grade	Outer Casing (largest diameter)					1		
Hash mounted	Open Hole or Screen (No. Used)							
If finished above grade, casing height (stick bove land surface Ald ft.	Blank Casings (No. Used)							
steel protective casing installed? Yes No	Tail Piece							
Static water level after drilling //// ft.	Gravel Pack				1/			
Water level was measured using	Grout	0	63.0	4.0"	Neat Cement	564 lbs.		
Well was developed for hours at gpm		Grouting Method Ticketta						
Method of development	D	rilling Me	thod	CIUD 12	TAZY			
Was permanent pumping equipment installed	? □Yes □ No	[·	CEO! 00	,			
Pump capacitygpm		Note e	ach depth wh	GEOLOG ere water wa	as encountered in	consolidated		
Pump type: \sqrt{A}	. .	format		Class				
Drilling Fluid 3 Jan 15/10D Type of	of Rig Failing F-7	0-	4 ()	11, 50		S. Lick		
Health and Safety Plan submitted? Yes		6-	10 1	<u> </u>	51/D, Tis	H + SHERS		
Level of Protection used on site (circle one)	- None D C B A	17'-	15'	/ m·	5440 100	o Grave /		
I certify that I have constructed the al	hove referenced wall in	791-	32'	11 1145	(x 5/17, F-V)	PAND TOUS		
accordance with all well permit requir			47	LF SAUD	Avis OKN Sil	FITTEY /AV		
State rules and regul		47	53/	لل طاق تجريز لمريد	FILLSAUD, 7	2 SI Itilian		
Drilling Company JAMES C. ANDERS	AM ASSOC, INC.	- 67	(3/	then The	INICAND to	CONSTRAIN		
Well Driller (Print) JONR WBAJ					5,	0/3		
er's Signature								
Registration No. A1D 1386	Date 9 120 197							

New Jersey Department of Environmental Protection

Bureau of Water Allocation

	WONITORING W	<u>ELL N</u>	LCOND	!s &1	31 5143	2	
	•			nit No			
to the second se			Atlas She	et Coordina	tes <u>31</u> : 1	<u> 951 : 951 </u>	
OWNER IDENTIFICATION - Owner							
Address 1542 BROA City CAMDEN	State	ŊJ			Zip Code		
		•					
WELL LOCATION - If not the same as of County	wner please give address MunicipalityCAMDI	Owner's	s Well No Lo	t No. $\frac{N\omega}{1}$	/ S Block N	0460	
Address 1542 BROADWAY					LL STARTED 7		
TYPE OF WELL (as per Well Permit Cat	egories) BORING		ι	DATE WELL	COMPETED 7	126177	
Regulatory Program Requiring Well	PUBLICLY FUNDED ST	e Mani	Case I.	D.#N.	DØ14623854		
			•				
CONSULTING FIRM/FIELD SUPERVISO	OR (if applicable)				Tele. #	<u> </u>	
WELL CONSTRUCTION Total depth drilledft. Well finished toft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)	
Well finished ton.	Single/Inner Casing	0.3	4.0	4.0"	PYC Flush Fuces	SCH 40)	
Borehole diameter: Top 10 0 in. Bottom 10 0 in.	Middle Casing (for triple cased wells only)				r y Cr v z zu v z		
Bottom <u>10 0</u> in. Well was finished: □ above grade	Outer Casing (largest diameter)						
∏ flush mounted	Open Hole or Screen (No. Used av. 167)	4.0	14.0	4.0"	PUC FT	SH40	
If finished above grade, casing height (stick bove land surface /// ft.	Blank Casings (No. Used)						
steel protective casing installed?	Tail Piece			·		1990 - 1975 - 19	
Static water level after drilling ft.	Gravel Pack		3.0	#00	WELLGAIVEL	- making	
Water level was measured using 11 Sage		3.0	14.2	#/	Neat Cement	∠⊱F lbs.	
Well was developed for hours	Grout	0	2.5		Bentonite	_/©lbs.	
at gpm		Grouting Method Ticknic					
Method of development	D <u>120, 120, 120, 120</u>	rilling Me	thod	<i>H</i>	,	· · · · · · · · · · · · · · · · · · ·	
Was permanent pumping equipment installed	d? ☐Yes ☑ No			GEOLOG	SIC LOG	2245	
Pump capacitygpm					as encountered in	consolidated	
Pump type://		format DEPT		(las	SIFICATION		
Drilling Fluid Nove Type	of Rig Failur F7						
Health and Safety Plan submitted? Yes		0-	2	Dlar this	E.H. SAW, S.H.	11-FSAD	
		2 /~	(0		LA TOS	ACL COL	
Level of Protection used on site (circle one)	None OCBA	2.1			7 7 7	500)	
I certify that I have constructed the a accordance with all well permit requ			/4.2	ri, clá,	and the same of th	TSCB	
State rules and regu	ulations. SON ASSOC. INC.			·		50P	
Drilling Company	DON MARKO. LIV.	_					
Wall Driller (Print) Tow R. U.	RBAN						
der's Signature							
Registration No. 112/386	Date 9 120 197						

DWR-138^M 11/96

New Jersey Department of Environmental Protection Bureau of Water Allocation

<u></u>	31	51433
Dormit No	_	

			•		nit No	n	Ø1 951
OWNER IDENTIFICATION	Owner 1542 BROA	MARTIN AARON, INC.	·	Atlas She	et Coordina	ates31	
Address	CAMDEN	State	N.J			Zip Code	
WELL LOCATION - If not the County LAMDEN Address 1542 Bit TYPE OF WELL (as per We Regulatory Program Requiri	e same as ow	vner please give address Municipality	en Chiy		DATE WELL	Block N Block N ELL STARTED COMPETED JD014623854	126197
CONSULTING FIRM/FIELD	SUPERVISO	PR (if applicable)				Tele. #	
WELL CONSTRUCTION Total depth drilled	<u> </u>	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Well finished to 600	n.	Single/Inner Casing	0.3	50.0	4.0"	PVP FlowTHEAD	4140
Borehole diameter: Top	_ in. in.	Middle Casing (for triple cased wells only)				7	·
Well was finished: ☐ above gra		Outer Casing (largest diameter)				·	
Tilush mou	unted.	Open Hole or Screen (No. Used O. O. Saft	500	600	4.0"	PVC, Ft	SC1140
If finished above grade, casing bove land surface		Blank Casings (No. Used)			······································		11 the
steel protective casing inst		Tail Piece					14 N. 16 N.
Static water level after drilling /	# <u></u> ## ft.	Gravel Pack	40,0	750 6 3 7	#00	Fitten SIND	
Water level was measured usin	g/11/5/72/	Grout	9 <u>5.0</u>	470	· -+ /	Neat Cement Bentonite	/,492 lbs. _90 lbs.
Well was developed for	<u> '</u> hours	Gr	outing Me	ethod	1821/E		
Method of development	11/2 . 20	141/2/W/ D	rilling Met	thod	UDRU	STARY	
Was permanent pumping equip		? ∐Yeś ဩ No			GEOLO	SIC LOG	
Pump capacity/_/_	gpm		1	•		as encountered in o	
Pump type://_/		· 	format	ions.	CLAS	SIFICATION	
Drilling Fluid 255 Tuo	Type o	of Rig Failing F7	0-	10'	Tilly 191	12. M-F SN	VD W/
Health and Safety Plan submit	tted? 🔯 Yes [] No	101-		(14,0°-15)	SATURE	TED TED
Level of Protection used on sit	e (circle one)	None OC B A	221	22'	Silti	Ta. Sily Sil	tsdM-F
I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable State rules and regulations. Drilling Company			27 ! 54 ! Co!	37' 60'	SAND, Copyright LATANGE	White clay 10 " 10 M = 5 M-C SAND TO HIE Clay 70	Sitty Styclay
Well Driller (Print)	2 21.	ead In-			1 1500.	2013	2/
Registration No.	1386	Date 9 1 20 197					

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

			Well Pen	mit No	<u>31</u> <u>51435</u>	
			Atlas She	et Coordina	ates <u>31 : Ø</u>	1 951
OWNER IDENTIFICATION - Owner						
Address 1542 BROA City CAMPEN	DWAY	NT			Zin Codo	
					N	
WELL LOCATION - If not the same as CountyCAMDRN	owner please give address. Municipality CAMDEN	Owner's	s Well No Lo	MW- it No.1	<u> </u>	lo.46Ø
Address 1542 BROADWAY	& Accident					_
TYPE OF WELL (as per Well Permit C Regulatory Program Requiring Well	ategories) BORING	MGMT.	Case I.	DATE WELL D.# NJD	ELL STARTED	18 197
CONSULTING FIRM/FIELD SUPERVI	SOR (if applicable)			· .	Tele. #	
WELL CONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter		Wgt./Rating
Total depth drilled 16.2 ft. Well finished to 16.0 ft.	from land surface	Top (ft.)	Bottom (ft.)		Material	(lbs/sch no.)
	Single/Inner Casing	0.3'	6.0	4.0"	PUC Flish Thesa.	51140
Borehole diameter: Top	Middle Casing (for triple cased wells only)		_			
Well was finished: ☐ above grade	Outer Casing (largest diameter)	, ,				
flush mounted	Open Hole or Screen	10	16.0	40"	PYC FT	501140
If finished above grade, casing height (stick bove land surface ///- ft.	Blank Casings (No. Used)	(-1)	76.0	7.0		5,0
steel protective casing installed? Wes No	Tail Piece					
Static water level after drilling 13.48 ft.	Gravel Pack	3.0	4.0	# 00	FILTERS	
Water level was measured using M-Seps	Grout	4.0	, -	#/	Neat Cement	188 lbs.
Well was developed forhours at		0	3.0		Bentonite	LA_lbs.
Method of development Ailing +	PUM DINA D		ethod thod		18	
Was permanent pumping equipment instal	led? Tyes No					
Pump capacity /V/A gpm	/ (Note e	ach denth wh		GIC LOG ras encountered in	consolidated
Pump type: N/A		format		C 11	as oncountered in	Consolidated
	pe of Rig Filing F7	02/	THEI)	115	J M- C 5AN	1)764148
Health and Safety Plan submitted? Ye	\mathcal{V}	2-14	2 /	100000		8013
		4'-	· c/	<u>'K 14 - 1713</u> 1714 - 1514	F-CLAR	[
Level of Protection used on site (circle one	None O C B A		10'	SAND	To sixt	
I certify that I have constructed the accordance with all well permit red		<i></i>	16.21	450M	Colds SA	VD VD
State rules and regulations. JAMES C. ANDERSON ASSOC. INC.						50113
Drilling Company Tayl 2 1/2	2.1.1	-				
	<u>54 U </u>					
er's Signature	<u></u>					· · · · · · · · · · · · · · · · · · ·
Registration No. MD1386	Date <u> </u>	<u> </u>				

MONITORING WELL RECORD

			W A	ell Permit No tlas Sheet Co	. <u> </u>	- 51436 31:01:951
OWNER IDENTIFICATION - Owner	Martin Aa	ron,	10	<u> </u>		
Address 1542 Broadw	au	*				
city (anden	/		_Sta	ite <u>N.J.</u>		Zip Code
WELL LOCATION - If not the same as	owner please give addre	esş.		Owner's W	ell No <i></i>	nw. 2m
County / Canden	Municipality (4m	den	(O)	nly Lot	No	1 Block No. 460
Address 1542 Bood TYPE OF WELL (as per Well Permit C	way	<u> </u>				d 6126197
TYPE OF WELL (as per Well Permit Consulting Program Requiring Well	blicky Funded	stie n	ngi	nt. Cas	se I.D. #	Dieted <u>6 127197</u> /TD014623854 _Tele.#
WELL CONSTRUCTION		Depth	to	Depth to	Γ	
		Top (f		Bottom (ft.)	Diameter (inches)	Type and Material
Total depth drilled 64 ft.	· ·	(From land surface)		(Inches)		
Well finished to 62 ft.	Inner Casing	0		52	4.0"	PVC, flush thread sun
Borehole diameter: Top	Outer Casing (Not Protective Casing)					
Bottom 8.0 in.	Screen , 015/0+ (Note slot size)	52	Ĺ	62	4.01	PVL, flush thread sch
Vell was finished: above grade	Tail Piece					
Illush mounted	Gravel Pack	50)	64	#15	Hersand
If finished above grade, casing height (stick up) above land	Annular Seal/Grout					7.5.374, 1.
surfaceft. Was steel protective casing installed?	Method of Grouting	tre	mie Drilling		Drilling	method-mudrutary
Yes No	heat	Lemen)- / ・	1034165		
Static water level after drilling14.	13 n. L b	entonil	-GI	EOLOGICL	Te (cob)	es of other geologic logs and/or
Water level was measured using					geop	hysical logs should be attached.)
Well was developed for 1.01 hours			e	r11.5° Brj	oun silt,	HUCCS med/Fine Sord
Method of development bailing	4 pumping			، فورد: -/ ادار اسماد	Clay len	ise/med sand, small
ل Was permanent pumping equipment in	stalled? Yes	No	11	.) - 44 - 6 10	aJel	i sey irica saria i sicali
Pump capacity N/A gpm	,		2	2-30 61	av silt.	traces medliorsesam
Pump type: N/A				. · · · ·	edies 2	traus med/larsesam
Drilling Method			3	0-40° Sun	d-gray-	codere wism./med gra
Drilling Fluid <u>bentonite</u> mid T	vpe of Rig Failing t	-7	40	5-50' Bro	intgray	sit with card from
Name of Driller Jon R. VCk			50	51' Red	TROWN	med/coarse sind larger
·" ·	Yes No					1 course, mod-fine gi
Level of Protection used on site (circle	•	A		~	orangi ki	1/BADUA
N.J. Registration No. MD1386	-				V	
Name of Drilling Company		750c.				-
I certify that I have drilled the above rules and regulations.	e-referenced well in ac	بر کر cordanc	e w	ith all well pe	ermit requi	rements and applicable State
and rogulations.	A 1 1		_			•

New Jersey Department of Environmental Protection

•			Well Pen	mit No	<u> 31</u> - <u>51428</u>	i
			Atlas She	et Coordina	ites <u>31</u> ::@	1 951
OWNER IDENTIFICATION - Owner						
Address NE BROADWAY	Z & JACKSON ST.	NI T			Zip Code	
City <u>CAMDEN</u>	State	NU	<u> </u>		Zip Code	
WELL LOCATION - If not the same as ow CountyCAMDEN	ner please give addressMunicipalityCAMDE	Owner's	s Well No Lo	MW :	3 S Block N	0. <u>463</u>
Address NE FROADWAY & JACKS	SON ST.					
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gories) MONITORIN TUBLICLY FUNDED SIT	G EMGMT.			ELL STARTED 7 COMPETED 7 DØ14623854	17177
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)		:		Tele. #	
WELL CONSTRUCTION Total depth drilled/6.2ft. Well finished to/6.0ft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	1 ' '	iviateriai	Wgt./Rating (lbs/sch no.)
ven mished to it.	Single/Inner Casing	0.3	6.0	410"	PVCFTUITHISAD	80140
Borehole diameter: Top	Middle Casing (for triple cased wells only)				7, 12, 11, 2	
Well was finished: above grade	Outer Casing (largest diameter)			N.		
If finished above grade, casing height (stick	Open Hole or Screen (No. Used 0.0/5/4)	60	16.0	40"	PVCFT	S1140
above grade, casing rieight (stick) above land surface // ft. steel protective casing installed?	Blank Casings (No: Used)				• ′	
Yes No	Tail Piece					
Static water level after drilling 11.65 ft.	Gravel Pack	3.0	11.0	#00	F.Its, SIND	·
Water level was measured using M Sape Well was developed for/ O hours	Grout	U	. 3.0		Neat Cement Bentonite	<u> </u>
atgpm	, Gi	routing M	ethod		TIERNIE	
Method of development				15H		
Was permanent pumping equipment installed				GEOLO(GIC LOG	
Pump capacity/\frac{1}{A} gpm	, ,	Note ea	ach depth wh		as encountered in o	consolidated .
Pump type:		format	ions. $H(F7)$	Clas	SIFICATOO	
Drilling Fluid _ ハンゾと Type o	of Rig Falling F7	0		F.11, c	14 /2 U SOY	D, CINDERS
Health and Safety Plan submitted? Yes] No	6	(0	106 61	KIND M-F	5,4,1177
Level of Protection used on site (circle one)	None OC B A	10'-	10	S/11/2	S.l. 5:14. 11-	(SAND
I certify that I have constructed the all accordance with all well permit requir	ements and appعافلت	162' 72.012, 10235.				
State rules and regulations. Drilling Company JAMES C. ANDERSON ASSOC. INC.				<u> </u>		
Well Driller (Print) 12012	31					
er's Signature						
Registration No. 110 1386	Date 9 120 197	_		<u> </u>		

New Jersey Department of Environmental Protection

			Well Pen	mit No	31 . 31423	·		
			Atlas She	et Coordina	ites <u>31</u> : £	<u> 951 : 951 </u>		
OWNER IDENTIFICATION - Owner								
Address NE BROADWAY	& JACKSON ST.	NJ			Zip Code	· · · · · · · · · · · · · · · · · · ·		
City CAMDEN	State	1907			Zip Code			
WELL LOCATION - If not the same as ow County CAMDEN	Municipality CAMDE	Owner's	s Well No Lo	MU 3 t No. 3	Block N	0.460		
Address NE BROADWAY & JACKS	SON ST.				ELL STARTED			
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gories) MONITORIN PUBLICLY FUNDED SIT	C E MGMT.	Case I.	DATE WELL	COMPETED	1197		
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)				Tele. #			
WELL CONSTRUCTION Total depth drilledft.	Note: Measure all depths from land surface	Depth to Top (ft.)		Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)		
Well finished toft.	Single/Inner Casing	2,3	47.0	4.0"	Preflython	50140		
Borehole diameter: Top rn. Bottom in.	Middle Casing (for triple cased wells only)	·						
Well was finished: ☐ above grade	Outer Casing (largest diameter)	·						
flush mounted	Open Hole or Screen (No. Used ¿.c/Sk/T)	47.0	57,0	4.0"	PVC FT	Sc1140		
If finished above grade, casing height (stick above land surface V/1 ft.	Blank Casings (No. Used)				,	,		
steel protective casing installed?	Tail Piece							
Static water level after drilling 15.36 ft.	Gravel Pack	44	75 56	#00	FITTER SAUD	·		
Water level was measured using 14-5-pe	Grout	45.0		#!	Neat Cement	990 lbs.		
Well was developed for/ O hours at gpm		routing M	. 44.0	<u> </u>	Bentonite ८	<u> うひ</u> lbs.		
Method of development 24, 100 1 Play		rilling Me	thod	UD RO	TARY			
Was permanent pumping equipment installed				GEOLO	SIC LOG			
Pump capacity gpm					as encountered in	consolidated		
Pump type:	<u> </u>	format	ions. (4 (P7)	19-51	FICATION			
Drilling Fluid Anti- fluid Type o	f Rig Fileling Fi7	0'-	7'	11, 2	har chiden	s, sollgarve		
Health and Safety Plan submitted? 🛛 Yes 🗀] No	71.	E.,	125y 1	I-F SAIVI	sufsit		
Level of Protection used on site (circle one)	None DC B A	15"-	15'	14 /A	150- COA.	SE 31 UD		
I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable State rules and regulations. Drilling Company Well Driller (Print)			20'-40' DEN-MSAAD IN SHIP MENGLANSIS 40'-50' HAN C-SANDI MICH CLANSIS 50'-55' GRAVEN - MED-LUNGE 55'- FRED MARK SA, SILT TIC 194 56'- = 1 MARKET SA, SILT TIC 194					
	Date 9 120 197		·					

New Jersey Department of Environmental Protection

•			-	et Coordina	:::	
OWNER IDENTIFICATION - Owner						
Address BROADWAY & CAMDEN	MOHGAN 10 HOX 129	MIT			Zip Code	
WELL LOCATION - If not the same as ow CountyCAMDEN	ner please give address Municipality CAMDI	Owner's				
Address <u>BROADWAY & MORGAN</u>					LL STARTED 7	
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gories) <u>MONITORIN</u> PUBLICLY FUNDED SI	ig Te mgmt		DATE WELL	COMPETED 7.	108197
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)				Tele. #	
WELL CONSTRUCTION Total depth drilled/ 4.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Well finished toπ.	Single/Inner Casing	0,3	4.0	4.0"	240 Flore Tox	5 761140
Borehole diameter: Top	Middle Casing (for triple cased wells only)					
Well was finished: ☐ above grade	Outer Casing (largest diameter)					
I flush mounted	Open Hole or Screen (No. Used ⊘.☆/Տեմ)	4.6	14.0	40"	PIC FI	50440
If finished above grade, casing height (stick above land surface /// ft.	Blank Casings (No. Used)					
steel protective casing installed? Yes No	Tail Piece					
Static water level after drilling 6.0 ft.	Gravel Pack	= 5	3 17.2	# 60	6-20021	
Water level was measured using Alberta	Grout	<u></u> ن	2.5	<i>F</i> -7	Neat Cement Bentonite	185 lbs. 10 lbs.
Well was developed for/ hours at/ gpm	` Gr	1		- 50 11 S	Demonite	<u> </u>
Method of development		rilling Met	thod	115A		
Was permanent pumping equipment installed				GEOLOG	SIC LOG	
Pump capacitygpm					as encountered in	consolidated
Pump type:		format		C/12:	SIFICATION	/
Drilling Fluid 1/0 15 Type o	of Rig Failing F.7	<u> 8-</u>	/	C= 9,15	5 57 DUE 1	D rateursel
Health and Safety Plan submitted?] No _	-6	6-		92/10-51	1+ Teston
Level of Protection used on site (circle one)	None D C B A	1	142	<u></u>	<u> </u>	Trup
I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable State rules and regulations. Drilling Company						
Well Driller (Print)	BAN					
ler's Signature						
Registration No. MO1356	Date 9 120 197					

New Jersey Department of Environmental Protection

•			Well Per	mit No	. 04000	
			Atlas She	et Coordina	ates31; Ø	1 951
WNER IDENTIFICATION - Owner			<u> </u>			
Address 1542 BRO			NJ .		7:- O-d-	
	State				Zip Code	
WELL LOCATION - If not the same as ov	vner please give address.	Owner	s Well No	MW	55 (MW7	<u>s)</u>
County <u>CAMDEN</u>	MunicipalityCAM	DHON CIT	<u>Y</u> Lo	t No <u>1</u>	Block N	0
Address1542_BROADWAY TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	egories) MONITOR	ING		DATE WELL	ELL STARTED // COMPETED // NJDØ14623854	1/2/18
CONSULTING FIRM/FIELD SUPERVISO					Tele. #	
WELL CONSTRUCTION					T	T
Total depth drilledft. Well finished toft.	Note: Measure all depths from land surface	Depth to Top (ft.)		Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
yveir infished toit.	Single/Inner Casing	143	G	4,0	Colling POST	2441)
Borehole diameter: Topin. Bottomin.	Middle Casing (for triple cased wells only)					
Bottom in. Well was finished: above grade	Outer Casing (largest diameter)				1. 1	
Ilush mounted	Open Hole or Screen (No. Used 2,010)5/57	6	16	4.0	PACIAL	Se 1140
If finished above grade, casing height (stick up) above land surfaceft.	Blank Casings (No. Used)		7 (2)	7.5	7 + C , / . / .	7
steel protective casing installed? Yes No	Tail Piece		·			<u> </u>
Static water level after drilling <u></u> 4.6.	Gravel Pack	4	16.0	20	willengered	
Water level was measured using	Grout Conversion	0	.2		Neat Cement	<u>é</u> ≠ lbs.
Well was developed for7 5 hours			4.		Bentonite	_30 lbs.
Method of development			ethod thod	HSA HSA		
Method of development	2 🗆 🖂			71		
1.1	i. Tiles Mino			GEOLO(
Pump capacitygpm				ere water w	as encountered in	consolidated
Pump type:////	<u> </u>	format DEPT	II (FT)	Classi	FICATION	
Drilling FluidType o	of Rig <u>(1/4) (3-5-5-5</u>	0-	F		IUM NEZ brick	
Health and Safety Plan submitted? 🖸 Yes [] No		101 11	TAL CHI		FSAUL
Level of Protection used on site (circle one)	None (D) C B A	10'-	12' CR	6-216-11 1 12.00	SULCAU TO	1.5.1+- Clay
I certify that I have constructed the a	bove referenced well in			ou Ja sice	82/ C 14'	
accordance with all well permit requi		15.5	16 0	ans So	T11000 4	25 T
State rules and regu JAMES C.	lations. . ANDERSON ASSOC. II	∗ C.				2012
Drilling Company		-				
Well Driller (Print) Jos Chan	J				· · · · · · · · · · · · · · · · · · ·	·
er's Signature	·	-				
Registration No. 1919 3 86	Date 9 / 19 198				•	

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

			Well Pen	mit No. $\underline{-3}$	1 - 54504			
			Atlas She	et Coordina	ates31 : Ø1	951		
WNER IDENTIFICATION - Owner	MARTIN AARON INC.		, mas one	or occiding				
Address 1542 R	POATWAY							
CityCAMDEN	State		NJ		Zip Code			
WELL LOCATION - If not the same a			147 II 1 1	MILL	1 5 /ORIG.	.)		
WELL LOCATION - If not the same a	as owner please give address. Municipality CAMD	Owner עיווים גאם	s Well No	t No. 1	Dlock N	2 ASO		
County CAMDEN Address 1542 BROADWAY	Municipality Onto	DAY OLLI	LC	1110. <u> </u>	DIOCK IN	0		
Address 1042 Diocharts				DATE WE	ELL STARTED <u>/</u>	<u>, 12 , 98</u>		
TYPE OF WELL (as per Well Permit	Categories)MONITORI	NG	[DATE WELL	L COMPETED/C	1 12 1 98		
Regulatory Program Requiring Well	PUBLICLY FUNDED SI	TE MAMI	· Case I.	D.#N	JDØ14623854			
CONSULTING FIRM/FIELD SUPER	VISOR (if applicable)				Tele. #			
WELL CONSTRUCTION	At	T_ :	Do-alb As	I D	1	May /Dating		
Total depth drilledft. Well finished toft.	Note: Measure all depths from land surface	Depth to Top (ft.)		Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)		
	Single/Inner Casing	0.3	5.9	4.0	PVC, FT. CISINE	51140		
Borehole diameter: Top / 6. () in. Bottom / 6. () in.	Middle Casing (for triple cased wells only)				<u>.</u>			
Bottom _/ () in. Well was finished: ☐ above grade	Outer Casing (largest diameter)					,		
[3] flush mounted	Open Hole or Screen (No. Used O.C/C)S/cT	5.9	15.9	4.0	SCKEEN PUC, FT.	SCH 40		
If finished above grade, casing height (stinate above land surface ft.	Blank Casings (No. Used)							
steel protective casing installed? Yes No	Tail Piece							
Static water level after drilling 13.8 ft.	Gravel Pack	3.9.		44.00	11/21/6 . 1			
Water level was measured using MSeq	a e	<i>J. 1.</i>	160	#0	Neat Cement	_64 lbs.		
Well was developed for hou	Grout	1.9	3.9		Bentonite	Jos.		
at gpm			ethod	TREMI				
Method of development	_	_	thod	HSA				
Was permanent pumping equipment inst					·			
- 114	pm				GIC LOG			
1 ?	· ·	Note each depth where water was encountered in consolidated formations.						
Pump type:		DEPTH(FT) CLASSIFICATION						
Drilling Fluid	ype of Rig CMS-55	0' Tilly woon, Built stee of BRIVM-						
Health and Safety Plan submitted?	Yes No	8'- 9 FEXYALC SAND WET						
Level of Protection used on site (circle one) None (D) C B A			91-10' was but sitte Clay					
2010, 01.1 (01.00.01) 2002 01/ 01/0 (01.00.00	no, none by o b n	10'-	Zi.	cy-will	3.11- VE SAV	DV-USCOLUET		
I certify that I have constructed t			<u>C. 12.</u>	N Enw	12 x 5:11 (14)	Diy		
accordance with all well permit r State rules and						1010		
JAMES	regulations. C. ANDERSON ASSOC. INC							
Drilling Company		-						
Well Driller (Print)/ パーパー	JR13AJ	<u> </u>						
\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim	16	<u> </u> -						
er's Signature	dika							
Registration No. 11 D 13 86	Date 10 125 148							

New Jersey Department of Environmental Protection Bureau of Water Allocation

MONI	TORING	WELL	RECORD

	MONITORING W	<u>ELL N</u>	Well Perr	mit No3	1 54505			
OWNER IDENTIFICATION - Owner	MARTIN AARON INC.		Atlas She	et Coordina	ates31 ; Ø1			
Address 1542 Bh	CASIMAI		N. I		Zia Cada			
AddressCAMDEN CityCAMDEN	State			······	Zip Code			
WELL LOCATION - If not the same as CountyCAMDEN Address1542 BR ADMAY	s owner please give address Municipality	Owner:	s Well No Lo	<u>Μω 7</u> it No	S (MW-105 Block N) lo48Ø		
TYPE OF WELL (as per Well Permit (Regulatory Program Requiring Well _	MONITORII Categories) CIA FUNDID SI	NG PE-DISMP	Case I.	DATE WELL N. D.#	ELL STARTED /C COMPETED /C JDØ14623854	j 13 j 98 N j 13 j 98		
CONSULTING FIRM/FIELD SUPERV	ISOR (if applicable)		·	· · · · · · · · · · · · · · · · · · ·	Tele. #			
WELL CONSTRUCTION Total depth drilled	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)		
Well tinished to $\frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi}$.	Single/Inner Casing	ં.3	6.0	4.0	CASING PUCIFT	SCH 40		
Borehole diameter: Top / O in. Bottom / O in.	Middle Casing (for triple cased wells only)							
Well was finished: ☐ above grade	Outer Casing (largest diameter)							
[2] flush mounted	Open Hole or Screen (No. Used 0.010) 5/oT	6.0	16.0'	40	SCREEN, PUC, FT	SCH 417		
If finished above grade, casing height (stice above land surface	Blank Casings (No. Used)				J. W. C. N. J. V. C. J. V.	30,70		
steel protective casing installed? Yes No	Tail Piece				· ·			
Static water level after drilling 12.65 ft.	Gravel Pack	40	16.65	#0	WEILGHAVEL			
Water level was measured using <i>丹 Sco</i> p	4	40	16.0	77 0	Neat Cement	64:0 lbs.		
Well was developed for hour	S Grout BENTONITE	2	4		Bentonite	<u>30</u> lbs.		
at< // gpm		Grouting Method TREMIS						
Method of development Party 9	D	rilling Me	thod	115A				
Was permanent pumping equipment insta				CEOL O	210100	····		
Pump capacitygp	m	Note ea	ach depth wh		GIC LOG as encountered in a	consolidated		
Pump type: N/A		Note each depth where water was encountered in consolidated formations.						
		DEPTH (FT) (LASSIFICATION) - 6" CONTR						
Drilling Fluid <u>小りつと</u> Ty	-	6"-		19, , 6.	Willack Sit	wijBreicks		
Health and Safety Plan submitted? ☑ Yes ☐ No		87-		500 6000		'		
Level of Protection used on site (circle one) None (D) C B A		8'-11' GAUSKN SILLY F SAUTS 11'-12 GAUSSN SILLY Chy						
I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable			16' 6	SILIN BAL	ل 4 = 1 - إثير ل ا € 2 - إثير أن	WET DB		
Drilling Company	egulations:son assoc. Inc	-						
Well Driller (Print) Jan R C	ARRAN							
ar's Signature <u>var 12 2/</u>	1							
Registration No 1386	Date 10 / 25/98							

New Jersey Department of Environmental Protection

			Well Pen	mit No. $\frac{3}{2}$	1 54566	
WNER IDENTIFICATION - Owner	MARTIN AARON INC.		Atlas She	et Coordina	21 (11	951
Address	ADWAY		NT.			
CityCAMDEN	State		NJ		Zip Code	
WELL LOCATION - If not the same as o CAMDEN CAMDEN Address	wner please give address Municipality	ey CIIY	s Well No Lo	ot No	85 (AGGS) Block N ELL STARTED 1) 0. <u>460</u> 113 192
TYPE OF WELL (as per Well Permit Cat Regulatory Program Requiring Well	egories) PUBLICLY FUNDED SI	NG TE MEMT	Cașe I.	D.#	COMPETED/ C JDØ14623854	113198
CONSULTING FIRM/FIELD SUPERVIS	OR (if applicable)				Tele. #	
WELL CONSTRUCTION Total depth drilledft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Well finished toft.	Single/Inner Casing	0.3	4.0	4.0"	CASING, PAK, IT	5(440)
Borehole diameter: 4 Top <u>/○ ○</u> in. Bottom /② ○ in.	Middle Casing (for triple cased wells only)		7.0		1 13 10 12 1 1 1 1	<u> </u>
Well was finished: ☐ above grade	Outer Casing (largest diameter)					
flush mounted	Open Hole or Screen (No. Used ひのし)	4.0	14.0	4.0	Scaled PUCFT	C ((41)
f finished above grade, casing height (stick up) above land surface 4 ft.	Blank Casings (No. Used)	7.0	77.0	7.0	Jineco, / YC P/	
steel protective casing installed? Yes No	Tail Piece					
Static water level after drilling 5.7 ft.	Gravel Pack	3.0	14.0	#0	WELLGARY.	
Nater level was measured using M- S- sps	L	5.0	2	A C	Neat Cement	<u>64</u> lbs.
Well was developed for fours	Grout COUCLETE BENTONTE	2.0	3:0		Bentonite	20 lbs.
At A /- O _ gpm Method of development		routing Me rilling Met	ethod hod	T, E.E.A.	7	
Was permanent pumping equipment installe				0501.00	20100	
Pump capacity <u>NA</u> gpm		Note ea	ch depth wh		SIC LOG as encountered in c	onsolidated
Pump type:	 .	formati			SIFICATION	
Drilling Fluid Type	of Rig <u>CM18-55</u>	0-	1-	7=1/1, 200		15 Baick
Health and Safety Plan submitted? XYes	□ No .	6 - MY Fin ORCHIC MITERALL				
Level of Protection used on site (circle one) None O C B A			9.2 MY A ME GRANTE SOUD 9.2' - 10' GRUNE-F SAND			
I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable			10-11' DR MAY ORES VICE - 15 12 10 17 11-12' GEN SILL Chy WIVE SI TONS 13'- 14 NEW MAT PORES - 14 F SIL			Truses
	PANDERSON ASSOC. INC	1/	14	~ / / / / /	- 1. WKES COTY	500
Drilling Company		-				
Well Driller (Print) ブッッパリル						
er's Signature						
Registration No. 101286	_ Date _ <u>/ ン </u>			··		

New Jersey Department of Environmental Protection

		MONITORING W	<u>ELL K</u>	Well Per	mit No3	1 54507	
OWNER IDENTIFICATION - Own	ner	MARTIN AARON INC.				ates31 <u>Ø1</u>	951
		LWAY		NT -			
Address 1542 City CAMI	UEN	State		De)		Zip Code	
WELL LOCATION - If not the sam County CAMDEN Address 1542 BROADWA	ne as ow	vner please give address Municipality	EN CLIA	s Well No Lo	MW9 ot No1	5 (NW 55) Block N	o. <u>460</u>
TYPE OF WELL (as per Well Per Regulatory Program Requiring W	•	MATTYVIT	NC.	_	DATE WE	ELL STARTED <u>/O</u> COMPETED <u>/</u> 4 JDØ14623854	1 13 198
CONSULTING FIRM/FIELD SUP	ERVISC	OR (if applicable)				Tele. #	
WELL CONSTRUCTION Total depth drilled 245	ft.	Note: Measure all depths from land surface	Depth to Top (ft.)		Diameter (inches)		Wgt./Rating (lbs/sch no.)
Well finished to 240 ft.	•	Single/Inner Casing	0.3	14.0	4.0"	PASING PYC,FT	5440
Borehole diameter: Top /0.0 in. Bottom /0.0 in.		Middle Casing (for triple cased wells only)			·		
Well was finished: above grade		Outer Casing (largest diameter)				· · · · · · · · · · · · · · · · · · ·	
flush mounted finished above grade, casing height	t (ctick	Open Hole or Screen (No. Used 0.010) 5/67	14.0	240	40"	Scare N. PVC, FT	\$1140
above land surface Aff ft.		Blank Casings (No. Used)					
steel protective casing installed? Xes \(\subseteq \text{No} \)	?	Tail Piece					
Static water level after drilling 15.2	_ ft.	Gravel Pack	12 1	24.5	#0	WellGLAVEL'	
Water level was measured using M	Supe	- CONCRETE	13.0	2	71 0	Neat Cement	_64 lbs.
Well was developed for	hours	Grout CONCRETE BENTWITE	2	13.0		Bentonite	/ 642 lbs.
at gpm		Gı	outing Me	ethod	TREM	18	
Method of development <u>purip</u>	1.49	D	rilling Met	thod	HSA		
Method of development <u> </u>	installed	l? ∐Yes ⊠ No			05010	210100	· · · · · · · · · · · · · · · · · · ·
Pump capacity	gpm	• .	Note ea	ach deoth wh		GIC LOG as encountered in a	consolidated
Pump type:	•		format	ions.	- 1		
			DEP	H(FT)	((A 5	SIFICATION	COMME
Drilling Fluid NONE		of Rig CM18:55	6"-	6	Draxus	d+ F-MGIAV	Els. Th. Birks
Health and Safety Plan submitted?			6'-	8 /	3 <u>-150 (1</u>	/ -	+ Silt Frank
Level of Protection used on site (circle one) None (D) C B A			85 - 9.2' Dr. RAN Clayer Sitt wickers.				
I certify that I have constructe	ed the a	bove referenced well in	121-	100 6	1859 G.	wyell Fir E Se	1-13
accordance with all well pern	nit requi	rements and applicable	121-1		340 F : 19	chy will on	/
State rules a	nd regu	ANCERSON ASSOC. INC	1/200	24.5	describer	7 / Y	-T
Drilling Company	_				<u> </u>		FOB
Well Driller (Print)	Vicia	J			· · · · · · · · · · · · · · · · · · ·		
er's Signature <u>مرمور</u>	M						
Registration No. 1380	6	Date 10125196	L			<u> </u>	

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

<u>UKU</u>	31	54529
Vell Permit No	01	- 04000

	MARTIN AARON INC.		Atlas She	et Coordina	ates31 . Ø1	951		
Address 1542 BRO	ALWAY		,		 			
City CAMDIEN	State		NJ		Zip Code			
WELL LOCATION - If not the same as of County CAMDEN Address 1542 BROADWAY	wner please give address MunicipalityAPIL	AEN CLIT	s Well No Lo	110 °	9 D (NW 5D) Block N	lo. 460		
TYPE OF WELL (as per Well Permit Cat Regulatory Program Requiring Well	MONITORI EGOTIES) CLY FUNDED SI	NG TE MALI	Case I.	DATE WELL ND.#	L COMPETED /	0175198		
CONSULTING FIRM/FIELD SUPERVISOR	OR (if applicable)				Tele. #	······································		
WELL CONSTRUCTION Total depth drilled	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)		Iviaterial	Wgt./Rating (lbs/sch no.)		
well linished toit.	Single/Inner Casing	0.3	39.5	4.0"	Cosning, PYC, FT	SHO		
Borehole diameter: Top in. Bottom in.	Middle Casing (for triple cased wells only)				<i>J'</i>			
Well was finished: ☐ above grade	Outer Casing (largest diameter)				,	·		
If finished above grade, casing height (stick	Open Hole or Screen (No. Used ひいい) SOT	3 9 5	54.5	4.0"	SMEEJ PRIFT	5CH 40		
above land surface 1/4 ft.	Blank Casings (No. Used)							
Yes No	Tail Piece				1.0	.:		
Static water level after drilling 15.4 ft.	Gravel Pack	37.5	550	#0	WELL GEAVE!			
Water level was measured using $M-S_{\frac{1}{2}}$.	Grout COLCALTE				Neat Cément	lbs.		
Well was developed for/ hours at	-BATRITE		- 41d		Bentonite	25 lbs.		
	_				ROTALY			
Was permanent pumping equipment installed								
Pump capacity	_ ~	GEOLOGIC LOG						
1.4	·	Note each depth where water was encountered in consolidated formations.						
Pump type:		DSPTH (FT) (MSSIFICATION						
Drilling Fluid 3, To. T. Type	of Rig FAILOUSE 4	B- 10 DEBLU MISS SITULOEDS						
Health and Safety Plan submitted? Xes	☐ No	12-	12'	6281-	ハードコルカ	, , , , , , , , , , , , , , , , , , ,		
Level of Protection used on site (circle one)	None DC B A	131-	77 / 30 mi	BINF STONED		5011, 54,00		
I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable State rules and regulations ASSOC. IN		40'-	- 40' - 50'	6.800 V 6.054 K DTO	THU OF The	IF GLAVELS D. Tocky biet Linchy kussis		
Drilling Company	1	-		Lastre of E	Sept try Constant	300		
Well Driller (Print) Ton R Ukl	AJ					<u> </u>		
er's Signature	<u> </u>							
Registration No. 1101236	Date 10147198							

DWR-138 M

New Jersey Department of Environmental Protection Bureau of Water Allocation

11/90	MONITORING W	ELL R	ECODD	mit No	54508	
WNER IDENTIFICATION - Owner	MARTIN AARON INC.				ates <u>31</u> Ø	1 951
	JWAY					
AddressCAMILIEN	State		NJ		Zip Code	
WELL LOCATION - If not the same as ow Carlinen County	ner please give address Municipality CAME	AEM CITY	ş Weil No Y Lo	<i>MW/</i> t No1	DS (ML) IS) Block N	lo46Ø
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well				DATE WELL D.#	ELL STARTED <u>/O</u> L COMPETED <u>/ O</u> L/DØ14623854	>1 <u>14 198</u>
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)				Tele. #	
WELL CONSTRUCTION Total depth drilled	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Vell finished to/ & ft.	Single/Inner Casing	0,3'	8,0	4.0"	CASINA, PUCFT	SUH 40
Borehole diameter: Top <u>/o. ()</u> in. Bottom <u>/o. ()</u> in.	Middle Casing (for triple cased wells only)				12/14/17	
Vell was finished: ☐ above grade	Outer Casing (largest diameter)					
☐ flush mounted f finished above grade, casing height (stick	Open Hole or Screen (No. Used 0,010)5loT	8.0	18	4.0"	Scien MEFT	51140
above land surfaceft. steel protective casing installed?	Blank Casings (No. Used)		·			
Yes No	Tail Piece			!	. :	
Static water level after drilling /3.4 ft.	Gravel Pack	7.0	18	#0	Well Gravel	
Vater level was measured using <u>からい</u> Vell was developed for <u>しし</u> hours	Grout CONCRETE BENTONTE	9 2	⊋ 7		Neat Cement Bentonite	(4 lbs. 90 lbs.
at gpm			ethod	أ العرة لاسمية	 	
Method of development <u>paragraphy</u>			thod			
Was permanent pumping equipment installed						
Pump capacity / / // gpm	- -	Note e	sch donth wh		GIC LOG vas encountered in o	alidated
Pump type: $\frac{N/A}{N}$		format	tions.		SIFICATION	: DOMSUMAREA
. ,	of Rig <u>CM2-55</u>	0-	TH/FT)	111	HULF YISHOST COM	Fillw
Health and Safety Plan submitted? Yes		1	ξ'	CADECT PER	ricks ASHES SHOP	,
Level of Protection used on site (circle one)	_		7.7	Tirly	Stit St	ORGANICS.
I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable State rules and regulations.			141		ENCY C-FS, ANCIS TOGON GREY SAID	BRUSUD WETEID
Drilling Company	LINUXIANA FIRMONO FOR	-				00
Well Driller (Print) <u>ヿ゚ゕゖ゚ ゟ゚ゟ゚ゖ゚゚゚゚゚゚゚</u>						
er's Signature						

Registration No. 101386

_ Date <u>1つ 1えら (183</u>

New Jersey Department of Environmental Protection Bureau of Water Allocation

MON	ITC	DRI	NG	WEL	L RE	COR

4					31 01	· -	
OWNER IDENTIFICATION - Owner	MARTIN AARON THC.	;			tes:	:	
Address 1542 BROAD	HAY						
Address 1542 BROAD City CANDEN	State		LИ	ı	Zip Code		
WELL LOCATION - If not the same as ow County CAMDEN	ner please give address. Municipality CAMD						
Address1542 BROADWAY / MW	111~S						
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gories) MONITORI	NG	DAT Case I.I	DATE WEL E WELL CO D.#	L STARTED 12) OMPLETED 12)	1 24 1 1 7 2 2 1 2 7	
CONSULTING FIRM/FIELD SUPERVISO	3						
WELL CONSTRUCTION							
Total depth drilled 22 ft. Well finished to 22 ft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	I Waterial	Wgt./Rating (lbs/sch no.)	
	Single/Inner Casing	0.3	12	4.0	CasiNG, PYC, Fil	3440	
Borehole diameter: Top / 0 in. Bottom / O in.	Middle Casing (for triple cased wells only)	;					
Well was finished: ☐ above grade	Outer Casing (largest diameter)	<i>t.</i>					
flush mounted	Open Hole or Screen (No. Used 0, 010) 5/6T	12	22	4.0	SERSEN- PVC FINSHTILLIAD	SCH40	
bove land surface 14/4 ft.	Blank Casings (No. Used)						
was steel protective casing installed? ☐Xes ☐ No	Tail Piece						
Static water level after drilling 13.2 ft.36	Gravel Pack	8	70 22	, č.00	WEILERAVE!		
Water level was measured using A Scape Well was developed for	Grout	0	8	· · · · · · · · · · · · · · · · · · ·	Neat Cement Bentonite	300 lbs. 16 lbs.	
at gpm	G	Grouting Method PRESSURE TREMIS					
Method of development SURGE + DUR	_	Drilling Method Hollow STEM AUGER					
Was permanent pumping equipment installed	? ∐Yes ⊠No			<u> </u>	310.1.00	· 	
Pump capacitygpm	<u> </u>	GEOLOGIC LOG Note each depth where water was encountered in consolidated					
Pump type: N/A		formations. DEPTH(FT) / Classification					
Drilling Fluid NONE Type o	f Rig FAILING FIF	0-1' Country Engl 841					
Health and Safety Plan submitted? 💆 Yes] No		- 	12.4.6 14.	15 \$. W. T. V. T.	Didic/Fill	
Level of Protection used on site (circle one)	None (D) C B A	g '		- 100 m	+ C sam F-A1		
I certify that I have constructed the all accordance with all well permit requir State rules and regul	ements and applicable		2.5		Days were	13'	
Drilling Company JAMES C. A	ANDERSON ASSOC. INC				· · ·		
* Driller (Print) Print)	1 KIZAU	-					
Driller's Signature	1. in -						
Registration No. MP 86	Date / 107 100		.		· · · · · · · · · · · · · · · · · · ·		

DWR-138 M 11/98

New Jersey Department of Environmental Protection

Bureau of Water Allocation MONITORING WELL RECORD

		•	Well Perr	nit No. $\frac{31}{2}$	<u> - 57273</u>		
		•	Atlas She	et Coordina	31 01 ites:		
OWNER IDENTIFICATION - Owner	HARTIN AAROH, INC	<u>.</u>					
Address 1542 BROAD	₩AY						
City CAMDEN	State		4.]		Zip Code	·	
WELL LOCATION - If not the same as ow	ner please give addressMunicipalityCAMDE	Owner's	s Well No	MW-	//M	io 460	
County CAMDEN Address 1542 BROADWAY / MW	Municipality <u>Christ</u>	;		L 140	DIOCK IN	0. 400	
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gories)MONITORIA		DAT	E WELL C	L STARTED <u>/2</u> OMPLETED <u>/2</u>	127 197	
CONSULTING FIRM/FIELD SUPERVISO	· · · · · · · · · · · · · · · · · · ·			Tele. #			
WELL CONSTRUCTION	Notes Administration		Danah da	Diameter.	r	Wgt./Rating	
Total depth drilled 58 ft. Well finished to 58 ft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	(lbs/sch no.)	
	Single/Inner Casing	0.3	48	4.0	CASING PVC. F.T	SH40	
Borehole diameter: Top 8.0 in. Bottom 8.0 in.	Middle Casing (for triple cased wells only)	`b					
Boπom in. Well was finished: □above grade	Outer Casing (largest diameter)					·	
flush mounted	Open Hole or Screen (No. Used 000) StoT	48	58	4.0	SCREEN PUC, F.T.	SEHTO	
If finished above grade, casing height (stick bove land surface ///-/ft.	Blank Casings (No. Used)				 . . .		
Was steel protective casing installed? ☐ No	Tail Piece	: •	·				
Static water level after drilling 14.02 ft.34	Gravel Pack	44	460 58	500,	GRAVE	·	
Water level was measured using M-Scope	Grout	0	44	<u> </u>	Neat Cement	9/1.8 lbs.	
Well was developed for hours at gpm	G			7: 456 126	Bentonite T2 Season	48.5 lbs.	
Method of development SULGS S FUN		Prilling Method AUD ROTARY					
Was permanent pumping equipment installed	'	:		CEOL O	2101.00	 	
Pump capacitygpm		GEOLOGIC LOG Note each depth where water was encountered in consolidated					
Pump type:		format		•	LEICATION		
Drilling Fluid PS TOUTS Type o	f Rig FAILING F.7	0-1' (MARCH + GRASS BAMAST					
Health and Safety Plan submitted? Yes] No				DEPUS /FIM	G1AV < 15.4	
Level of Protection used on site (circle one)	None DC B A	8'_	. P.		REY F.M SA	ID TA.	
I certify that I have constructed the ab accordance with all well permit requir State rules and regul	ements and applicable	32'-	32 SAVE 11 - 14.02 1 32'- TANHGRE, FAISAUN T SING SIM FSAVE 1822 TO				
Drilling Company JAMES C. A	NDERSON ASSOC. INC.	55:	, =	44-1762		40 OVER	
Driller (Print) Jou R	<u> Union</u>		58 5,	11, 6.1a	y	O 44	
Driller's Signature	<u> </u>						
Registration No. M1386	Date <u> 107 100</u>	_ L _					

300435

STATE OF NEW JERSEY

DEPARTMENT OF ENVIRONMENTAL PROTECTION &

Mail to

NJDEP au Water Allocation

MONITORING WELL PERMIT

VALID	ONIV	AFTER .	ADDRO	VAL DV	THED	FD
VALID	ONLI	Ariek i	AFFRO	VAL DI	INED	.E.F.

100 NJ 08625-0426	
Owner Martin Aaron, Inc.	Driller JCA AssociAtes, I.C.
Address 1542 Broadway	Address 1256 N. Church Street
CAMBON, N.J. 08104	Morrestown, NJ 08057
Name of FacilitySAMC_	Diameter of Well(s) 4 Inches Proposed Depth of Well(s) 15 +0 70 Feet
Address	# of Wells Applied for (max. 10) Will pumping equipment be installed? YES \(\square\) NO \(\mathbb{Z} \)
·	Type of Well (see reverse) Mountaine CPM
LOCATIO	N OF WELL(S)
Lot # Block # Municipality County Camden Camden	Draw sketch of well(s) nearest roads, buildings, etc. with marked distances in feet. Each well MUST be labeled with a name and/or number on the sketch.
State Atlas Map No. 31	Everett St.
39 ° 56 ' NW- KS NW-	35' 70' 45' 75' MW- 95 MW- 70' MW- 85 Tackson St.
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWIN THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CERCLA (Superfund) Site	This Space for Approval Stamp WELL PERMIT APPROVED N.J.D.E.P.
☐ RCRA Site	SEP 3 0 1998 BUREAU OF WATER ALLOCATION
FOR	or uncased borehole.
In compliance with N. I.S. A. 58:44-14, application is made for a permit to	drill a well as described above

DWR-133M (8/95)

NJDEP

Mail to

STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION TRENTON, NJ

MONITORING WELL PERMIT

MW 3M	3	1	51	429
Permit No.	<u>3</u>	1	51	430

£ 26	ater Allocation	VALID ONLY AFTER AP	PROVAL BY THE D.E.P.	OORD#: タ/	01.951
Owner _ Address	Hoverson, Thomas	08104 comes E and Jackson St	Driller Address 707 Add L Diameter of Well(s) # of Wells Applied for (max. 10) Type of Well (see reverse) Driller Address 707 Add L Address 707 Address	Pleasant Valle aux NJ C Inches Proposed Depth of Well(s) Will pumping equit be installed? Y If Yes, gi capacity	SOC. 2NC, 1. ALX 75 Fee pment ES NO.83 ive pump cumulative GPI
State Atlas	460 Canden	Camben	and the second s	(s) nearest roads, but in feet. Each well M and/or number on the	UST be labeled
\$ \frac{1}{8} \frac{1}{5} \frac{1}{7}	31 ° 56 '		180 180 180 180 180 180 180 180 180 180	235 W 30 St	N ↑
THE APPLI Spill Site ISRA Site CERCLA RCRA Si Undergro Operation Pretreatr Water an	te A (Superfund) Site ite ound Storage Tank Site onal Ground Water Permit Site ment and Residuals Site and Hazardous Waste Enforcement Case upply Aquifer Test Observation Well	CARE BEING INSTALLED:	ASE I.D. Number	WELL PER N. MAY BUREAU OF W.	MIT APPROVED J.D.E.P. 2 0 1997 ATER ALLOCATION
/SE	SE SIDE FOR IMPORTANT PROVISIONS AND REGU			IE.	

Signature of Driller _______ 300436

In compliance with N.J.S.A. 58:4A-14, application is made for a permit to drill a well as described above.

SERIAL # 5/600 **W**R-133M (8/95)

Mail to

DEPARTMENT OF ENVIRONMENTAL PROTECTION

MW 45 3 15 1438

NJDEP Burnau Water Allocation

MONITORING WELL PERMIT

26 Non, NJ 08625-0426	VALID ONLY AFTER A	PPROVAL BY THE D.E.P.	OORD#: 31.01.951
Owner Touth Jussy	Port Corp.	Driller Jaws	C. Anderson Association
	Morgan Potox 17		Pleasant Willey has
Camden N			· Laurel NJ 08054
Name of Facility South Jew		Diameter 8 4	Proposed 20
•	and Morgan Pobo	121 # of Wells	Will pumping equipment
	NS 08104	Type of Well	be installed? YES NO.X
		(see reverse) Mon.	rosting capacity cumulative GPM
Lot # Block # Municipality	County	OF WELL(S)	
Lot # 15 Block #458 Municipality Cam	den Camben	marked distances	(s) nearest roads, buildings, etc. with in feet. Each well MUST be labeled and/or number on the sketch.
State Atlas Map No			
39 . 36 .		Everet	
1 2 3	\	150	4
- 9		the 155'-	12
S X X		mu45	1
2 5 0 0		12	1
2			M
7 8 1 9		Sbcksan St	
		Dick 200 34	N1
39 054	ϵ		
FOR MONITORING WELLS, RECOVERY WELLS THE APPLICANT. PLEASE INDICATE WHY THE		IG MUST BE COMPLETED BY	This Space for Approval Stamp
☐ Spill Site			
☐ ISRA Site ☐ CERCLA (Superfund) Site			
☐ RCRA Site		CASE I.D. Number	
Underground Storage Tank Site	1 VIX	0146623654	WELL PERMIT APPROVED N.J.D.E.P.
 ☐ Operational Ground Water Permit Site ☐ Pretreatment and Residuals Site 	1 <u></u>		
☐ Water and Hazardous Waste Enforcement Case		*****	MAY 2 0 1997
Water Supply Aquifer Test Observation Well Other (explain)	A A CONTRACT	· · · i	
			BUREAU OF WATER ALLOCATION
P.E.P. For monitoring purposes only	to the conditions attached. (see next pa	ge) The well(s) may no or uncased boreho	t be completed with more than 25 feet of total screen
SEREVERSE SIDE FOR IMPORTANT PROVISIONS AND			
In compliance with N.J.S.A. 58:4A-14, appl	ication is made for a permit to d	rill a well as described above.	•

300437

300438

DWR-133M (8/95)

Mail to

STATE OF NEW JERSEY

DEPARTMENT OF ENVIRONMENTAL PROTECTION (

NJDEP Birrau Water Allocation

on. NJ 08625-0426

MONITORING WELL PERMIT

VATIO	ONIY	FTFR	APPROVAL	RY	THF I	FP
$v_{\Lambda L I L U}$	UNLIA	IT I CK	ALL NO VAL	D I	IIILL	<i></i>

	91	
COORD #:	2/	.01.951

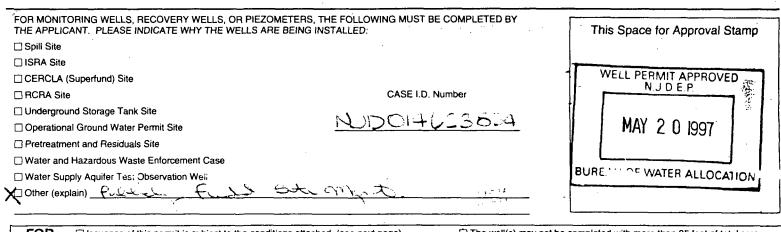
1011,110 00020 0 120	COURD#. // •// //
Owner Martin Anton, Inc.	Driller James C. Andreson Assor, IAC,
Address 1542 Broadway	Address 907 Pleasant Ubiley Ave
Cumber, NJ 08104	Mr. Laure NJ 08054
Ma I · A	
1 Cu - 1 . 1	of Well(s) Inches Depth of Well(s) Feet
Address 1542 Broadway	# of Wells Applied for (max. 10) Will pumping equipment be installed? YES \(\square\) NO.(\(\square\)
Cancen NJ 08/04	Type of Well (see reverse) If Yes, give pump capacity cumulative GPM
LOCATION	OF WELL(S)
Lot # 1 Block # 460 Municipality County State Atlas Map No. 31	Draw sketch of well(s) nearest roads, buildings, etc. with marked distances in feet. Each well MUST be labeled with a name and/or number on the sketch.
39° 36° 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Jackson St N
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site I ISRA Site	This Space for Approval Stamp
☐ CERCLA (Superfund) Site ☐ RCRA Site CA	WELL PERMIT APPROVED N.J.D.E.P.
☐ Underground Storage Tank Site	
C) Operational drouble Water Formit Oile	MAY 2 0 1997
☐ Pretreatment and Residuals Site ☐ Water and Hazardous Waste Enforcement Case	
☐ Water Supply Aquifer Test Observation Well	BUREAU OF WATER ALLOCATION
Other (explain)	BONCAG OF THE STATE OF THE STAT
FOR Issuance of this permit is subject to the conditions attached. (see next page	or uncased borehole.
REVERSE SIDE FOR IMPORTANT PROVISIONS AND REGULATIONS PERTAINING TO THIS PERM In compliance with N.J.S.A. 58:4A-14, application is made for a permit to dri	
Date May 15, 1997 Signature of Driller	Jim Duffy Registration No. m1224
Date Signature of Driller _	Megistration No.

DWR-133M (8/95)

NJDEP

Mail to

P:--au Water Allocation


STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION TRENTON, NJ

MONITORING WELL PERMIT

VALID ONLY AFTER APPROVAL BY THE D.E.P.

6 "VA. Sition, NJ 08625-0426	JD ONLY AFTER APPROVAL BY T	HE D.E.P. COORD	o#: 31 .01	.951	
owner Martin Aaron In.	Driller	James C. And	erson Assoc.	Inc.	
Address 1542 Floadway	Address _	907 Plasar	1 Valley Ko	<u> </u>	
Camden NJ 081	04	Mª Lausei	NJ 08054	<i>[.</i>	
Name of Facility Most - Auson 7	Diameter of Well(s)		Proposed Depth of Well(s)	75 F	66
Address 1542 Broadway Camber, NJ 08104	# of Wells Applied for (r	max. 10) Blanket	Will pumping equipment be installed? YES		
	Type of Well		1 If Von aire are		_

(see reverse) capacity cumulative GPM DOJ in LOCATION OF WELL(S) Municipality Lot # Block # County Draw sketch of well(s) nearest roads, buildings, etc. with Camben marked distances in feet. Each well MUST be labeled with a name and/or number on the sketch. State Atlas Map No. 2 3 0 Ō Ĉ. 0 1001 FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY This Space for Approval Stamp THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: □ Spill Site ☐ ISRA Site WELL PERMIT APPROVED ☐ CERCLA (Superfund) Site N.J D E.P. ☐ RCRA Site CASE I.D. Number ☐ Underground Storage Tank Site MAY 2 0 1997 ☐ Operational Ground Water Permit Site

The well(s) may not be completed with more than 25 feet of total screen **FOR** ☐ Issuance of this permit is subject to the conditions attached. (see next page) D.E.P. ☐ For monitoring purposes only or uncased borehole. JSE REVERSE SIDE FOR IMPORTANT PROVISIONS AND REGULATIONS PERTAINING TO THIS PERMIT.

th compliance with N.J.S.A. 58:4A-14, application is made for a permit to drill a well as described above.

300439

Signature of Driller

Registration N

SERIAL # 007968

* DWR-133M (10/96)

NJDEP

Mail to

au Water Allocation

STATE OF NEW JERSEY

DEPARTMENT OF ENVIRONMENTAL PROTECTION TRENTON, NJ

MWIIS						
MWIIM	3	}	 7	2	7	_

MONITORING WELL PERMIT

VALID ONLY AFTER APPROVAL BY THE D.E.P.

00000	7/	11	251

Address sq Well purpling equipment squared purpling equipment squared purpling equipment squared purpling equipment squared purpling equipment squared purpling equipment squared	nton, NJ 08625-0426	COO	ORD #: 3/.6/.95/
Address 54 Address 74 Address 75	Owner Martin HATELL ILC	Driller JCH ASSCC	atty in
Name of Facility Address Status Address Status Board Wells For Wells Address Status County Type of Well Applied for (max. 10) Type of Well Type	`	Address 1257 12 (11111 1 54
Address Science Scienc		,	f s
Address Science Scienc	v	Diameter (1)	
Applied for (max. 10)			
County C	Address		
LOCATION OF WELL(S) Draw sketch of well(s) nearest roads, buildings, etc. with marked distances in feet. Each well MUST be labeled with a name and/or number on the sketch. State Atlas Map No. 3 State Atl		Type of Well	If Yes, give pump
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE POLLOWING MUST BE COMPLETED BY THE APPLICANT. PLEASE INDICATE WHY THE WELLS ANE BEING INSTALLED. Split Sile Split Sile CASE I.D. Number CASE I.D. Number Water sand Ground Water Permit Site Perteralment and Residuals Size Water and Hazardous Waste Enforcement Case Water Supply Aquier Test Observation Well Cother (explain) Chief (explain) Chief (explain) Chief (explain) Cother (explain) Co	LOCATION		1.71
State Atlas Map No. 3 This Space for Approval State Policies May No. 3 State Atlas Map No. 3 This Space for Approval State Policies May No. 3 State Atlas Map No. 3 This Space for Approval State Policies May No. 3 State Atlas Map No. 3 This Space for Approval State Policies Atlas Map No. 3 State Atlas Map No. 3 This Space for Approval State Policies Atlas Map No. 3 State Atlas Map No. 3 State Atlas Map No. 3 This Space for Approval State Policies Atlas Map No. 3 State Atlas Map No. 3 State Atlas Map No. 3 State Atlas Map No. 3 This Space for Approval State Policies Atlas Map No. 3 State Atlas Map	Lot # Block # Municipality County	• •	nearest roads, buildings, etc. with
State Atlas Map No. 31 34° 55. No. 34° 55. Street	1 460 Carneles Carneles	marked distances in	feet. Each well MUST be labeled
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT, PLEASE MOICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site CERCLA (Superfund) Site CERCLA (Superfund) Site COPERITOR OF MONITORING WELLS ARE SITE OF MONITORING MUST BE COMPLETED BY THE APPLICANT, PLEASE MOICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site CERCLA (Superfund) Site CASE I.D. Number Underground Storage Tank Site Coperational Ground Water Permit Site Coperational Ground Water Permit Site Coperational Ground Water Permit Site Chercles Site Coperational Ground Water Permit Site Chercles Site Chercles Site Coperational Ground Water Permit Site Chercles Site Coperational Ground Water Permit Site Chercles Site Coperational Ground Water Permit Site Chercles Site Coperational Ground Water Permit Site Chercles Site Coperational Ground Water Permit Site Chercles Site Coperational Ground Water Permit Site Chercles Site Coperational Ground Water Permit Site Chercles Site Coperational Ground Water Permit Site Chercles Site Coperational Ground Water Permit Site Chercles Site Coperational Ground Water Permit Site Chercles Site	ு 1	with a name and	d/or number on the sketch.
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT, PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site Spill Site Spill Site CASE I.D. Number CASE I.D. Number Underground Storage Tank Site Operational Ground Water Permit Site Pretreament and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquirer Test Observation Well Other (explain) TADDLE P BUREAU OF WATER ALLOCATION TADDLE P SE Stering The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.	State Atlas Wap No.		
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT, PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site Spill Site Spill Site CASE I.D. Number CASE I.D. Number Underground Storage Tank Site Operational Ground Water Permit Site Pretreament and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquirer Test Observation Well Other (explain) TADDLE P BUREAU OF WATER ALLOCATION TADDLE P SE Stering The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.	34° 56		
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT, PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site Spill Site Spill Site CASE I.D. Number CASE I.D. Number Underground Storage Tank Site Operational Ground Water Permit Site Pretreament and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquirer Test Observation Well Other (explain) TADDLE P BUREAU OF WATER ALLOCATION TADDLE P SE Stering The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.		1 . 1	
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT, PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CERCIA (Superfund) Site CRAS Site CRAS Site CHARA SITE CHARA SITE		T T	
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT, PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CERCIA (Superfund) Site CRAS Site CRAS Site CHARA SITE CHARA SITE		2	
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT, PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CERCLA (Superfund) Site RORA Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Text Observation. Well Other (explain) Tubulc Funded Site Mant Other (explain) Tubulc Funded Site Mant DEC 2 1999 BUREAU OF WATER ALLOCATION The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.			
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CASE LD. Number Underground Storage Tank Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain) COther (explain) Issuance of this permit is subject to the conditions attached. (see next page) The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.		ELSON Street	
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CASE LD. Number Underground Storage Tank Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain) COther (explain) Issuance of this permit is subject to the conditions attached. (see next page) The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.	511		
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT, PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site I SRA Site CERCLA (Superfund) Site Underground Storage Tank Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water Supply Aquifer Test Observation Well Other (explain) Tubuc Turcled Site Mgart FOR Issuance of this permit is subject to the conditions attached. (see next page) The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.	K-10' .+	ł .	
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT, PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CERCLA (Superfund) Site Operational Ground Storage Tank Site Operational Ground Water Permit Site Operational Ground Water Permit Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation, Well & Other (explain) Turbuc Funded Site Site Mg At Other (explain) Turbuc Funded Site Site Mg At FOR Issuance of this permit is subject to the conditions attached. (see next page) The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.		7	•
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CERCLA (Superfund) Site RCRA Site Operational Ground Water Permit Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain)	mw-ns mw-11	.47	
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CERCLA (Superfund) Site RCRA Site Operational Ground Water Permit Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain)			•
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CERCLA (Superfund) Site RCRA Site Operational Ground Water Permit Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain)			RIT
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Site ISRA Site CERCLA (Superfund) Site RCRA Site Operational Ground Water Permit Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain)		1	1 N 1
This Space for Approval Stamp Spill Site ISRA Site CERCLA (Superfund) Site Underground Storage Tank Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain)	34° 54'		
This Space for Approval Stamp Spill Site ISRA Site CERCLA (Superfund) Site Underground Storage Tank Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain)	FOR MONITORING WELLS DECOVERY WELLS OR DISTONETERS THE FOLLOWING M	ALIST DE COMPLETED BY	
ISRA Site CERCLA (Superfund) Site CASE I.D. Number WELL PERIAIT APPROVED N.J.D.E.P. DEC 2 1999		IOST DE COMIT EL TES BI	This Space for Approval Stamp
CERCLA (Superfund) Site RCRA Site Underground Storage Tank Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain) Tubuc Functed Site Mgm + The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.	☐ Spill Site		Ĭ.
□ RCRA Site □ Underground Storage Tank Site □ Operational Ground Water Permit Site □ Pretreatment and Residuals Site □ Water and Hazardous Waste Enforcement Case □ Water Supply Aquifer Test Observation Well ❷ Other (explain)		-	
Underground Storage Tank Site Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain) Tubulc Funded Site Mant BUREAU OF WATER ALLOCATION The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.		PASE LD Number	WELL PERMIT APPROVED
Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well Other (explain) Tubuc Funded Site Mgm + BUREAU OF WATER ALLOCATION The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.	a nonzone	AGE I.D. Number	MUDER
□ Pretreatment and Residuals Site □ Water and Hazardous Waste Enforcement Case □ Water Supply Aquifer Test Observation Well ☑ Other (explain)	1712	623854	DEC 01000
Water Supply Aquifer Test Observation Well Other (explain) Public Functed Site Man + Bureau OF WATER ALLOCATION The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.	·		DEC 21999
FOR Issuance of this permit is subject to the conditions attached. (see next page) E.P. For monitoring purposes only SE	☐ Water and Hazardous Waste Enforcement Case	•	All All
FOR Issuance of this permit is subject to the conditions attached. (see next page) E.P. For monitoring purposes only SE	☐ Water Supply Aquifer Test Observation Well		BUREAU OF WATER ALLOCATION
E.P. For monitoring purposes only SE	d'Other (explain) Tublic Funded Sie Mant		
E.P. For monitoring purposes only SE	FOR Discusses of this parmit is subject to the conditions of which discusses	The well'el mount in	completed with more than 25 to 1.
SE D'	1011		Completed with more than 25 feet of total screen
STATE OF THE TOP INDOCTANT PROVICIONS AND RECUI ATIONS PROTEINING TO THE DEPART	SE D'		
In compliance with N.J.S.A. 58:4A-14, application is made for a permit to drill a well as described above.	In compliance with N.J.S.A. 58:4A-14, application is made for a permit to drill		

300440

DW/R-020 8/97 New Jersey Department of Environmental Protection Water Supply Element - Bureau of Water Allocation

WELL ABANDONMENT REPORT

<u> </u>	DAIADOLL	AITH HIT OILL	
MAIL TO: Bureau of Water Allocation		WELL F	PERMIT # <u>31-514メラ</u> of well sealed
PO Box 426		DATE WELL CEALED	
Trenton, NJ 08625-0426	<u></u>	DATE WELL SEALED	11/16/10
PROPERTY OWNER THOMAS E	HOVENS	SON	
ADDRESS NE BRUADWAY	\$ JACKSON	IST-, CAMDEN, N	J
ADDRESS NE BROADWAY WELL LOCATION NE BROADWAY Street & No., Towns	HJACKSON ST	Ti, CAMDEN TWP.,	CAMBEN COUNTY
MW3M_	#3	#	460
Well No.	Lot	t No.	Block No.
JSE OF WELL PRIOR TO ABANDONMENT	MONITORIA	16	
REASON FOR ABANDONMENT:	10 LONGER A	JEEDED	
WAS A NEW WELL DRILLED?	Ø′no	PERMIT # OF NEW	WELL N/A
	Cross-section		ce and relations of well site to
OTAL DEPTH OF WELL 57.6' DIAMETER 40''	of sealed well		
CASING LENGTH 47'	- Gamp SEALUR	nearest roads, buildings, etc.	
SCREEN LENGTH 10'	1		
NUMBER OF CASINGS/	- 500		1.1
MATERIAL USED TO DECOMMISSION WELL:	5 - 5	180 Mg	5
	12	2 180 MU	U3M E
	1		
Lbs. of Bentonite	44-		15
Lbs. of Sand/Gtravel (none if well is contaminated)	3 2 2		•
(none ii weii is contaminated)	D &	JACKSO	N STREET
ORMATION: Consolidated	57 57		• (NECC)
Unconsolidated			<u>↑</u> N
To permit adequate grouting, the casing sho be removed. Pressure grouting is the only a		but ungrouted liner pipes or a	ny other obstructions must
WAS CASING LEFT IN PLACE? 💢 YES	□ NO CASINO	G MATERIAL: SCH40	PVC Flush Juist
WERE OTHER OBSTRUCTIONS LEFT IN V	WELL? □YES X NO	WHAT WERE THE OBST	RUCTIONS: MA
F "YES", AUTHORIZATION GRANTED BY_		ON	
Was an alternative decommissioning method		P Official) (NO	(Date)
F "YES", authorization granted by		ON	
certify that this well was sealed in acco	(NJDEP Official		(Date)
Tow R USBA	TOA,	C. 7:9-9.1 et seq. TNC , L. N. CHURCH ST. SUITE	5
Performing Work (Print or Type)		Address MODEESTOUN, NO	Mailing Date
Name of NJ Certified Well Sealer	Josef	21sta	MP1386
	Signature of NJ Performing Wor	Certified Well Sealer k	Registration #
COPIES: White - Water Allocatio	n Yellow - Owr	ner Pink - Health Dept.	Goldenrod - Driller

DW**A-**020 8/97 New Jersey Department of Environmental Protection Water Supply Element - Bureau of Water Allocation

WELL ABANDONMENT REPORT

			- , - , (- ;
MAIL TO: Bureau of Water Allocation PO Box 426			of well sealed
Trenton, NJ 08625-0426		DATE WELL SEALED 1//	6/98
PROPERTY OWNER THOMAS E. H	OVENSON		
ADDRESS NE BROADWAY AND J	TACK SON ST.	, CAMDEN, NJ OSIO	94
WELL LOCATION <u>NE BROADWAY AND</u> Street & No., Township,	Jacksav S7 County	•	,
MW-35	#.3	#	460
Well No.	Lot	No.	Block No.
USE OF WELL PRIOR TO ABANDONMENT:	Mon. Tarino	£	
REASON FOR ABANDONMENT: No 10	ONE. EX NEE	DED	
WAS A NEW WELL DRILLED? DYES	KNO	PERMIT # OF NEW WE	
TOTAL DEPTH OF WELL DIAMETER CASING LENGTH SCREEN LENGTH NUMBER OF CASINGS MATERIAL USED TO DECOMMISSION WELL: 12	pted method.	MATERIAL: SCIT 40 PVC	other obstructions must
IF "YES", AUTHORIZATION GRANTED BY	AUDED	O#:-:al\	(Date)
Was an alternative decommissioning method us			(Date)
IF "YES", authorization granted by		ON	
I certify that this well was sealed in accordance ToNR UKBAU	(NJDEP Official) nce with N.J.A.C		(Date)
Performing Work (Print or Type)	1 2	Address MUDRESTOWN, NIONS	7 Mailing Date
Name of NJ Certified Well Sealer	Signature of NJ C	Certified Well Sealer	MDI386 Registration#
COPIES: White - Water Allocation	Yellow - Owne		Goldenrod - Driller

	II Martin aaron	NSTALLATION			MW-115
ROJECT:	104		MONITORING WELL NU		M#-115
RILLING COMPANY:	JOHN URBAN		WELL PERMIT NUMBER		12/27/99
SPECTOR:	BILL STENGER	······································	DATE OF WELL INSTA DATE OF WELL DEVEL		12/29/00
BELGTOR.			DATE OF WELL DEVEL	LOPMENT	
GEOLOGIC ELEVATION UNITS (M.S.L.) FR	DEPTH OR HEIGHT OM GROUND SURFACES	TOP	OF FLUSH-MOUNT COVER		
		/ w	LL CAP W/LOCK		21"X20"
			DIMENSIONS OF CONCR	ETE PAD	
	· · · Summ		GROUI	ND SURFACE	
6.09	ے الب		×1×1×1×1×1		
			•		
	\ 8		TYPE OF SURFACE S	SEAL	CONCRETE
	المنا				4*
			- I.D. OF RISER TYPE OF RISER		PVC
			THE OF RISER		
			TYPE OF BACKFILL		GROUT/POURE
			EMPLACEMENT METH	100	
			DODCHOLE DIAMETER	ı	8"
			BOREHOLE DIAMETER		
	NA (4-	TOP OF FINE SAND		
)		- Dec es sus sue		NA
	8		TYPE OF FINE SAND		
	<u> </u>		TOP OF SAND PACK	ζ ,	
		}			
	}	== -	- TOP OF SCREEN		
) ==	[-])			
		덬 (D. OF SCREEN		4"
	\ 	-[-] (;	SIZE OF SCREEN OPENING		.010
	([5]		TYPE OF SCREEN		PVC
	\		SIZE OF FILTER SAND		# 0
		<u> </u>	EMPLACEMENT METHOD	,	POURED
	21"				
	21'		BOTTOM OF SCREEN BOTTOM OF WELL		
	21'		BOTTOM OF BOREHOLE		
WATER LEVEL MEASUREME	NTS		· · · · · · · · · · · · · · · · · · ·		
DATE					
DEPTH FROM TOP OF INNER CASING					
ELEVATION					

NO L ROBERT KIMBALL & ASSOCIATES	MONITORING W		
	INSTALLATION S		
PROJECT: MARTIN AARI	ON RI/RAA	MONITORING WELL NUMBER .	MW-11M
DRILLING COMPANY:JAMES C. AN	IDERSON ASSOCIATES, INC.	WELL PERMIT NUMBER	
DRILLER: JOHN URBAN		DATE OF WELL INSTALLATION	12/28/99
INSPECTOR: WILLIAM E. S	TENGER	DATE OF WELL DEVELOPMENT	12/29/00
GEOLOGIC ELEVATION DEPTH OR HEI UNITS (M.S.L.) FROM GROUND SU	GHT RFACES TOP OF	FLUSH-MOUNT COVER	
	WELL	CAP w/LOCK	
		DIMENSIONS OF CONCRETE PAD	24"_DIA
		GROUND SURFACE	SOIL
6.19		TOP OF CASING	
FILL MATERIAL	() . 2	- TYPE OF SURFACE SEAL	_CONCRETE_
1.0'			<u> 4.0" </u>
	7 71 7 7 1	D. OF RISER YPE OF RISER	PVC
		- TYPE OF BACKFILL	GROUT
		EMPLACEMENT METHOD	POURED
SAND			0.0*
		- BOREHOLE DIAMETER	8.0"
43'		- TOP OF FINE SAND	
			#00 MORIE
		TYPE OF FINE SAND	#OO MORIL
44'	}	- TOP OF SAND PACK	•
		•	
		TOP OF SCREEN	
			4.0"
GRAVEL LAYER	/ [1 /	OF SCREEN OF SCREEN OPENING	0.01
0000	\ [1	OF SCREEN OPENING	PVC
) []		
·		SIZE OF FILTER SAND EMPLACEMENT METHOD	#1 MORIE POURED
	()	EMPLAGEMENT METHOD	FOUND
56'		BOTTON OF SCREEN	
		BOTTOM OF WELL	
56'	,	BOTTOM OF BOREHOLE	
WATER LEVEL MEASUREMENTS			
DATE			
DEPTH FROM TOP OF			
WELL CASING (FEET)			
ELEVATION			1

Well Number	MW11M		Date of Installation		_	12/28/99		
Site Geologist	A. E. Sciulli		Date of Development			12/29/99		
Static Water Level From Top of Casing	Before Development	ft.	24 Hrs. After Development	_ft.	Date	12/29/00		
Depth to Sediment	Before Development N/A	ft.	24 Hrs. After Development N/A	ft.	Date	N/A		
Depth to Well Bottom	Before Development 55.6	ft.	24 Hrs. After Development 56	ft.	Date	12/29/00		
Height of Casing		^·		_**				 -
Above Ground Surface	FLUSH MOUNT	ft.			•			
Quantity of Mud/Water	Lost During Drilling		0	_gal.				
	Removed Prior to Well Inser	rtion	0	gal.				
	Lost During Displacement		. 0	gal.				
•	Added During Filter Pack Pl	acement	0	gal.				
a) Water Column Height	42	ft.	b) Well Radius			2.0		— in.
c) Screen Length	10.0	ft.	d) Borehole Radius			4.0		in.
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]	27.3	gal.	Total Quantity (5 Equivalent Volumes)	TQV		535.5		gal
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]	79.8	gal.	Total Quantity (5 Times Losses)	TQL		0		gal
Total Development Volume Require	d = TQV+TQL						· · · · · · · · · · · · · · · · · · ·	gal
Type of Pump	Centrifugal	_	Total Quantity of Water Remo	oved			535.5	gal
Average Pump Rate	120	gal/hr.	Time Required				4.45	hrs
Est. Recharge Rate		gal/hr.	Water Quality		clear			_
рН	Conductivity		Temperature (Degrees F)					
Remarks				_				_
		···						
			-					

Well Number	MW1M		Date of Installation	6/26/9	97		
Site Geologist	A. E. Sciulli		Date of Development	7/03/9	97		_
Static Water Level From Top of Casing	Before Development 13.70	ft.	24 Hrs. After Development	_ft.	Date 7/03/97		
Depth to Sediment	Before Development N/A	_ft.	24 Hrs. After Development	ft.	Date		
Depth to Well Bottom	Before Development	_ft.	24 Hrs. After Development	ft.	Date 7/03/97		
Height of Casing Above Ground Surface	FLUSH MOUNT	_ft.					
Quantity of Mud/Water	Lost During Drilling		0	_ gal.			
	Removed Prior to Well Insert	tion	0	gal.			
	Lost During Displacement		0	_gal.			
	Added During Filter Pack Pla	cement	0	_gal.			
a) Water Column Height	46.3	_ft.	b) Well Radius		2.0		in.
c) Screen Length	10.0	_ft.	d) Borehole Radius		4.0		in.
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]	32.4	_gal.	Total Quantity (5 Equivalent Volumes)	TQV	601.9		gal.
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]	87.98	gal.	Total Quantity (5 Times Losses)	TQL	0		gal
Total Development Volume Require	ed = TQV+TQL		602				gal.
Type of Pump	Centrifugal	- .	Total Quantity of Water Rem	oved		560	gal.
Average Pump Rate	960	gal/hr.	Time Required			.58	hrs.
Est. Recharge Rate	+960	_gal/hr.	Water Quality		clear	·	 .
pH 7.1	Conductivity 440	_	Temperature (Degrees F)	_	·		
Remarks: Developm	nent water pumped to holding to	ank.					
-							

Well Development Record

Well Number	MW2M		Date of Installation	6/27/9	7		
Site Geologist	A. E. Sciulli		Date of Development	7/03/9	7		
Static Water Level From Top of Casing	Before Development	ft.	24 Hrs. After Development	_ft.	Date 7/03/97		
Depth to Sediment	Before Development	ft.	24 Hrs. After Development	_ft.	Date		
Depth to Well Bottom	Before Development	_ft.	24 Hrs. After Development 62	ft.	Date 7/03/97	,	
Height of Casing Above Ground Surface	FLUSH MOUNT	_ft.					
Quantity of Mud/Water	Lost During Drilling		0	_ gal.			
	Removed Prior to Well Insert	ion	0	_gal.			
	Lost During Displacement		0	_gal.			
	Added During Filter Pack Pla	cement	0	gal.			
a) Water Column Height	48	ft.	b) Well Radius		2.0		in.
c) Screen Length	10.0	_ft.	d) Borehole Radius		4.0		in.
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]	33.6	_gal.	Total Quantity (5 Equivalent Volumes)	TQV	490	-	gal
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]	91.2	_gal.	Total Quantity (5 Times Losses)	TQL	0		gal
Total Development Volume Require	d = TQV+TQL		490				gal
Type of Pump	Centrifugal	-	Total Quantity of Water Remo	oved		435	gal
Average Pump Rate	870	_gal/hr.	Time Required			.50	hrs
Est. Recharge Rate	+870	_gal/hr.	Water Quality		clear	•	
рН 6.9	Conductivity 430	_	Temperature (Degrees F)	_			
Remarks: Developm	ent water pumped to holding to	ınk.					
						·	

96-0123/RI/Devrec2

Well Number	MW3M		Date of Installation	7/02/9	97		
Site Geologist .	A. E. Sciulli		Date of Development	7/03/9	97		
Static Water Level From Top of Casing	Before Development	ft.	24 Hrs. After Development	_ ft.	Date 7/03/97		
Depth to Sediment	Before Development	ft.	24 Hrs. After Development	_ft.	Date		
Depth to Well Bottom	Béfore Development	ft.	24 Hrs. After Development 57	_ ft.	Date 7/03/97		
Height of Casing Above Ground Surface	FLUSH MOUNT	ft.					
Quantity of Mud/Water	Lost During Drilling		0	_gal.			
·	Removed Prior to Well Inser	tion	0	gal.			
	Lost During Displacement		0	_ gal.			
	Added During Filter Pack Pl	acement	0	_gal.			
a) Water Column Height	40.05	_ ft.	b) Well Radius		2.0		in.
c) Screen Length	10.0	ft.	d) Borehole Radius		4.0		in.
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]	28	gal.	Total Quantity (5 Equivalent Volumes)	TQV	520.7		gal
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]	76.13	gal.	Total Quantity (5 Times Losses)	TQL	0		gal
Total Development Volume Require	ed = TQV+TQL		520		,		gal
Type of Pump	Centrifugal	_ _	Total Quantity of Water Rem	oved	·	210	gal
Average Pump Rate	420	gal/hr.	Time Required			.5	hrs
Est. Recharge Rate	+420	gal/hr.	Water Quality		clear		
рН 6.6	Conductivity 440	_	Temperature (Degrees F)	_			
Remarks: Developm	nent water pumped to holding	tank.	•				
				·	- <u> </u>		

Well Number	MW1S		Date of Installation	7/08/9)7		
Site Geologist	A. E. Sciulli	· .	Date of Development	7/11/9)7		
Static Water Level	Before Development		24 Hrs. After Development		Date		
From Top of Casing	9.08	ft.		— ft.	7/11/97		
	Before Development		24 Hrs. After Development		Date		
Depth to Sediment	N/A	ft.		ft.			
Depth to Well	Before Development		24 Hrs. After Development		Date		
Bottom	14	ft.	14	_ ft.	7/11/97		
W. 1. 10 1						•	
Height of Casing Above Ground Surface	FLUSH MOUNT	ft.					
Above Ground Surface	120011110011	_**					
Quantity of Mud/Water	Lost During Drilling	•	0	_gai.			
	Removed Prior to Well Inser	tion	0	_ gal.			
	Lost During Displacement		0	_gal.			
	Added During Filter Pack Pl	acement	0	gal.		•	
				_ •			
a) Water Column Height	4.92	— ^{ft.}	b) Well Radius		2.0		in.
c) Screen Length	10.0	_ft.	d) Borehole Radius		4.0		in.
Quantity of Fluid Standing in Well			Total Quantity			,	
[12*a*pi*b^2*0.0043]	3.44	_gal.	(5 Equivalent Volumes)	TQV	64 .		ga_
Quantity of Fluid in Annulus			Total Quantity				
[12*c*pi(d^2-b^2)*0.0043*0.30]	9.35	gal.	(5 Times Losses)	TQL	0		ga
Total Development Volume Require	d = TOV+TOL	_	64				ga
Total Development Totalio require				***		· · · · · · · · · · · · · · · · · · ·	
Type of Pump	Centrifugal	_	Total Quantity of Water Rem	oved		15	ga_
Average Pump Rate	30	gal/hr.	Time Required			.5	hr
Est. Recharge Rate	+30	gal/hr.	Water Quality		clear		
pН	Conductivity		Temperature (Degrees F)				
7.3	880	_	76	_			
Remarks: Developm	nent water pumped to holding	tank.					
			·				

Well Development Record

Well Number	MW2S		Date of Installation	7/08/9	07		
Site Geologist	A. E. Sciulli		Date of Development	7/11/9	97		
Static Water Level From Top of Casing	Before Development	_ft.	24 Hrs. After Development	_ft.	Date 7/11/97		
	Before Development		24 Hrs. After Development		Date		,
Depth to Sediment	N/A	_ ft.		— ft.	-		
Depth to Well Bottom	Before Development	_ ft.	24 Hrs. After Development	_ft.	Date 7/11/97		
Height of Casing							
Above Ground Surface	FLUSH MOUNT	_ ft.					
Quantity of Mud/Water	Lost During Drilling		0	_gal.			
	Removed Prior to Well Insert	ion	0	_gal.			
	Lost During Displacement	•	0	_gal.			
	Added During Filter Pack Pla	cement	0	_ gal.			•
a) Water Column Height	2.4	_ ft.	b) Well Radius		2.0		in
c) Screen Length	10.0	_ft.	d) Borehole Radius		4.0		in
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]	1.68	_gal.	Total Quantity (5 Equivalent Volumes)	TQV	31.2		ga
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]	4.56	gal.	Total Quantity (5 Times Losses)	ŤQL	0		ga
Total Development Volume Require	ed = TQV+TQL	`	31.2				ga
Type of Pump	Centrifugal	_	Total Quantity of Water Rem	oved		8	ga
Average Pump Rate	15	gal/hr.	Time Required			.53	hr
Est. Recharge Rate	+15	_gal/hr.	Water Quality		clear		
рН 9.7	Conductivity 720	_	Temperature (Degrees F)	_			
Remarks: Developm	nent water pumped to holding to	ank.					

96-0123/RI/Devrec2 300450

Well Number	MW3S		Date of Installation	7/07/97				
Site Geologist	A. E. Sciulli		Date of Development	7/11/9	97			
Static Water Level	Before Development	A	24 Hrs. After Development	ft,	Date 7/11/97			
From Top of Casing	11.7	– ft.		- ^{11.}	7/11/9/			
	Before Development		24 Hrs. After Development		Date			
Depth to Sediment	N/A	_ ft.		_ ft.				
Depth to Well	Before Development		24 Hrs. After Development		Date			
Bottom	16	_ ft.	16	-ft.	7/11/97			
Height of Casing								
Above Ground Surface	FLUSH MOUNT	ft.						
Quantity of Mud/Water	Lost During Drilling		0	_gal.				
	Removed Prior to Well Insert	ion	0	_gal.				
	Lost During Displacement		0	_gai.				
	Added During Filter Pack Pla	cement	0	_gal.				
a) Water Column Height	4.3	_ft.	b) Well-Radius		2.0	,	in.	
c) Screen Length	10.0	_ft.	d) Borehole Radius		4.0		in.	
Quantity of Fluid Standing in Well			Total Quantity					
[12*a*pi*b^2*0.0043]	3.01	_gal.	(5 Equivalent Volumes)	TQV	55.9		ga	
Quantity of Fluid in Annulus	1		Total Quantity			v		
[12*c*pi(d^2-b^2)*0.0043*0.30]	8.17	gal.	(5 Times Losses)	TQL	0		ga	
Total Development Volume Require	ed = TQV+TQL		56		,		ga_	
Type of Pump	Centrifugal	- .	Total Quantity of Water Remo	oved		35	ga	
Average Pump Rate	90	gal/hr.	Time Required			.39	hr	
Est. Recharge Rate	+90	gal/hr.	Water Quality		clear			
pH	Conductivity		Temperature (Degrees F)					
7.2	250	_	64	-				
Remarks: Developm	nent water pumped to holding ta	ınk.						

Well Number	MW4S		Date of Installation	7/08/97				
Site Geologist	A. E. Sciulli		Date of Development	7/11/9	97			
Static Water Level From Top of Casing	Before Development 5.8	ft.	24 Hrs. After Development	_ft.	Date 7/11/97			
Depth to Sediment	Before Development	ft.	24 Hrs. After Development	, f t.	Date			
				-	_			
Depth to Well Bottom	Before Development	ft.	24 Hrs. After Development	_ ft.	Date 7/11/97			
Height of Casing Above Ground Surface	FLUSH MOUNT	_ ft.						
Quantity of Mud/Water	Lost During Drilling		0	gal.				
	Removed Prior to Well Inser	tion	0	_ gal.				
•	Lost During Displacement		0	gal.				
,	Added During Filter Pack Pla	acement	0	_gal.				
a) Water Column Height	8.2	_ft.	b) Well Radius		2.0	<u></u>	in.	
c) Screen Length	10.0	_ ft.	d) Borehole Radius		4.0		in.	
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]	5.74	_gal.	Total Quantity (5 Equivalent Volumes)	TQV	106.6		ga	
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]	15.58	gal.	Total Quantity (5 Times Losses)	TQL	0		ga	
Total Development Volume Require	d = TQV + TQL		106.6		·		ga	
Type of Pump	Centrifugal	<u>.</u>	Total Quantity of Water Rem	oved		16	ga	
Average Pump Rate	-15	gal/hr.	Time Required			1.06	hr:	
Est. Recharge Rate	+15	_ gal/hr.	Water Quality		clear			
pH 6.9	Conductivity 320		Temperature (Degrees F)	_				
Remarks: Developm	nent water pumped to holding t	ank.						
	· · · · · · · · · · · · · · · · · · ·							

L. Robert Kimball & Associates, Inc. 615 West Highland Avenue Ebensburg, PA 15931 Ph.: (814) 472-7700 Fax: (814) 472-7712

Well Development Record

Well Number	MW5S		Date of Installation			
Site Geologist	A. E. Sciulli		Date of Development			
Static Water Level From Top of Casing	Before Development	_ft.	24 Hrs. After Development	_ ft.	Date	
Depth to Sediment	Before Development N/A	_fit.	24 Hrs. After Development	ft.	Date	
Depth to Well Bottom	Before Development	_ft.	24 Hrs. After Development	_ft.	Date	
Height of Casing Above Ground Surface	FLUSH MOUNT	_ft. '				
Quantity of Mud/Water	Lost During Drilling		0	_gal.		
	Removed Prior to Well Inserti	on	0	gal.		
	Lost During Displacement		0	_ gal.		
	Added During Filter Pack Place	cement	0	_gal.		
a) Water Column Height		ft.	b) Well Radius		2.0	in.
c) Screen Length	10.0	ft.	d) Borehole Radius		4.0	in. ,
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]		gal.	Total Quantity (5 Equivalent Volumes)	TQV		_gal.
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]		_gal.	Total Quantity (5 Times Losses)	TQL	0	_gal
Total Development Volume Require	d = TQV + TQL		· · ·			_gal.
Type of Pump	Centrifugal	-	Total Quantity of Water Rem	oved		gal.
Average Pump Rate		gal/hr.	Time Required			hrs.
Est. Recharge Rate		gal/hr.	Water Quality		clear	_
рН	Conductivity		Temperature (Degrees F)			
Remarks:		-				_
		·				
		•				

96-0123/RI/Devrec2 300453

L. Robert Kimball & Associates, Inc. 615 West Highland Avenue Ebensburg, PA 15931 Ph.: (814) 472-7700 Fax: (814) 472-7712

Well Number	MW6S		Date of Installation			_
Site Geologist	A. E. Sciulli		Date of Development			_
Static Water Level From Top of Casing	Before Development	_ ft.	24 Hrs. After Development	_ft.	Date	_
Depth to Sediment	Before Development N/A	_ ft.	24 Hrs. After Development	_ft.	Date	_
Depth to Well Bottom	Before Development	ft.	24 Hrs. After Development	_ft.	Date	
Height of Casing Above Ground Surface	FLUSH MOUNT	_ft.	·			
Quantity of Mud/Water	Lost During Drilling		0	_gal.		
•	Removed Prior to Well Insert	ion	0	gal.		
	Lost During Displacement		0	_gal.		
	Added During Filter Pack Placement		0	_gal.		•
a) Water Column Height	i .	_ft.	b) Well Radius		2.0	in.
c) Screen Length	10.0	_ft.	d) Borehole Radius		4.0	_ in
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]		_gal.	Total Quantity (5 Equivalent Volumes)	тqv		gal.
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]		_gal.	Total Quantity (5 Times Losses)	TQL	0	_gal
Total Development Volume Require	ed = TQV+TQL					_gal.
Type of Pump	Centrifugal	_	Total Quantity of Water Rem	oved	***************************************	gal.
Average Pump Rate		_gal/hr.	Time Required			hrs.
Est. Recharge Rate		_gal/hr.	Water Quality		clear	_
Нq	Conductivity	_	Temperature (Degrees F)	_		
Remarks:						_
_						

Well Number	MW7S		Date of Installation			_
Site Geologist	A. E. Sciulli		Date of Development			_
Static Water Level From Top of Casing	Before Development	_ft.	24 Hrs. After Development	ft.	Date .	_
Depth to Sediment	Before Development N/A	_ft.	24 Hrs. After Development	_ft.	Date	_
Depth to Well Bottom	Before Development	ft.	24 Hrs. After Development	ft.	Date	_
Height of Casing Above Ground Surface	FLUSH MOUNT	_ft.				
Quantity of Mud/Water	Lost During Drilling		0	_gal.		
	Removed Prior to Well Insert	ion	0	gal.		
	Lost During Displacement		0	_ gal.		
	Added During Filter Pack Pla	cement	0	gal.		
a) Water Column Height		_ft.	b) Well Radius		2.0	_in.
c) Screen Length	10.0	–ft.	d) Borehole Radius		4.0	_in.
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]		_gal.	Total Quantity (5 Equivalent Volumes)	TQV		_gal.
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]		gal	Total Quantity (5 Times Losses)	TQL	0	_ gal
Total Development Volume Require	d = TQV+TQL					_ gal.
Type of Pump	Centrifugal	_	Total Quantity of Water Rem	oved		_gal.
Average Pump Rate		_gal/hr.	Time Required			_hrs.
Est. Recharge Rate		_gal/hr.	Water Quality		clear	_
pH .	Conductivity		Temperature (Degrees F)			
Remarks;		_		_	,	_

Well Number	MW8S		Date of Installation			
Site Geologist	A. E. Sciulli		Date of Development			
Static Water Level From Top of Casing	Before Development	_ft.	24 Hrs. After Development	_ft.	Date	
Depth to Sediment	Before Development N/A	_ft.	24 Hrs. After Development	_ ft.	Date	
Depth to Well Bottom	Before Development	_ft.	24 Hrs. After Development	_ft.	Date	
Height of Casing Above Ground Surface	FLUSH MOUNT	_ ft.				
Quantity of Mud/Water	Lost During Drilling		0	_gal.		
	Removed Prior to Well Insert	ion	0	_gal.		
	Lost During Displacement		0	_gal.		
	Added During Filter Pack Pla	cement	0	_gal.		
a) Water Column Height		_ft.	b) Well Radius		2.0	in
c) Screen Length	10.0	_ft.	d) Borehole Radius		4.0	in
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]		_gal.	Total Quantity (5 Equivalent Volumes)	TQV		ga
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]		_gal.	Total Quantity (5 Times Losses)	TQL	0	ga
Total Development Volume Require	d = TQV+TQL					ga
Type of Pump	Centrifugal	-	Total Quantity of Water Remo	oved		ga
Average Pump Rate		_gal/hr.	Time Required			hr
Est. Recharge Rate	·	gal/hr.	Water Quality		clear	
рН	Conductivity		Temperature (Degrees F)			
Remarks:		_		_		

Well Number	MW9S		Date of Installation			
Site Geologist	A. E. Sciulli		Date of Development			
Static Water Level From Top of Casing	Before Development	_ft:	24 Hrs. After Development	_ ft.	Date	
Depth to Sediment	Before Development N/A	ft.	24 Hrs. After Development	_ft.	Date	·
Depth to Well Bottom	Before Development	_ft.	24 Hrs. After Development	ft.	Date	
Height of Casing Above Ground Surface	FLUSH MOUNT	ft.				
Quantity of Mud/Water	Lost During Drilling		0	_gal.		
	Removed Prior to Well Inser	tion	0	_gal.		
•	Lost During Displacement		0	_gal.		
	Added During Filter Pack Pla	acement	0	_gal.		
a) Water Column Height		_ ft.	b) Well Radius		2.0	in.
c) Screen Length	10.0	_ ft.	d) Borehole Radius		4.0	in.
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]		_gal.	Total Quantity (5 Equivalent Volumes)	TQV		ga
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]		gal.	Total Quantity (5 Times Losses)	TQL	0	ga
Total Development Volume Require	d = TQV + TQL					ga
Type of Pump	Centrifugal		Total Quantity of Water Rem	oved		ga
Average Pump Rate		_gal/hr.	Time Required			hr.
Est. Recharge Rate		_gal/hr.	Water Quality		clear	
рН	Conductivity		Temperature (Degrees F)	_		
Remarks:						·
	· · · · · · · · · · · · · · · · · · ·					
				•		

Well Development Record

Well Number	MW9D		Date of Installation		·	
Site Geologist	A. E. Sciulli		Date of Development			
Static Water Level From Top of Casing	Before Development	ft.	24 Hrs. After Development	_ ft.	Date	
Depth to Sediment	Before Development	_ft.	24 Hrs. After Development	_ ft.	Date	
Depth to Well Bottom	Before Development	_ft.	24 Hrs. After Development	ft.	Date	<u>-</u>
Height of Casing Above Ground Surface	FLUSH MOUNT	_ft.				
Quantity of Mud/Water	Lost During Drilling		0 .	_gal.		
	Removed Prior to Well Inserti	on	0	_gal.		
	Lost During Displacement		0	_gal.		
	Added During Filter Pack Place	cement	0	_gal.		
a) Water Column Height		ft.	b) Well Radius		2.0	in.
c) Screen Length	10.0	ft.	d) Borehole Radius		4.0	in.
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]		gal.	Total Quantity (5 Equivalent Volumes)	TQV		gal.
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]		_gal.	Total Quantity (5 Times Losses)	TQL	0	gal
Total Development Volume Require	d = TQV+TQL					gal.
Type of Pump	Centrifugal	_	Total Quantity of Water Rem	oved	·	gal.
Average Pump Rate		gal/hr.	Time Required			hrs.
Est. Recharge Rate		gal/hr.	Water Quality		clear	
pH	Conductivity		Temperature (Degrees F)	_		
Remarks:						

96-0123/RI/Devrec2

300458

Well Number	MW10S		Date of Installation			_
Site Geologist	A. E. Sciulli		Date of Development		· · · · · · · · · · · · · · · · · · ·	
Static Water Level From Top of Casing	Before Development	_ft.	24 Hrs. After Development	_ft.	Date	
Depth to Sediment	Before Development	_ft.	24 Hrs. After Development	_ft.	Date	
Depth to Well Bottom	Before Development	_ft.	24 Hrs. After Development	_ft.	Date	
Height of Casing Above Ground Surface	FLUSH MOUNT	_ft.				i
Quantity of Mud/Water	Lost During Drilling		0	_gal.		
	Removed Prior to Well Inserti	on	0	_gal.		
	Lost During Displacement		0	_gal.		
•	Added During Filter Pack Place	ement	0	_gal.		
a) Water Column Height		ft.	b) Well Radius		2.0	in.
c) Screen Length	10.0	_ft.	d) Borehole Radius		4.0	in.
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]	·	gal.	Total Quantity (5 Equivalent Volumes)	тqv		gal.
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]		gal.	Total Quantity (5 Times Losses)	TQL	0	gal
Total Development Volume Require	d = TQV + TQL					gal.
Type of Pump	Centrifugal	_	Total Quantity of Water Remo	oved		gal.
Average Pump Rate		gal/hr.	Time Required			hrs.
Est. Recharge Rate		gal/hr.	Water Quality		clear	
рН	Conductivity		Temperature (Degrees F)			
Remarks:				_		
	<u> </u>					
		· · · · · ·				

Well Number	MW11S		Date of Installation		1	2/27/99		_
Site Geologist	A. E. Sciulli		Date of Development		1	2/29/99	·	
Static Water Level From Top of Casing	Before Development	ft.	24 Hrs. After Development 13.2	_ft.	Date	2/29/99		
Depth to Sediment	Before Development N/A	 ft.	24 Hrs. After Development N/A	ft.	Date	N/A		
Depta to Seatment	N/A	<u> </u>	N/A	- 11.		- IN/A		_
Depth to Well Bottom	Before Development	ft.	24 Hrs. After Development	_ft.	Date 11	2/29/99		
Height of Casing Above Ground Surface	FLUSH MOUNT	ft.						
Quantity of Mud/Water	Lost During Drilling		0	gal.				
	Removed Prior to Well Inse	ertion	0	gal.				
	Lost During Displacement		0	_gal.				
	Added During Filter Pack P	lacement	0	_gal.				
a) Water Column Height	7.8	ft.	b) Well Radius			2.0		in.
c) Screen Length	10.0	ft.	d) Borehole Radius			4.0		in.
Quantity of Fluid Standing in Well [12*a*pi*b^2*0.0043]	4.4	gal.	Total Quantity (5 Equivalent Volumes)	TQV		96		ga
,,			(-1					
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]	14.8	gal.	Total Quantity (5 Times Losses)	ŢQL		0		gai
Total Development Volume Require	d = TQV + TQL					<u>. </u>		gai
Type of Pump	Centrifugal		Total Quantity of Water Rem	oved			96	gal
Average Pump Rate	60	gal/hr.	Time Required				1.6	hrs
Est. Recharge Rate		gal/hr.	Water Quality		clear		<u> </u>	
рН	Conductivity		Temperature (Degrees F)	_				
Remarks:					<u> · </u>			
								_

Well Number	MWIIM		Date of Installation		12/28/99		_
Site Geologist	A. E. Sciulli		Date of Development		12/29/99		
Static Water Level From Top of Casing	Before Development	ft.	24 Hrs. After Development	ft.	Date 12/29/00		
	Before Development		24 Hrs. After Development	_	Date		_
Depth to Sediment	N/A	ft.	N/A	_ft.	N/A		
Depth to Well Bottom	Before Development 55.6	ft.	24 Hrs. After Development 56	_ft.	Date 12/29/00		_
Height of Casing Above Ground Surface	FLUSH MOUNT	ft.					
Quantity of Mud/Water	Lost During Drilling		0	_gal.			
	Removed Prior to Well Inse	ertion	0	_gal.			
	Lost During Displacement		0	gal.			
	Added During Filter Pack P	lacement	. 0	_gal.	•		
a) Water Column Height	42	ft.	b) Well Radius		2.0		in.
c) Screen Length	10.0	ft.	d) Borehole Radius		4.0		in.
Quantity of Fluid Standing in Well			Total Quantity	•			
[12*a*pi*b^2*0.0043]	27.3	gal.	(5 Equivalent Volumes)	TQV	535.5		ga
Quantity of Fluid in Annulus [12*c*pi(d^2-b^2)*0.0043*0.30]	79.8	gal.	Total Quantity (5 Times Losses)	TQL	. 0		ga
Total Development Volume Require	d = TQV+TQL					,	ga
Type of Pump	Centrifugal		Total Quantity of Water Rem	oved		535.5	ga
Average Pump Rate	120	gal/hr.	Time Required		. –	4.45	hr:
Est. Recharge Rate		gal/hr.	Water Quality		clear		
pH	Conductivity		Temperature (Degrees F)	_			
Remarks:							_

X-Coord	V 6	TAME DIALE	Profile	Station
(feet)	Y-Coord. (feet)	Total Field (gammas)	Number	Number
195	190	2030.225	1	1
0	240	-7185.407	1001	101
5	240	-7568.141	1001	102
10	240	-6806.445	1001	103
15	240	-9157.615	1001	104
20 25	240 240	-17088.48 -11605.23	1001 1001	105 106
30	240	-11876.68	1001	107
35	240	-8793.344	1001	108
40	240	-8291.825	1001	109
45	240	-9057.499	1001	110
50	240	-7515.078	1001	111
55 60	240 240	-5728.003	1001	112
60 65	240	-5095.414 -2758.253	1001 1001	113 114
70	240	-4470.932	1001	115
75	240	-4266.9	1001	116
80	240	-4905.375	1001	117
85	240	-9363.112	1001	118
90	240	-9207.389	1001	119
95 100	240 240	-4440.366 -622.589	1001	120 121
105	240	-022.569 -551.574	1001	121
110	240	-887.826	1001	123
115	240	-1447.199	1001	124
120	240	-2505.745	1001	125
125	240	-1541.456	1001	126
130 135	240 240	-2370.037 -626.813	1001	127
140	240	-505.267	1001	128 129
145	240	-358.701	1001	130
150	240	-98.609	1001	131
155	240	195.712	1001	132
160	240	471.538	1001	133
165 170	240: 240:	700.68 783.937	1001	134 135
175	240	876.33	1001	136
180	240	1093.975	1001	137
185	240	1120.915	1001	138
190	240	1081.081	1001	139
195	240	1115.07	1001	140
195	230:	787.622	1002	140
190 185	230 230	763.548 783.675	1002	139 138
180	230	831.923	1002	130
175	230	905.154	1002	136
170	230	920.013	1002	135
165	230	910.004	1002	134
160	230	906.929	1002	133
155 150	230 230	839.77 786.091	1002 1002	132 131
145	230	607.14	1002	130
140	230	329.489	1002	129
135	230	185.974	1002	128
130	230	150.772	1002	127
125	230	291.107	1002	126
120 115	230	374.535	1002	125
110	230 230	273.521 109.347	1002 1002	124
105	230	115.486	1002	123 122
100	230	380.86	1002	121
95	230	726.456	1002	120
90	230	885.377	1002	119
85	230	611.243	1002	118
80: 75:	230 230	218.72 -39.674	1002	117
13	∠JU;	-39.074	1002	116

X-Coord	Y-Coord.	Total Field	Profile 1	Station
(feet)	(feet)	(gammas)	Number	Number
70	230	-231.179	1002	115
65	230	-1591.931	1002	114
60	230	-1766.431	1002	113
55	230	-2129.457	1002	112
50	230	-3466.131	1002	111
45 40	230 230	-3976.177 -2829.766	1002 1002	110 109
35	230	-2447.615	1002	108
30	230	-2930.596	1002	107
25	230	-3698.847	1002	106
20	230	-8933.095	1002	105
15	230	-8411.673	1002	104
10	230	-9719.515	1002	103
5	230:	-12700:57	1002	102
0	230 220	-14446.65 -2251.816	1002 1003	101 101
0 5	220	-3189.672	1003	102
10	220	-3444.038	1003	103
15	220	-3273.083	1003	104
20	220	-2703.673	1003	105
25	220	-2029.503	1003	106
30	220	-1373.26	1003	107
35	220	-746.036	1003	108
40	220 220	-220.295 244.828	1003	109 110
50	220	739.871	1003	111
55	220	1210.728	1003	112
60	220	1450.274	1003	113
65	220	1469.529	1003	114
70	220	1301.343	1003	115
75	220	1191.586	1003	116
80	220	997.665	1003	117
85 90	220 220	857.354 776.375	1003 1003	118
95	220	590.493	1003	119 120
100	220	364.211	1003	121
105	220	320.234	1003	122
110	220	455.56	1003	123
115	220	641.787	1003	124
120	220	701.219	1003	125
125	220	438.363	1003:	126
130	220	127.629	1003	127
135 140	220 220	-43.929 51.995	1003 1003	128 129
145	220	395.923	1003	129
150	220	732.643	1003	131
155	220	805.536	1003	132
160	220	875.966	1003	133
165	220	1003.098	1003	134
170	220	1032.289	1003	135
175	220	879.125	1003	136
180	220	730.845	1003	137
185 190	220 220	611.421 577.671	1003 1003	138 139
190	220	582.088	1003	139
195	210	857.763	1003	140
190	210	936.861	1004	139
185	210	1018.062	1004	138
180	210	1100.463	1004	137
175	210	1023.463	1004	136
170	210	877.963	1004	135
165	210	759.563	1004	134
160	210	722.764	1004	133
155	210	763.565 902.565	1004	132 131
150	210		1004:	

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas) 852.263	Number 1004	Number
140	210	852.263 892.765	1004	129
135 130	210 210	1179.765	1004	128 127
125	210	1492.064	1004	126
120	210	1503.364	1004	125
115	210	1092.965	1004	124
110	210	698.964	1004	123
105	210	458.567	1004	122
100	210	456.665	1004	121
95	210	813.165	1004	120
90	210	1298,966	1004	119
85	210	1973.765	1004	118
80	210	2959.666	1004	117
75	210	4608.568	1004	116
70	210	522.366	1004	115
65	210	710.768	1004	114
60	210	197.866	1004	113
55	210	-297,733	1004	112
50	210	4143.367	1004	111
45	210	2400.168	1004	110
40	210	1281.767	1004	109
35	210	534.57	1004	108
30	210	-26.133	1004	10
25	210	-487.332	1004	10
20	210	-802.031	1004	10
15	210	-990.431	1004	10-
10	210	-1090.132	1004	103
5	210	-1350.429	1004	102
0	210	-7791.929	1004	10
0	200	-11241.23	1005	10 ⁻
5	200	-1135.628	1005	102
10	200	<i>-</i> 728.026	1005	103
15	200	-513.424	1005	10
20	200	-346.528	1005	10
25	200	-42.926	1005	106
30	200	492.775	1005	10
35	200	1036.373	1005	108
40	200	1932.373	1005	109
45	200	3364.574	1005	110
50	200	1702.975	1005	111
55	200	-1430.326	1005	11:
60	200	-5127,126	1005	11:
65	200	-1594.026	1005	114
70	200	-133.626	1005	11:
75	200	3005.675	1005	110
80	200	4071.078	1005	11
85	200	2951.676	1005	118
90	200	2350.777	1005	119
95	200	- 2108.578	1005	120
100	200	1949.176	1005	12
105	200	1808.278	1005	12
110	200	1647.077	1005	123
115	200	1472.579	1005	124
120	200	1346.579	1005	129
125	200	1190.079	1005	120
130	200	1033.978	1005	12
135	200	964.279	1005	128
140	200	936.978	1005	129
145	200	826.175	1005	130
150	200	706.08	1005	13 ⁻
155	200	640.478	1005	132
160	200	680.78	1005	133
165	200	885.179	1005	134
170	200	1168.281	1005	135
175	200	1387.179	1005	136
180	200	1494.082	1005	137
	e are e ete a ata o a atanata are atatata atana alla			

X-Coord (feet)	Y-Coord.	Total Field	Profile Number	Station Number
(reet) 185	(feet) 200	(gammas) 1486.679	1005	138
190	200	1449.48	1005	139
195	200	1420.48	1005	140
195	190	2023.286	1006	140
190	190	2144.985	1006	139
185	190	2295.585	1006	138
180	190	2268.185	1006	137
175	190	1955.588	1006	138
170	190	1485.685	1006	135
165	190	1122.287	1006	134
160	190	903.487	1006	133
155	190	746.885	1006	132
150	190	742.987	1006	131
145	190	783.589	1006	130
140	190	893,286	1006	129
135	190	922.589	1006	128
130	190	891.886	1006	127
125	190 190	839.687	1006 1006	126 125
120 115	190	824.886 967.287	1006	124
110	190	1251.687	1006	123
105	190	1638.688	1006	123
100	190	2039.09	1006	121
95	190	2356.287	1006	120
90	190	2584.59	1006	119
85	190	3027.688	1006	118
80	190	3828.989	1006	117
75	190	4931.388	1006	116
70	190	4416.791	1006	115
65	190	-2748,908	1006	114
60	190	-528.908	1006	113
55	190	2109.791	1006	112
50	190	4812.889	1006	111
45	190	3525.19	1006	110
40	190	2494.489	1006	109
35	190	1784.292	1006	108
30	190	1157.39	1006	107
25	190	565.691	1006	106
20	190	396.593	1006	105
15	190	295.388	1006	104
10	190	-7.309	1006	103
5	190	-1580.207	1006	102
0	190	-2596.809	1006	101
195	180	2675.554	1007	140
190	180	2526.355	1007	139
185	180	2370.273	1007	138
180 175	180 180	2164.978 1839.775	1007 1007	137 136
170				~~~~~~
165	180 180	1491.978 1217.479	1007 1007	135
160	180	1053.875	1007	133
155	180	940.076	1007	132
150	180	898.577	1007	131
145	180:	919.479	1007	130
140	180	991.479	1007	129
135	180	986.376	1007	128
130	180	880.077	1007	127
125	180	772.679	1007	126
120	180	744.277	1007	125
115	180	839.878	1007	124
110	180	1100.179	1007	123
105	180	1532.48	1007	122
100	180	1926.68	1007	121
95	180	2171.68	1007	120
90	180	2240.578	1007	119
		· • • • • • • • • • • • • • • • • • • •		

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
80	180	2698.276	1007	117
75	180	3084.579	1007	116
70	180	3427.278	1007	115
65	180	3687.778	1007	114
60	180	3793.88	1007	113
55	180	3645.878	1007	112
50 45	180	3450.779 3347.779	1007 1007	111 110
40	180 180	3182.482	1007	109
35	180	2649,182	1007	108
30	180	2012.879	1007	107
25	180	1575.483	1007	106
20	180	1390.78	1007	105
15	180	1082.381	1007	104
10	180	833.581	1007	103
5	180	800.28	1007	102
0	180	-7243.019	1007	101
0	170	-557.015	1008	101
5	170	904.083	1008	102
10 15	170 170	1221.984 1573.185	1008 1008	103 104
20	170	1728.385	1008	105
25 25	170	1785.885	1008	106
30	170	2016.885	1008	107
35	170	2507.784	1008	108
40	170	3043.784	1008	109
45	170	3140.384	1008	110
50	170	2984.386	1008	111
55	170	2960.187	1008	112
60	170	3019.887	1008	113
65 70	170 170	3029.285 3049.086	1008 1008	114 115
75 75	170	3077.283	1008	116
80	170	2786.086	1008	117
85	170	2457.587	1008	118
90	170	2285.989	1008	119
95	170	2215.388	1008	120
100	170	2107.886	1008	121
105	170	1949.987	1008	122
110	170	1790.786	1008	123
115	170	1641.189	1008	124
120	170		1008	125
125 130	170	1355.088	1008	126 127
135	170 170	1256.388 1187.386	1008 1008	127
140	170	1116.787	1008	129
145	170	1047.389	1008	130
150	170	1061.389	1008	131
155	170	1145.787	1008	132
160	170	1219.589	1008	133
165	170	1295.489	1008	134
170	170	1388.19	1008	135
175	170	1538.589	1008	136
180	170	1799.991	1008	137
185	170	2027.191	1008	138
190	170	2240.788	1008	139
195 195	170 160	2474.089	1008	140
195 190	160 160	2139.625 2045.114	1009 1009	140 139
185	160	1940.107	1009	138
180	160	1849.197	1009	137
175	160	1723.691	1009	136
170	160	1608.087	1009	135
165	160	1491.979	1009	134
160	160	1552.572	1009	133
155	160	1533.36	1009	132

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
150	160	1325.558	1009	131
145	160	1171.45	1009	130
140	160	1185.644	1009	129
135	160 160	1271.13 1349.422	1009 1009	128 127
130 125	160	1492.115	1009	126
120	160	1622.109	1009	125
115	160	1698.603	1009	124
110	160	1777.497	1009	123
105	160	1820.887	1009	122
100	160	1838.083	1009	121
95 90	160 160	1890.28 1972.673	1009 1009	120 119
85	160	2084.468	1009	118
80	160	2283.762	1009	117
75	160	2411.349	1009	116
70	160	2326.542	1009	115
65	160	2236.836	1009	114
60 55	160	2098.53 2028.523	1009 1009	113 112
50 50	160 160	1998.811	1009	112
45	160	1937.905	1009	110
40	160	1628.591	1009	109
35	160	1323.379	1009	108
30	160	1471.679	1009	107
25	160	1316.467	1009	106
20 15	160 160	1019.164 866.856	1009 1009	105 104
10	160	761.945	1009	103
5	160	477.542	1009	102
0	160	-9596.065	1009	101
0	150	-206.04	1010	101
5	150	321.555	1010	102
10 15	150	549.343	1010	103
20	150 150	457.527 643.022	1010 1010	104 105
25	150	970.217	1010	106
30	150	961.614	1010	107
35	150	936.707	1010	108
40	150	943.003	1010	109
45	150	1064.399	1010	110
50	150	1295.189	1010	111
55 60	150 150	1348.883 1320.377	1010	112 113
65	150	1230.372	1010	113
70	150	1059.463	1010	115
75	150	967.054	1010	116
80	150	919.747	1010	117
85	150	871.344	1010	118
90	150	798.839	1010	119
95 100	150 150	745.131 729.727	1010	120
100:	150 150	835.213	1010 1010	121 122
110	150	990.815	1010	123
115	150	1016.008	1010	124
120	150	945.094	1010	125
125	150	814.69	1010	126
130	150	680.179	1010	127
135	150	599.479	1010	128
140	*****************			129
	150	708.472	1010	
145	150 150	848.365	1010	130
145 150	150 150 150	848.365 1161.155	1010 1010	130 131
145	150 150	848.365 1161.155 1777.344	1010 1010 1010	130 131 132
145 150 155	150 150 150 150	848.365 1161.155	1010 1010	130 131

X-Coord	Y-Coord	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
175	150	3252.72	1010	136
180	150	2812.007	1010	137
185	150	2276.502	1010	138
190	150	2384.496	1010 1010	139
195 195	150 140	3368.585 2548.09	1010	140 140
190	140	2074.582	1011	139
185	140	2195.775	1011	138
180	140	3256.667	1011	137
175	140	4053.059	1011	136
170	140	3714.453	1011	135
165	140	2710.846	1011	134
160	140	1392.84	1011	133
155 150	140 140	163.63 -1119.177	1011 1011	132 131
145	140	-170.082	1011	130
140	140	-171.388	1011	129
135	140	-266.093	1011	128
130	140	-227.701	1011	127
125	140	-91.111	1011	126
120	140	146.782	1011	125
115	140	439.871	1011	124
110 105	140 140	551.666 593.256	1011 1011	123 122
100	140	530.053	1011	121
95	140	249.945	1011	120
90	140	-68.662	1011	119
85	140	-286.271	1011	118
80	140	-455.88	1011	117
75	140	-407.289	1011	116
70	140	-222.995	1011	115
65 60	140 140	-103.699 -97.306	1011 1011	114 113
55	140	-141.337	1011	112
50	140	-229.837	1011	111
45	140	-319.944	1011	110
40	140	-349.551	1011	109
35	140	-205.854	1011	108
30	140	-33.165	1011	107
25	140	33.225	1011	106
20 15	140	132.323	1011	105
10	140 140	195.414 432.011	1011 1011	104 103
5	140	283.607	1011	103
0	140	-4600.898	1011	101
255	270	-387.351	998	152
250	270	51,166	998	151
245	270	682.18	998	150
240 235	270	1032.298	998	149
235	270 270	-370.837 -1132.12	998 998	148 147
225	270	-791.686	998	146
220	270	-1917.962	998	145
160	260	-10382.59	999	133
165	260	-8911.389	999	134
170	260	-4913.569	999	135
175	260	-296.54	999	136
180	260	-1368.322	999	137
185	260	-135.803	999	138
190 195	260 260	-478.793 -553.78	999 999	139 140
200	260	-1336.75	999	140
205	260	751.972	999	142
210	260	530.483	999	143
215	260	347.495	999	144
220	260	399.908	999	145

X-Coord (feet) 225 230 235 240	Y-Coord (feet) 5 260	Total Field (gammas) 745.327	Profile Number	Station Number
225 230 235	a49000000000000000000000000000000000000	NO.	000	ALCOHOLOGICAL CALCALANTA
230 235		140.021	999:	146
	260	480.932	999	147
240	260	466.341	999	148
. 270	260	524.758	999	149
245	260	431.875	999	150
250	260	188.397	999	151
255	260	-58.393	999	152
255		-5.39	1000	152
250	250	140.731	1000	151
245	250	292.836	1000	150
240	250	434.655	1000	149
235		432.269	1000	148
230	•	422.49	1000	147
225	and the second of the second o	444.41	1000	146
220		492.228	1000	145
215		631.439	1000	144
210		859.55	1000	143
205		964.562	1000	142
200	••••••••	885.576	1000	141
195		609.588	1000	140
190	; 	580.704	1000	139
185	ra 🖟 a e e area e entre	772.118	1000	138
180 175		790.028 845.04	1000	137 136
170		849.357	1000	135
165		790.767	1000	134
160		356.888	1000	133
155		-3017.478	1000	132
150		-2347.26	1000	131
145	· · · · · · · · · · · · · · · · · · ·	-2768.749	1000	130
140	. ;	-5502.723	1000	129
135		-3224.502	1000	128
130	aproximation and a second	-9086.273	1000	127
195		1093.818	1001	140
200	240	1234.431	1001	141
205	240	1314.844	1001	142
210	240	1146.657	1001	143
215	240	733.269	1001	144
220	240	471.088	1001	145
225	240	393.599	1001	146
230	240	340,11	1001	147
235	240	268.12	1001	148
240	. 	186.13	1001	149
245		180.941	1001	150
250		172.752	1001	151
255		80.956	1001	152
255		107.306	1002	152
250	a francisco de la constante de la constante de la constante de la constante de la constante de la constante de	226.226	1002	151
245	<	343.738	1002	150
240		613.248	1002	149
235		737.662	1002	148
230	aproximate construction and a construction of	643.768	1002	147
225		581.996	1002	146
220		501.508	1002	145
215		535.717	1002	144
210	ada a a ta t	744.438	1002	143
205		881.044	1002	142
200		897.959	1002	141
195	• • • • • • • • • • • • • • • • • • • •	775.086	1002	140
195	ta fina ha ha ha na na na na na na ha ha na ha na na ha nga ay na pingung na na na na ha na ha na ha na ha na h	537.958	1003	140
200	4	485.279	1003	141
205		475.455	1003	142
210		482.857	1003	143
215 220	ta francis ta tanta ta tanta ta tanta ta ta ta ta ta ta ta ta ta ta ta ta t	534.953	1003	144
,	220 220	745.054 975.951	1003	145

761	Y-Coord.	Total Field	Profile Number	Station
(feet)	(feet)	(gammas)	Number	Number
230	220	1229.95 1375.174	1003	147 148
235 240	220 220	1314.35	1003	149
		************		150
245 250	220 220	1027.046 698.344	1003: 1003:	151
255	220	360.463	1003	152
255 255	210	396.703	1003	152
250	210	671.503	1004	151
230	210	999.999	1004	150
240	210	1374.998	1004	149
235	210	1594.297	1004	148
230	210	1471.097	1004	147
225	210	1263.193	1004	140
220	210	1173.89	1004	14
215	210	1082.592	1004	14
210	210	911.29	1004	. 14
205	210	694.488	1004	14
200	210	641.588	1004	14
195	210	761.307	1004	140
195	200	1387.457	1005	14
200	200	1245.956	1005	14
205	200	1128.154	1005	14
210	200	1141.055	1005	14
215	200	1191.753	1005	14
220	200	1172.172	1005	14
225	200	1153.348	1005	14
230	200	1198.25	1005	14
235	200	1151.049	1005	14
240	200	918.344	1005	14
245	200	630.745	1005	150
250	200	436.066	1005	15
255	200	364.641	1005	15
255	190	248.367	1006	15
250	190	471.468	1006	15
245	190	635.365	1006	15
240	190	763.563	1006	14
235	190	882.561	1006	14
230	190	912.962	1006	14
225	190	945.682	1006	14
220	190	1074.757	1006	14
215	190	1364.458	1006	14
210	190	1641.355	1006	14
205	190	1924.954	1006	14
200	190	2101.874	1006	14
195	190	2027.348	1006	14
195	180	2664.742	1007	14
200	180	2787.036	1007	14
205	180	2528.739	1007	14:
210	180	1926.636	1007	14
215	180	1472.133	1007	14
220	180	1267.132	1007	14
225	180	1235.732	1007	14
230	180	1263.329	1007	14
235	180	1184.429	1007	14
240	180	969.026	1007	149
245	180	723.927	1007	150
250	180	552.948	1007	15
255	180	465.023	1007	15:
255	170	1003.288	1008	15
250	170	1011.388	1008	15
245	170	1086.188	1008	150
240	170 170	1354.385	1008	149
	1 /():	1625.759	1008	14
235		4000 450	4000	
235 230 225	170 170	1803.156 1802.557	1008 1008	14 14

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
215	170	1751.253	1008	144
210	170	2011.876	1008	143
205	170	2484.352	1008	142
200	170	2749.748	1008	141
195	170	2574.348	1008	140 140
195 200	160 160	2106.827 2136.621	1009 1009	140
205	160	2253.12	1009	142
210	160	2572.72	1009	143
215	160	2495.843	1009	144
220	160	2289.82	1009	145
225	160	2219.417	1009	146
230	160	2112.016	1009	147
235	160	1875.214	1009	148
240	160	1530.713	1009	149
245	160	1195.632	1009	150
250 255	160 160	926.609 732.81	1009 1009	151 152
255 255	150	1117,777	1009	152
250 250	150	1511.072	1010	151
245	150	2077.774	1010	150
240	150	2723.273	1010	149
235	150	3379.192	1010	148
230	150	4081.868	1010	147
225	150	4264.968	1010	146
220	150	3860.864	1010	145
215	150	3409.964	1010	144
210	150	2985.383	1010	143
205 200	150 150	2956.961 3417.556	1010; 1010	142 141
195	150	3059.656	1010	140
190	150	2243.154	1010	139
195	140	2544.244	1011	140
200	140	2936.84	1011	141
205	140	2890.64	1011	142
210	140	3089.939	1011	143
215	140	3889.938	1011	144
220	140	-660.866	1011	145
225	140	686.733	1011	146
230 235	140 140	662.732 -227.849	1011	147
0.40		2500 505	1011	148
240 245	140	3529.525 2679.625	1011	149
250	140	1971.925	1011	151
255	140	1440.223	1011	152
255	130	1251.975	1012	152
250	130	1314.71	1012	151
245	130	1361.802	1012	150
240	130	1748.542	1012	149
235	130	2517.965	1012	148
230	130	3237.591	1012	147
225 220	130	3533.47	1012	146
220	130 130	3229.905	1012	145
210	130	2733.233 2237.735	1012 1012	144 143
205	130	1859.299	1012	143
200	130	1588.23	1012	142:
195	130	1362.968	1012	140
195	120	1370.51	1013	140
200	120	1000.758	1013	141
205	120	1246.581	1013	142
210	120	1489.762	1013	143
215	120	1602.026	1013	144
220	120	1633.048	1013	145
225	120	1752.693	1013	146
230	120	1772.114	1013	147

X-Coord	Y-Coord.	Total Field	Profile Number	Station Number
(feet) 235	(feet) 120	(gammas) 1460.335	Number 1013	Number 14
240	120	959.818	1013	14
245	120	562.086	1013	15
250	120	604.368	1013	15
255	120	769.388	1013	15
260	120	969.308	1013	15
265	120	822.29	1013	15
270	120	756.051	1013	15
275	120	733.472	1013	15
280	120	797.39	1013	15
285	120	803.308	1013	15
290	120	642.229	1013	15
295	120	265.057	1013	16
295	110	-6723.669	1014	16
290	110	148.661	1014	15
285	110	563.073	1014	15
280	110	716.938	1014	15
275	110	881.46	1014	15
270 265	110 110	1473.684 2823.238	1014 1014	15 15
∠05 260	110	2023.230	1014	15
255	110	26.738	1014	15
250 250	110	1704.378	1014	15
245	110	508,798	1014	15
240	110	1290.162	1014	14
235	110	1543.709	1014	14
230	110	1454.634	1014	14
225	110	1261.963	1014	14
220	110	1000.395	1014	14
215	110	922.585	1014	14
210	110	897.447	1014	14
205	110	782.769	1014	14
200	110	639.892	1014	14
195	110	781.315	1014	14
195	100	551	1015	14
200	100	338.131	1015	14
205	100	362.853	1015 1015	14
210 215	100	409.074		14
213	100	565.096 918.182	1015 1015	14 14
225	100	1072.505	1015	14
230	100	1179.582	1015	14
235	100	1523.514	1015	14
240	100	2430.982	1015	14
245	100	3370.02	1015	15
250	100	641.992	1015	15
255	100	1832.68	1015	15:
260	100	2353.764	1015	15
265	100	3399.523	1015	15
270	100	1956.944	1015	15
275	100	929.159	1015	150
280	100	497,518	1015	.15
285	100	183.641	1015	15
290	100	-120.242	1015	15
295	100	-404.321	1015	160
300	100	-5246.642	1015	16
305	100	-4040.362	1015	16:
310	100	-4880.003	1015	163
310	90	-93.216	1016	163
305	90	-298.388	1016	163
300	90	-261.664	1016	16
295	90	-280.431	1016	160
290	90	-159.341	1016	159
285 280	90	22.343	1016	158
	90	310.465	1016	157

X-Coord	Y-Coord	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
270	90	1240.123	1016	155
265	90	2052.007	1016	154
260	90	3034.332	1016	153
255	90	3313.113	1016	152
250	90	3565.245	1016	151
245	90	3071.053	1016	150
240	90 90	2480.158	1016	149 148
235 230	90	1873.879 1265.901	1016 1016	147
230 225	90	897.007	1016	146
220 220	90	599.166	1016	145
215	90	320.589	1016	144
210	90	77.712	1016	143
205	90	-35.263	1016	142
200	90	-148.135	1016	141
195	90	-285.712	1016	140
195	80	357.765	1017	140
200	80	-242.339	1017	141
205	80	-391.516	1017	142
210	80	-33.295	1017	143 144
215 220	80 80	226.727 265.768	1017 1017	144
220 225	80 80	205.708 349.057	1017	145
230	80	712.981	1017	147
235	80	1157.738	1017	148
240	80	1476.782	1017	149
245	80	1537.806	1017	150
250	80	918.25	1017	151
255	80	97.712	1017	152
260	80	-94.923	1017	153
265	80	101.219	1017	154
270	80	178.947	1017	155
275	80	101.572	1017	156
280	80	16.298	1017	157
285 290	80 80	-106.915 -297.841	1017 1017	158 159
295	80	-315.72	1017	160
300	80	-297,695	1017	161
305	80	-536.173	1017	162
310	80	-4195.767	1017	163
310	70	-7696.819	1018	163
305	70	-1030.996	1018	162
300	70	-739.886	1018	161
295	70	-616.825	1018	160
290	70	-440.16	1018	159
285	70	-86.563	1018	158
280	70	-91.844	1018	157
275 270	70 70	-250.117	1018	156
	70 70	-477.131 1322.513	1018	155 154
265 260	70 70	-1322.513 -5697.378	1018 1018	154 153
255	70	-5376.328	1018	152
250 250	70	-1486.809	1018	151
245	70	676.163	1018	150
240	70	995.141	1018	149
235	70	950.967	1018	148
230	70	769.99	1018	147
225	70	805.268	1018	146
220	70	953.644	1018	145
215	70	895.821	1018	144
210	70	597	1018	143
205	70	256.27	1018	142
200	70	645.125	1018	141
195	70	1700.501	1018	140
195	60	517.127	1019	140
200	60	-57.32	1019	141

X-Coord	Y-Coord	Total Field	Profile I	Station
(feet)	(feet)	(gammas)	Number	Number
205	60	-41.848	1019	142
210	60	303.397	1019	143
215	60	639.434	1019	144
220	60	1039.992	1019	145
225	60	1370.464	1019 1019	146 147
.230 235	60 60	1427.742 1246.723	1019	148
233 240	60	1134.374	1019	149
245	60	1502.051	1019	150
250	60	1265.124	1019	151
255	60	1278.4	1019	152
260	60	935.501	1019	153
265	60	319.416	1019	154
270 275	60 60	305.091 539.158	1019 1019	155 156
280	60	451.411	1019	157
285	60	-178.052	1019	158
290	60	-988.106	1019	159
295	60	-8220.365	1019	160
300	60	-8012.238	1019	161
305	60	-8184.314	1019	162
310 310	60 50	-3499.64 -10222.74	1019 1020	163 163
305	50	-4575.688	1020	162
300	50	-3992.086	1020	161
295	50	-2948.885	1020	160
290	50	223.146	1020	159
285	50	172.405	1020	158
280	50 50	310.963	1020	157
275 270	50 50	334.467 140.986	1020 1020	156 155
265	50	139.259	1020	154
260	50	1059.537	1020	153
255	50	1707.584	1020	152
250	50	1399.528	1020	151
245	50	667.88	1020	150
240	50	69.927	1020	149
235 230	50 50	-231.18 -321.053	1020 1020	148 147
225	50	-178.978	1020	146
220	50	3.677	1020	145
215	50	331.472	1020	144
210	50	346.696	1020	143
205	50	-55.163	1020	142
200 195	50 50	-1036.837 -1736.57	1020	141 140
195	40:	-1736.57 -4669.276	1020 1021	140
200	40	-1861.028	1021	141
205	40	2927.349	1021	142
210	40	2596.808	1021	143
215	40	2482.193	1021	144
220	40	1749.235	1021	145
225	40	1048.529	1021	146
230 235	40 40	619.885 27 1 .66	1021 1021	147 148
240	40:	201.543	1021	149
245	40	310.122	1021	150
250	40	348.583	1021	151
255	40	118.964	1021	152
260	40	-379.876	1021	153
265	40	-1459.395	1021	154
270	40	-9882.992	1021	155
275 280	40	-8919.71	1021	156
285	40 40	-1266.87 -208.598	1021 1021	157 158
290	40	641.771	1021	159

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
295	40	1473.233	1021	160
300	40	1416.711	1021	161
305	40	-75.806	1021	162
310	40	-13564.72	1021	163
310	30	-21974.99	1022	163
305 300	30	-7864.167 -515.202	1022 1022	162 161
295	30: 30:	-119.94	1022	160
290	30	-36.974	1022	159
285	30	-206.286	1022	158
280	30	-1324.505	1022	157
275	30	-10364.49	1022	156
270	30	-10427.43	1022	155
265	30	-5601.665	1022	154
260	30	-1005.89	1022	153
255	30	-59.633	1022	152
250	30	116.523	1022	151
245 240	30 30	-90.11 -416.656	1022 1022	150 149
235	30	-301.377	1022	149
230	30	187.488	1022	147
225	30	1072.337	1022	146
220	30	2193.912	1022	145
215	30	2564.769	1022	144
210	30	2997.581	1022	143
205	30	3834.443	1022	142
200	30	-672.792	1022	141
195	30	-6062.952	1022	140
200 205	20	80.538 2074.414	1023 1023	141 142
203	20	600.064	1023	143
215	20	1919.791	1023	144
220	20	1918.011	1023	145
225	20	1053.224	1023	146
230	20	76.608	1023	147
235	20	-367.248	1023	148
240	20	-413.377	1023	149
245	20	-330.698	1023	150
250	20	-343.918	1023	151
255	20	-565.044	1023	152
260 265	20 20	-873.489 -1057.112	1023	153 154
270	20	-654.134	1023 1023	154
275	20	503.738	1023	156
280	20	-824.701	1023	157
285	20	388.36	1023	158
290	20	1082.333	1023	159
295	20	387.209	1023	160
300	20	-376.914	1023	161
305	20	-10982.33	1023	162
310	20	-15747.06	1023	163
310	10	-12084.42	1024	163
305	10	-5279.348	1024	162
300	10	-1785.669	1024	161
295 290	10 10	-605.521 198.453	1024	160 159
285	10	630.208	1024 1024	159 158
280	10	380.963	1024	157
275	10	-96.796	1024	156
270	10	-574.109	1024	155
265	10	-691.253	1024	154
260	10	-595.811	1024	153
255	10	-351.441	1024	152
250	10	405.94	1024	151
245	10	-2116.901	1024	150
240	10	43.948	1024	149

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
235	10	53.514	1024	148
230	10	-67.807	1024	147
225	10	240.168		146
220	10 10	624.146 1024.217	1024	145 144
215 210	10	1507.093	1024 1024	143
210 205	10	339.969	1024	142
200	10	1917.72	1024	141
200	0	-222.302	1025	141
205	0	118,366	1025	142
210 215	0	-143.877 -759.904	1025 1025	143 144
213	0	-1284.767	1025	145
225	0	-1410.104	1025	146
230	0	-1502.756	1025	147
235	0	-1214.201	1025	148
240	0	-1121.23	1025	149
245 250	0 0	-1277.259 -1444.984	1025 1025	150 151
∠30 255	0	-1315.027	1025	152
260	0	-1475.901	1025	153
265	0	-1374.145	1025	154
435	310	-28058.45	994	188
430 425	310	-26342.6 -19184.89	994 994	187 186
425 420	310 310	-19104.09	994 994	185
415	310	2188.219	994	184
410	310	2238.524	994	183
405	310	-25734.82	994	182
400	310	-29922.66	994	181
395 390	310 310	-24316.16 -14226.75	994 994	180 179
385	310	-4749.049	994	178:
435	300	-27562.82	995	188
430	300	-24850.12	995	187
425	300	-12365.01	995	186
420	300	-798.406	995	185
415 410	300 300	2422.796 3862.254	995 995	184 183
405	300	-1411.995	995	182
400	300	-12614.19	995	181
395	300	-18028.98	995	180
390	300	-3208.179	995	179
385	300	4327.725	995	178
380 375	300 300	3260.83 2480.59	995 995	. 177 176
373 370	300	1653.839	995	175
365	300	858.445	995	174
360	300	-4935.851	995	173
355	300	-3133.25	995	172
350	300	-3586.543	995	171
345 340	300	-10154.74	995	170
340	300 300	-9797.033 -25181.83	995 995	169 168
295	290	-8115.645	996	160
300	290	-8504.487	996	161
305	290	-9134.002	996	162
310	290	-7583.026	996	163
315	290	-9073.547	996	164
320 325	290	-6893.678 -3322.99	996	165
330	290 290	-3322.99 -1275.415	996: 996:	166 167
335	290	-497.522	996	168
340	290	-48.806	996	169
345	290	191.944	996	170
350	290	278.632	996	171

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
355	290	354.82	996	172
360	290	418.207	996	173
365	290	462.195	996	174
370	290	585.586	996	175
375	290	1005.701	996	176
380	290	1750.751	996	177
385	290	2530.832	996	178
390	290	2760.32	996	179
395	290	3203.604	996	180
400	290	2923.079	996	181
405	290	2818.967	996	182
410	290	2200.153	996	183
415	290	1598.744	996	184
420	290	-1700.279	996	185
425	290	-10144.36	996	186
430	290	-25457.71	996	187 188
435	290	-27204.41	996 997	
435	280	-25398.96 12378.48		188
430	280	-12378.48	997	187
425	280	-11372.19	997	186
420	280	-75.912	997	185
415	280	871.786	997	184
410	280	911.112	997	183
405	280	1170.094	997	182
400	280	1873.066	997	181
395	280	1869.754	997	180
390	280	65.224	997	179
385	280	1043.886	997	178
380	280	-653.377	997	177
375	280	-17649.21	997	176
370	280	-18845.92	997	175
365	280 280	-7008.148 -359.945	997 997	174 173
360		65.505		
355	280	166.491	997 997	172
350 345	280 280	160.491	997	171
340	280	59.465	997 : 997 :	170 169
335	280	-163.451	997	168
330	280	-550.105	997	167
325		-985.56		
	280	-905.56 -1301.674	997	166
320	280	-1451.785	997	165
310	280:	etatete e etatata eteta e e ata atata eta e	997	164
310	280	-1407.199	997	163
305	280	-1498.383	997	162
300	280	-1592.021	997	161
295	280	-1364.833	997	160
290	280	-790.647	997	159
285	280	-495.96	997	158
280	280	-431.672	997	157
275	280	-572.085	997	156
270	280	-5381.907	997	155
265	280	-4046.026	997	154
260	280	-3540.437	997	153
255	280	-6978.75	997	152
260	270	-388.928	998	153
265	270	-229.942	998	154
270	270	51.973	998	155
275	270	-107.068	998	156
280	270	<i>-</i> 215.579	998	157
285	270	-262.79	998	158
290	270	-324.103	998	159
295	270	-367.813	998	160
300	270	-481.924	998	161
205	270	-548.41	998	162
305	~~~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
310	270	-449.16	998	163

	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
320	270	-283.081	998	165
325	270	-261.991	998	166
330	270	-148.104	998	167
335	270	27.885	998	168
340	270	176.999	998	169
345	270	219.561	998	170
350	270	242.551	998	171
355	270	178.141	998	172
360	270	-105.671	998	173
365	270	-615.684	998	174
370	270	-8218.978	998	175
375	270	-4746.027	998	176
380	270	-583.849	998	177
385	270	386.439	998	178
390	270	-387.269	998	179
395	270	379.679	998	180
400	270	210.77	998	181
405	270	35.857	998	182
410	270	243.749	998	183
415	270	1151.219	998	184
420	270	524.17	998	185
425	270	-7288.041	998	186
430	270	-26926.25	998	187
435	270	-29720.76	998	188
435	260	-31237.21	999	188
430	260	-26464.22	999	187
425	260	-7390.438	999	186
420	260	405.038	999	185
415	260	792.452	999	184
410	260	1252.503	999	183
405	260	1104.689	999	182
400	260	1111.476	999	181
395	260	-2723.622	999	180
390	260	1379.124	999	179
385	260	1403.913	999	178
380	260	1685.588	999	177
375	260	-1937.707	999	176
370	260	-1190.552	999	175
365	260	2225.126	999	174
360	260	1204.301	999	173
355	260	692.59	999	172
350	260	399.102	999	171
345	260	304.163	999	170
340	260	261.251	999	169
335	260	277.338	999	168
330	260	223.626	999	167
325	260	13.714	999	166
320	260	-204.099	999	165
315	260	-168.684	999	164
310	260	34.877	999	163
305	260	192.658	999	162
300	260	383.643	999	161
295	260	335.83	999	160
290	260	131.417	999	159
285	260:	9.132	999	158
280	260	-1.709	999	157
275	260	-108.919	999	
* * * * * * * * * * * * * * * * * * * *				156
270	260	-142.334	999	155
265	260	-233.245	999	154
260	260	-251.654	999	153
260	250	-146.23	1000	153
265	250	-160.868	1000	154
270	250	-55.707	1000	155
275	250	180.081	1000	156
280	250	461.092	1000	157

X-Coord	Y-Coord	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
290	250	674.545	1000	159
295	250	841.831	1000	160
300	250	1103.609	1000	161
305 310	250 250	883.899 494.087	1000 1000	162 163
310	250 250	95.066	1000	164
320	250 250	-220.746	1000	165
325	250	-17.458	1000	166
330	250	365.831	1000	167
335	250	591.922	1000	168
340 345	250 250	596.909 510.921	1000 1000	169 170
350	250	816.386	1000	171
355	250	1509.464	1000	172
360	250	1672.15	1000	173
365	250 250	1958.139	1000	174
370 375	250 250	2561.331 2322.332	1000	175 176
380	250 250	1276.496	1000	177
385	250 250	1545.581	1000	178
390	250	1572.87	1000	179
395	250	1663.359	1000	180
400	250	1355.344	1000	181
405 410	250 250	985.332 -511.652	1000	182 183
415	250 250	-2.992	1000	184
420	250	<i>-</i> 724.402	1000	185
425	250	-9183.214	1000	186
430	250	-27737.52	1000	187
435 435	250 240	-31297.53 -32576.2	1000 1001	188 188
430 430	240	-25056.81	1001	187
425	240	-7525.249	1001	186
420	240	-43.557	1001	185
415	240	443.324	1001	184
410 405	240 240	771.102 -3814.933	1001 1001	183 182
400	240	1324,94	1001	181
395	240	1277.928	1001	180
390	240	786.818	1001	179
385	240	1207.989	1001	178
380	240	966.575	1001	177
375 370	240 240	765.362 785,35	1001 1001	176 175
365	240	703.138	1001:	173
360	240	666.925	1001	173
355	240	689.838	1001	172
350	240	617.398	1001	171
345 340	240 240	682.282 818.669	1001	170
340	240 240	663.699	1001 1001	169 168
330	240	451.784	1001	167
325	240	329.976	1001	166
320	240	393.663	1001	165
315	240	413.079	1001	164
310	240	405.738	1001	163
305 300	240 240	592.631 611.703	1001	162 161
295	240	593.189	1001	160
290	240	593.603	1001	159
285	240	602.762	1001	158
280	240	527.149	1001	157
275	240	328.54	1001	156
270 265	240	157.029	1001	155
265 260	240 240	218.417 186.605	1001	154 153
200	Z4U;	100.003	1001	100

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
260	230	30.487	1002	153
265	230	62.874	1002 1002	154
270	230	302.341		155 156
275	230	758.927 1423.934	1002 1002	157
280 285	230 230	2191.893	1002	158
290	230	2310.979	1002	159
295	230	2272.071	1002	160
300	230	1851.146	1002	161
305	230	1079.264	1002	162
310	230	532.113	1002	163
315	230	449.004	1002	164
320	230	397.193	1002	165
325	230	298.78	1002	166
330	230	284.973	1002	167
335	230	297.963	1002	168
340	230	263.953	1002	169
345	230	195.467	1002	170
350	230	275.829	1002	171
355	230	385.703	1002	172
360	230	369.49	1002	173
365	230	348.279	1002	174
370	230	466.869	1002	175
375	230	494.883	1002 1002	176 177
380 385	230 230	665,945 805,838	1002	178
390	230	790.623	1002	179
395	230	633.404	1002	180
400	230	731.585	1002	181
405	230	701.403	1002	182
410	230	559.766	1002	183
415	230	439.051	1002	184
420	230	222.243	1002	185
425	230	-6509.472	1002	186
430	230	-23627.48	1002	187
435	230	-31139.09	1002	188
435	220	-27332.71	1003	188
430	220	-23878.04	1003	187
425	220	-7568.257	1003	186
420	220	-1092.981	1003	185
415	220	320.408	1003	184
410	220	423.896	1003	183
405	220	453.083	1003	182
400	220	455.871	1003	181
395	220	573.057	1003	180
390	220	659.67	1003	179
385	220	679.033	1003	178
380	220:	558.822	1003	177
375 370	220	426.311	1003	176
365	220	365.3 415.787	1003 1003	175
360	220 220	563.675	1003	174 173
355	220	589.288	1003	173
350	220	506.651	1003	171
345	220	325.836	1003	170
340	220	225.424	1003	169
335	220	217.213	1003	168
330	220	222.298	1003	167
325	220	253.986	1003	166
320	220	342.403	1003	165
315	220	448.962	1003	164
310	220	776.538	1003	163
305	220	1679.223	1003	162
300	220	1208.806	1003	161
			, 500	.01
295	220	387.365	1003	160

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
285	220	2765.994	1003	158
280	220	2449.778	1003	157
275	220	1230.151	1003	156
270	220	629.236	1003	155
265	220	326.05	1003	154
260	220	299.008	1003	153
260	210	477.306	1004	153
265	210	616.791	1004	154 155
270	210	770.779	1004	
275	210	1011.257	1004	156 157
280	210	1560.033 1995.122	1004 1004	158
285 290	210 210	2128.898	1004	159
295	210	1917.789	1004	160
300	210	1382.404	1004	161
305	210	775.57	1004	162
310	210	379.259	1004	163
315	210	249.947	1004	164
320	210	115.334	1004	165
325	210	18.824	1004	166
330	210	21.017	1004	167
335	210	98.205	1004	168
340	210	254.184	1004	169
345	210	431.873	1004	170
350	210	540.463	1004	171
355	210	660.652	1004	172
360	210	588.84	1004	173
365	210	428.631	1004	174
370	210	344.72	1004	175
375	210	449.938	1004	176
380	210	620.189	1004	177
385	210	634.279	1004	178
390	210	512.968	1004	179
395	210	479.158	1004	180
400	210	443.049	1004	181
405	210	376.937	1004	182
410	210	266.09	1004	183
415	210	5.944	1004	184
420	210	-373.27	1004	185
425	210	-8292.679	1004	186
430	210	-25339.09	1004	187
435	210	-29772	1004	188
435	200	-29430.16	1005	188
430	200	-22879.67	1005	187
425	200	-16123.21	1005	186
420	200	323.557	1005	185
415	200	-32.057	1005	184
410	200	65.831	1005	183
405	200	270.746	1005	182
400	200	449.392	1005	181
395	200	606.377	1005	180
390	200	856.365	1005	179
385	200	1193.353	1005	178
380	200	1316.164	1005	177
375	200	930.104	1005	176
370	200	661.891	1005	175
365	200	679.98	1005	174
360	200	1029.381	1005	173
355	200	1533.539	1005	172
350	200	1756.026	1005	171
345	200	1547.213	1005	170
340	200	801.991 167.595	1005	169
~~~		167.505	1005	168
335	200			
335 330 325	200 200 200	-157.155 -320.87	1005 1005	167 166

X-Coord	V 6224	Total Field	Profito 1	Qtallon 1
X-Coord (feet)	Y-Coord. (feet)	(gammas)	Profile Number	Station Number
315	200	-155.093	1005	164
310	200	-148.815	1005	163
305	200	-241.202	1005	162
300	200	-309.448	1005	161
295 290	200 200	-217.16 -24.476	1005 1005	160 159
290 285	200	159.312	1005	158
280	200	249.324	1005	157
275	200	292.012	1005	156
270	200	354.374	1005	155
265 260	200 200	484.16 551.046	1005 1005	154 153
260 260	190	289.173	1005	153
265	190	190.67	1006	154
270	190	98.792	1006	155
275	190	54.468	1006	156
280 285	190 190	42.967 206.165	1006 1006	157 158
∠85 290	190 190	∠06.165 544.465	1006	150
295	190	218.861	1006	160
300	190	-183.619	1006	161
305	190	-310.142	1006	162
310	190	-623.742 800.443	1006	163 164
315 320	190 190	-809.443 -917.325	1006 1006	164 165
325	190	-877.627	1006	166
330	190	-693.747	1006	167
335	190	-380.749	1006	168
340	190	36.05	1006	169
345 350	190 190	456.748 748.946	1006 1006	170 171
355	190	790.966	1006	171
360	190	678.342	1006	173
365	190	577.141	1006	174
370 375	190 190	629.043	1006	175
375 380	190 190	763.94 884.74	1006 1006	176 177
385	190	855.438	1006	178
390	190	763.56	1006	179
395	190	673.935	1006	180
400 405	190	523.433	1006	181
405 410	190 190	315.831 327.431	1006 1006	182 183
415	190	212.731	1006	184
420	190	107.929	1006	185
425	190	-6115.749	1006	186
430	190	-20142.47	1006	187
435 435	190	-27337.47	1006	188
435	180 180	-26921.09 -22540.39	1007 1007	188 187
425	180	-618.193	1007	186
420	180	1193.825	1007	185
415	180	1668.802	1007	184
410	180	1587.101	1007	183
405 400	180 180	1501.499 1217.298	1007 1007	182 181
395	180	990.919	1007	180
390	180	822.493	1007	179
385	180	711.492	1007	178
380	180	742.491	1007	177
375	180	814.49	1007	176
370 365	180 180	794.289 785.487	1007 1007	175 174
360	180	920.211	1007	173
355	180	1128.586	1007	172
350	180	1175.585	1007	171

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas) [	Number	Number
345	180	779.883	1007	17
340	180	-495.597 5406.004	1007	16
335	180	-5496.024	1007	16
330	180	-4918.623	1007	16
325	180	-6045.823	1007	16 16
320	180 180	-8013.426 -5183.73	1007	16
315	180	-313.033	1007	16
310 305	180	1566.866	1007	16
300	180	1722.187	1007	16
295	180	2061.885	1007	16
290	180	1255.059	1007	15
285	180	1156.659	1007	15
280	180	444.276	1007	15
275	180	382.656	1007	15
270	180	441.553	1007	15
265	180	493.551	1007	15
260	180	552.249	1007	15
260	170	1212.488	1008	15
265	170	1459.486	1008	15
270	170	1318.883	1008	15
275	170	1006.481	1008	15
280	170	1022.679	1008	15
285	170	1364.677	1008	15
290	170	2295.996	1008	15
295	170	2693.868	1008	16
300	170	2198.386	1008	16
305	170	1521.464	1008	16
310	170	796.263	1008	16
315	170	-4931.54	1008	16
320	170	-4131.439	1008	16
325	170	-14610.74	1008	16
330	170	-13268.25	1008	16
335	170	-3960.754	1008	16
340	170	2958.443	1008	169
345	170	2694.139	1008	170
350	170	2385.539	1008	17
355	170	1743.335	1008	17:
360	170	1148.736	1008	17
365	170	947.232	1008	17
370	170	861.629	1008	17
375	170	772.429	1008	170
380	170	715.529	1008	17
385	170	747.028	1008	17
. 390	170	848.447	1008	179
395	170	1160.122	1008	180
400	170	1494.62	1008	18
405	170	1838.219	1008	182
410	170	1830.54	1008	183
415	170	1332.717	1008	184
420	170	497.813	1008	18
425	170	-24947.39	1008	180
430	170	-29821.69	1008	18
435 435	170	-35768.57 31585.03	1008	188
435	160	-31585.93	1009	188
430 425	160	-28912.93	1009	187
************************	160	-1089.527	1009	186
420	160	155.992	1009	18
415	160	-8605.936	1009	18-
410	160	1774.658	1009	183
405	160	1211.657	1009	182
400	160	1139.855	1009	18
395	160	1062.655	1009	180
390	160	799.072	1009	179
385	160	660.35	1009	178

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
375	160	592.047	1009	176
370	160	720.546	1009	175
365	160	886.764	1009	174
360	160	1090.323	1009	173
355 350	160 160	1524.443 2252.319	1009	172 171
345	160	3218.618	1009	170
340	160	2724.014	1009	169
335	160	-5079.389	1009	168
330	160	-8130.589	1009	167
325	160	-14410.89	1009	166 165
320 315	160 160	-4485.3 -5384.2	1009	164
310	160	-5990.303	1009	163
305	160	-47.804	1009	162
300	160	540.993	1009	161
295	160	978.895	1009	160
290	160	1281.092	1009 1009	159 158
285 280	160 160	1423.091 1412.789	1009	157
275	160	1262.589	1009	156
270	160	1094.309	1009	155
265	160	929.985	1009	154
260	160	874.182	1009	153
260 265	150 150	1117.667 1275.767	1010 1010	153 154
270	150	1675.165	1010	154
275	150	2376.066	1010	156
280	150	3044.963	1010	157
285	150	3005.262	1010	158
290	150	2275.561	1010	159
295 300	150 150	1433,861 801,36	1010	160 161
305	150	187,655	1010	162
310	150	-412.122	1010	163
315	150	-2448.525	1010	164
320	150	1327.353	1010	165
325	150 150	2841.351	1010	166 167
330 335	150	3648.048 3541.569	1010	167 168
340	150	2556.046	1010	169
345	150	1829.846	1010	170
350	150	1351.743	1010	171
355	150	1004.742	1010	172
360	150	778.241	1010	173
365 370	150 150	635.74 756.261	1010 1010	174 175
375	150	909.959	1010	175
380	150	998.237	1010	177
385	150	1026.338	1010	178
390	150	1188.934	1010	179
395	150	1256.234	1010	180
400 405	150 150	1112.334 910.13	1010	181 182
410	150	795.833	1010	183
415	150	795.15	1010	184
420	150	616.029	1010	185
425	150	-1680.471	1010	186
430	150	-20990.17	1010	187
435	150	-30928.67	1010	188
435 430	140 140	-24911.48 -9072.981	1011 1011	188 187
425	140	-3072.981	1011	186
420	140	743.215	1011	185
415	140	894.513	1011	184
410	140	885.41	1011	183

X-Coo	********	Y-Coord.	Total Field	Profile	Station
(feet)		(feet)	(gammas)	Number	Number
	405	140	1066.909	1011	182
	400	140	1216.527	1011	181
	395	140	1188.403	1011 1011	180 179
	390 385	140 140	1275.105 1413.303	1011	179 178
· · · · · · · · · · · · · · · · · · ·	380	140	1432.9	1011	177
	375	140	1232.699	1011	176
	370	140	696.6	1011	175
	365	140	387.32	1011	174
	360	140	293.195	1011	173
	355	140	524.796	1011	172
	350	140	893.494	1011	171
	345	140	1404.094	1011	170
	340	140	1989.092	1011	169
	335	140	2514.188	1011	168 167
.,	330	140 140	2972.987 2783.986	1011 1011	166
	325 320	140	2260.785	1011	165
	315	140	1831.682	1011	164
	310	140	1595.902	1011	163
	305	140	1497.481	1011	162
	300	140	1520.28	1011	161
	295	140	1877.579	1011	160
	290	140	2402.078	1011	159
	285	140	2798.776	1011	158
	280	140	2944.394	1011	157 156
	275 270	140 140	2574.074 1930.471	1011 1011	155
	265	140	1494.072	1011	154
	260	140	1372.168	1011	153
	260	130	1304.207	1012	153
	265	130	1322.383	1012	154
	270	130	1378.98	1012	155
	275	130	1461.28	1012	156
	280	130	1612.08	1012	
	285	130	1852.879	1012	
	290	130	2144.179	1012	·• · · · · · · · · · · · · · · · · · ·
	295	130	2287.699 2316.995	1012 1012	
	300 305	130 130	2310.993	1012	
	310	130	2659.674	1012	
	315	130		1012	\$
	320	;	de la colonia de la calación de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia d	1012	
	325		3286.163	. 1012	• • • • • • • • • • • • • • • • • • • •
	330	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t		1012	·!
	335	130		1012	
	340			1012	
	345			1012	
	350	<		1012	·
	355			1012	
	360		¿	1012	. <b> </b>
	365	operation and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and		1012 1012	
: : :	370 375			1012	
	380	e de la la la la la la la la la la la la la	********************	1012	
	385		<b></b>	1012	
*********	390	ta figura de talante de la caractería de la caractería de la caractería de la caractería de la caractería de l		1012	والمنافظة والمنافظة والمنافرة والواوية والمنافرة والمالية والمالية والمنافرة والمالة
······································	395		· · · · · · · · · · · · · · · · · · ·	1012	
	400		All and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the seco	1012	181
	405	• • • • • • • • • • • • • • • • • • • •	<b></b>		. · · · · · · · · · · · · · · · · · · ·
	410			1012	183
	415		1316.44	effective and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contract and a contr	
	420		·	. <b></b>	
	425	and the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contr	a lighter transport and the transport of the transport of the terral transport of the terral transport of the transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the terral transport of the	والمراوية والمراوية والمعارض والمراوية والمراوية والمراوية والمراوية والمراوية والمراوية	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
ļ	430	4			• 💸 • • • • • • • • • • • • • • • • • •
:	435	130	-31720.86	1012	188

X-Coord	Y-Coord	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
295	140	1872.157	1011	160
300	140	1512.556	1011	161
305	140	1515.7	1011	162
310 315	140 140	1669.648	1011 1011	163 164
· · · · · · · · · · · · · · · · · · ·	140 140	1784.849 2265.144	1011	165
320 325	140	2990.24	1011	166
330	140	2989.635	1011	167
335	140	2506.981	1011	168
340	140	1986.831	1011	169
345	140	1438.028	1011	170
350	140	789.826	1011	171
355	140	228.222	1011	172
360	140	-1123.288	1011	173
365 370	140 140	-4527.293 -7389.297	1011 1011	174 175
375	140	-1444.854	1011	176
380	140	436.195	1011	177
385	140	461.692	1011	178
390	140	-288.914	1011	179
395	140	914.381	1011	180
400	140	-2269.08	1011	181
405	140	-787.783	1011	182
410	140	-2169.889	1011	183
415	140	-1074.691	1011	184 185
420 425	140 140	-4119.548 -14691.4	1011 1011	186
430	140	-27687.2	1011	187
435	140	-30609.9	1011	188
435	130	-31350.26	1012	188
430	130	-26095.72	1012	187
425	130	-27034.62	1012	186
420	130	-3696.024	1012	185
415	130	-4066.131	1012	184
410	130	-3071.137	1012	183
405	130	-794.339	1012	182
400 395	130 130	-2773.043 -1120.245	1012 1012	181 180
390	130	-501.954	1012	179
385	130	-422.659	1012	178
380	130	-983.662	1012	177
375	130	-9194.667	1012	176
370	130	-15926.12	1012	175
365	130	-14702.17	1012	174
360	130	-5845.681	1012	173
355	130	2032.361	1012	172
350	130	-2298.157	1012	171
345 340	130	-1381.408	1012	170
335	130 130	-244.61 2045.587	1012 1012	169 168
330	130	2209.686	1012	167
325	130	2560.882	1012	166
320	130	-3758.675	1012	165
315	130	2777.37	1012	164
310	130	2511.965	1012	163
305	130	2196.463	1012	162
300	130	2191.363	1012	161
295	130	2159.66	1012	160
295	120	754.542	1013	160
300	120	470.088	1013	161
305	120	-3418.565	1013	162
310	120	-6355,268	1013	163
315 320	120 120	406.728	1013	164 165
	120:	2906.324	1013	165
325	120	2225.267	1013	166

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
335	120	-380.292	1013	168
340	120	-958.893	1013	169
345	120	-806.196	1013	170
350	120	-532.551	1013	171
355	120	-2658.103	1013	172
360	120	-10300.4	1013	173
365	120	-14416.21	1013	174
370	120	-15134.01	1013 1013	175
375	120	-10256.71	·····	176
380	120	2554.281 940.473	1013 1013	177 178
385 390	120 120	175.369	1013	179
395	120	-2231.441	1013	180
400	120	-3996.647	1013	181
405	120	-4068.956	1013	182
410	120	-5610.361	1013	183
415	120	-4011.065	1013	184
420	120	-8407.067	1013	185
425	120	-17134.97	1013	186
430	120	-28553.22	1013	187
435	120	-32336.07	1013	188
435	110	-30543.67	1014	188
430	110	-25923.29	1014	187
425	110	-15099.22	1014	186
420	110	-7565.069	1014	185
415	110	-1656.416	1014	184
410	110	-1274.631	1014	183
405	110	-1811.843	1014	182
400	110	83.016	1014	181
395	110	1028.664	1014	180
390	110	1546.789	1014	179
385	110	1984.871	1014	178
380	110	2077.156	1014	177
375	110	1656.813	1014	176
370	110	-7170.815	1014	175
365	110	-24646.04	1014	174
360	110	-28412.75	1014	173
355	110	-28831.87	1014	172
350	110	-26256.02	1014	171
345	110	-16719.3	1014	170
340	110	-18031.22	1014	169
3/5	100	-26045.32	1015	1/6
380 385	100	-16516.81 -11202.21	1015	177
******	100		1015	178 170
390 395	100	3920.703 1671.205	1015 1015	179
395 400	100 100	1389.692	1015	180 181
405	100	-752.834	1015	
410	100	-752.65 <del>4</del> -931.144	1015	182 183
415	100	-931.1 <del>44</del> -1666.257	1015	184
420	100	-1000.237 -5201.372	1015	185
425	100	-14883.92	1015	186
430	100	-29053.2	1015	187
435	100	-30799.11	1015	188
440	100	-30799.11	1015	189
380	70	1775.999	1013	177
385	70.	1211.788	1018	177
390	70	-43.422	1018	179
395	70	-760.538	1018	180
400	70	-14383.95	1018	181
405	70	-12995.8	1018	182
410	70	-9433.888	1018	183
415	70	-15820.12	1018	184
420	70	-31327.13	1018	185
425	70	-32699.34	1018	186
			1018	

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
435	70	-30863	1018	188
440	70	-30842.87	1018	189
440	80	-30843.63	1017	189
435	80	-30922.99	1017	188
430	80	-31938.7	1017	187
425	80	-26754.77	1017	186
420 415	80:	-1444.455 -14922.08	1017 1017	185 184
410	80 80	-14922.06	1017:	183
405	80	-2467.522	1017	182
400	80	-502.873	1017	181
395	80	244,755	1017	180
390	80	680.33	1017	179
385	80	-8044.797	1017	178
380	80	-11483.61	1017	177
375	80	-27282.06	1017	176
375	90	-30373.18	1016	176
380	90	-27952.11	1016	177
385	90	-25831.26	1016	178
390	90	-15222.37	1016	179
395	90	2118.74	1016	180
400	90	-1308.57	1016	181
405	90	-7023.985	1016	182
410	90	-1442.299	1016	183
415	90	-247.41	1016	184
420	90	-3966.534	1016	185
425	90	-23954.35	1016	186
430 435	90	-30925.66	1016	187
440	90	-32779.77 -30859.98	1016 1016	188 189
375	60	-24950.04	1019	176
380	60	-22686.46	1019	177
385	60	-10332.67	1019	178
390	60	-2857.382	1019	179
395	60	-8369.895	1019	180
400	60	-15338.65	1019	181
405	60	-17559.06	1019	182
410	60	-11467.13	1019	183
415	60	-22356.24	. 1019	184
420	60	-29653.76	1019	185
425	60	-27484.97	1019	186
430	60	-30008.69	1019	187
435	60	-30803.8	1019	188
440	60	-30712.55	1019	189
375	30	-14829.54	1022	176
380	30	-17324.82	1022	177
385	30	-24992.33	1022	178
390	30	-23550.15	1022	179
395	30	-18924.87	1022	180
400	30	-27709.44	1022	181
405	30	-25054.31	1022	182
410	30	-26206.13	1022	183
415	30	-17571.46	1022	184
420 425	30	-20107.69	1022	185
425 430	30 30	-31719.14	1022 1022	186 187
430	30:	-29769.01 -28602.03	1022	188
440	30	-26905.74		189
440	30; 40:	-20905.74 -30111.66	1022 1021	189
435	40:	-29693.58	1021	188
430	40	-23445.23	1021	187
425	40	-18447.94	1021	186
ratatatu matatatatatatatata yang atau da ya 💺	40	-22888.55	1021	185
4/01			1021:	
420 415				
420 415 410	40 40	-20606.46 -5951.635	1021 1021	184 183

X-Coord	Y-Coord	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
400	40	-11322.7	1021	181
395	40	-14700.82	1021	180
390	40	-17939.94	1021	179
385	40	-17745.35	1021	178
380	40	-15057.77	1021	177
375 375	40 50	-21973.82 -21077.66	1021 1020	176 176
380	50	-13212.92	1020	177
385	. 50	-1535.804	1020	178
390	50	-714.747	1020	179
395	50	250.38	1020	180
400	50	-760.994	1020	181
405	50	1765.395	1020	182
410	50	-4652.749	1020	183
415	50	-18035.26	1020	184
420	50	-19175.71	1020	185
425	50	-30001.43	1020	186
430 435	50 50	-30898.1 -31059.11	1020 1020	187 188
440	50:	-28800,82	1020	189
375	20	-22696.15	1020	176
380	20	-22030.13	1023	170
385	20	-21630.22	1023	178
390	20	-19087.7	1023	179
395	20	-24363.51	1023	180
415	20	-23424.3	1023	184
420	20	-8085.631	1023	185
425	20	-24455.05	1023	186
430	20	-27623.06	1023	187
435	20	-27835.21	1023	188
440	20	-28431.58	1023	189
440 435	10	-31539.15 -29806.74	1024	189
430	10 10	-29606.74 -27646.15	1024 1024	188 187
425	10	-31166.61	1024	186
420	10	-15926.88	1024	185
415	10	-15878	1024	184
410	10	-30341.91	1024	183
405	10	-18036.13	1024	182
400	10	-13424.84	1024	181
395	10	-9480.894	1024	180
390	10	-20049.4	1024	179
385	10	-28608.98	1024	178
380	10	-14144.39	1024	177
375	10	-24932.2	1024	176
375 380	0:	-25525.48 -17864.5	1025 1025	176 177
385	0	-17057.32	1025	178
390	0	-17180.13	1025	178
395	0	-22954.37	1025	180
400	0	-16159.08	1025	181
405	0	-16830.59	1025	182
410	0	-23174.6	1025	183
415	0	-23220.12	1025	184
420	0	-28981.04	1025	185
425	0	-27118.49	1025	186
430	0	-27453.17	1025	187
435	0	-27363.49	1025	188
440	0;	-27015.1	1025	189
195 190	160	2007.398	1009	140
190	160	1959.397	1009	139
180	160: 160:	1892.499 1921.897	1009	138
175	160	1856,799	1009 1009	137 136
170	160	1712.299	1009	135
165	160	1581.299	1009	134
	100;	1001.233	1003	134

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
160	160	1629.5	1009	133
155	160	1612.698	1009	132
150	160	1385.897	1009	131
145	160	1213.897	1009	130
140	160	1200.197	1009	129
135	160	1260.499	1009	128
130	160	1362.198	1009	127
125	160	1474.095	1009	126
120	160	1596.396	1009	125
115	160	1656.595	1009	124
110	160	1740,396	1009 1009	123 122
105 100	160 160	1753.3 1742.697	1009	121
95	160	1824.697	1009	120
90	160	1891.798	1009	119
85	160	1978.095	1009	118
80	160	2184.798	1009	117
75	160	2261.596	1009	116
70	160	2238.497	1009	115
65	160	2135.895	1009	114
60	160	2037.094	1009	113
55	160	1986.997	1009	112
50	160	1937.895	1009	111
45	160	1795.996	1009	110
40	160	1544.998	1009	109
35	160	1413.895	1009	108
30	160	1579.895	1009	107
25	160	1482.894	1009	106
20	160	1272.797	1009	105
15	160	927.298	1009	104
0	150	-167.305	1010	101
5	150	513,997	1010	102
10	150	693.094	1010	103
15	150	618.394	1010	104
20	150	940.093	1010	105
25	150	1230.796	1010	106
30	150	1241.893	1010	107
35	150	1241.694	1010	108
40	150	1258.995	1010	109
45	150	1386.694	1010	110
50	150	1628.592	1010	111
55	150	1724.092	1010	112
60	150	1703.893	1010	113
65	150	1618.295	1010	114
70	150	1422.295	1010	115
75	150	1312.496	1010	116
80	150	1257.592	1010	117
85	150	1191.392	1010	118
90	150	1113.295	1010	119
95	150	987.892	1010	120
100	150	938.392	1010	121
, 105	150	1064.296	1010	122
110	150	1220.794	1010	123
115	150	1276.493	1010	124
120	150	1241.993	1010	125
400		4444 600	1010	126
125	150	1144.692	ar and the financial factor of the financial factor and a financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor for the financial factor factor factor factor for the financial factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor facto	
130	150 150	1036.092	1010	127
130 135	150 150 150	1036.092 975.192	1010 1010	128
130 135 140	150 150 150 150	1036.092 975.192 1071.692	1010 1010 1010	128 129
130 135 140 145	150 150 150 150 150	1036.092 975.192 1071.692 1227.391	1010 1010 1010 1010	128 129 130
130 135 140 145 150	150 150 150 150 150 150	1036.092 975.192 1071.692	1010 1010 1010 1010 1010	128 129 130 131
130 135 140 145 150 155	150 150 150 150 150 150 150	1036 092 975 192 1071 692 1227 391 1587 392 2212 192	1010 1010 1010 1010 1010 1010	128 129 130 131 132
130 135 140 145 150 155 160	150 150 150 150 150 150 150 150	1036 092 975 192 1071 692 1227 391 1587 392 2212 192 2895 293	1010 1010 1010 1010 1010 1010 1010	128 129 130 131 132 133
130 135 140 145 150 155 160 165	150 150 150 150 150 150 150 150	1036.092 975.192 1071.692 1227.391 1587.392 2212.192 2895.293 3212.992	1010 1010 1010 1010 1010 1010 1010 101	128 129 130 131 132 133 134
130 135 140 145 150 155 160	150 150 150 150 150 150 150 150	1036 092 975 192 1071 692 1227 391 1587 392 2212 192 2895 293	1010 1010 1010 1010 1010 1010 1010	128 129 130 131 132 133

X-Coord		Y-Coord.	Total Field	Profile	Station
(feet)		(feet)	(gammas)	Number	Number
	80	150	2936.391	1010	13
a a a a a a a debetarante a arabi a a de	85	150 150	2411.892 2457.89	1010 1010	130 139
	90			1010	14
	95 95	150 140	3228.89 2887.792	1010	14
	90	140	2586.589	1011	13:
anandaha atahan yiyi ahilada atahanan t	<i>3</i> 0 85	140	3182.792	1011	138
· • • • · · · · · • · · · · · · · · · ·	80	140	1705.692	1011	13
********	75	140	2595.992	1011	130
	70	140	1761.588	1011	13
a a ala a a a ala unu u unululu u ulu ulu	65	140	1983.99	1011	13
	60	140	3262.588	1011	13
1	55	140	2184.691	1011	13:
1	50	140	1556.99	1011	13
1	45	140	1271.291	1011	13
1	40	140	1126.29	1011	129
1	35	140	983.689	1011	12
commence and a series of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the c	30	140	914.189	1011	12
1	25	140	931.088	1011	120
1	20	140	999.489	1011	12
	15	140	1052.79	1011	124
1	10	140	1026.79	1011	12:
	05	140	1030.087	1011	12
	00	140	1018.389	1011	12
	95	140	859.887	1011	120
**************	90	140	697.586	1011	119
	85	140	519.791	1011	118
	80	140	382.289	1011	117
. <b></b> . <i></i>	75	140	528.789	1011	110
and the second second	70	140	773.488	1011	115
*****************	65	140	960.488	1011	114
and the transfer for the transfer to the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the transfer for the	60 55	140	1033.488 1053.29	1011	113 113
. <b></b>	50 50	140 140	1033.29	1011	
	45	140	971.085	1011	110
*********	40	140	975.988	1011	109
ere a la companya de la companya de la companya de la companya de la companya de la companya de la companya de	35	140	1030.187	1011	108
• • • • • • • • • • • • • • • • • • • •	30	140	976.788	1011	10
a state and a second control of the	25	140	845.487	1011	100
• • • • • • • • • • • • • • • • • • • •	20	140	760.387	1011	10
the factor is the factor in the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of th	15	140	649.788	1011	10-
	10	140	719.585	1011	103
	5	140	542.487	1011	103
	0	140	-3967.314	1011	10
*************	0	130	-1808.916	1012	10
•••••	5	130	512.084	1012	102
	10	130	640.286	1012	103
<b> </b>	15	130	730.885	1012	10-
	20	130	989.788	1012	105
	25	130	1217.083	1012	106
*****	30	130	1214.185	1012	107
	35	130	1052.485	1012	108
	40	130	852.385	1012	109
	45	130	759.985	1012	110
	50	130	729.985	1012	111
	55	130	763.485	1012	112
(	60	130	798.082	1012	113
	65	130	685.787	1012	114
	70	130	484.785	1012	115
	75	130	236.785	1012	116
	80	130	129.383	1012	117
{	85	130	385.082	1012	118
(	90	130	724.383	1012	119
(	95	130	945.383	1012	120
1(	00	130	1054.786	1012	121
	05	130	1032.882	1012	

X-Coord	120.00	Y-Coord	Total Field	Profile	Station
(feet)		(feet)	(gammas)	Number	Number
	110	130	985.285	1012	123
	115	130	944.683	1012	124
	120	130	899.784	1012	125
	125	130	864.882	1012	126
>	130	130	882.581	1012	127
and the second of the second of the second	135 140	130 130	1030.684 1237.284	1012 1012	128 129
	145	130	1347.784	1012	130
herenesees and the second	150	130	1496.081	1012	131
· · · · · · · · · · · · · · · · · · ·	155	130	1876.682	1012	132
	160	130	2345.284	1012	133
	165	130	2867.284	1012	134
	170	130	3342.484	1012	135
	175	130	3507.081 3159.182	1012	136 137
	180 185	130 130	2517.483	1012 1012	138
	190	130	2174.08	1012	139
>	195	130	1997.783	1012	140
	195	120	1466.581	1013	140
************	190	120	1441.079	1013	139
<u></u>	185	120	1551.579	1013	138
	180	120	1744.579	1013	137
<b></b>	175 170	120	1895.88 1914.282	1013 1013	136 135
******	165	120 120	1760.983	1013	134
	160	120	1523.079	1013	133
	155	120	1235.282	1013	132
	150	120	977.282	1013	131
	145	120	814.18	1013	130
	140	120	774.282	1013	129
	135 130	120 120	777.481 783.981	1013 1013	128 127
	125	120	763.961 854.982	1013	127
	20	120	1062.281	1013	125
	115	120	1109.578	1013	124
1	10	120	1145.879	1013	123
	105	120	1421.281	1013	122
	100	120	2026.639	1013	121
	95	120	2529.336	1013	120
	90 85	120 120	2760.239 2421.739	1013 1013	119 118
	80	120	1851.535	1013	117
	75	120	1466.137	1013	116
	70	120	1286.24	1013	115
	65	120	1252.535	1013	114
***************	60	120	1193.637	1013	113
	55	120	1153.738	1013	112
••••••••••••••••••••••••	50 45	120	1075.836 990.136	1013	111
	40	120 120	984.636	1013 1013	110 109
	35	120	1046.536	1013	108
	30	120	1107.636	1013	107
	25	120	1173.437	1013	106
	20	120	1137.034	1013	105
	15	120	845.136	1013	104
	10	120	610.237	1013	103
· · · · · · · · · · · · · · · · · · ·	5 n	120	449.534 2664.064	1013	102
	0	120 110	-2664.964 -3084.36	1013 1014	101 101
	5	110	253.037	1014	101
	10	110	145.537	1014	102
	15	110	174.936	1014	104
	20	110	282.537	1014	105
	25	110	450.236	1014	106
	30	110	582.736	1014	107
	35	110	743.937	1014	108

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
40	110	856.638	1014	109
45	110	1006.638	1014	110
50	110	1187.935	1014	111
55	110	1406.236	1014	112
60	110	1765.036	1014	113
65	110	2169.237	1014	114
70 75	110 110	2828.236 3965.138	1014 1014	115 116
73 80	110	3223.235	1014	117
85	110	-5453.663	1014	118
90	110	-8683.265	1014	119
95	110	-1671.265	1014	120
100	110	4389.235	1014	121
105	110	2759.434	1014	122
110	110	1736.736	1014	123
115 120	110 110	1431.234 1125.637	1014 1014	124 125
120	110	853.137	1014	125
130	110	497.933	1014	127
135	110	225.433	1014	128
140	110	82.337	1014	129
145	110	-124.464	1014	130
150	110	-229.165	1014	131
155	110	340.433	1014	132
160 165	110 110	642.034 787.034	1014 1014	133 134
170	110	1029.036	1014	135
175	110	1263.733	1014	136
180	110	1170.136	1014	137
185	110	1042.136	1014	138
190	110	996.636	1014	139
195	110	953.835	1014	140
195	100	360.034	1015	140 139
190 185	100 100	254.932 -10865.67	1015 1015	138
180	100	915.733	1015	137
175	100	226.635	1015	136
170	100	-11863,36	1015	135
165	100	-13883.07	1015	134
160	100	-11498.17	1015	133
155	100	-11992.17	1015	132
150	100	-11297.07	1015	131
145	100	-10928.27	1015	130
140 135	100 100	-6128.467 -10298.36	1015 1015	129 128
130	100	-9376.364	1015	120
125	100	-1717.167	1015	126
120	100	28.834	1015	125
115	100	731.333	1015	124
110	100	1535.43	1015	123
105	100	3039.731	1015	122
100	100	-5832.969	1015	121
95 90	100 100	-5832.969 -12111.57	1015 1015	120 119
85	100	-12588.27	1015	118
80	100	-8749.569	1015	117
75	100	2550.031	1015	116
70	100	4066.429	1015	115
65	100	2717.031	1015	114
60	100	1984.632	1015	113
55	100	1538.331	1015	112
50	100	1371.93	1015	111
45	100	1312.23	1015	110
40 . 35	100 100	1279.132 1091.929	1015 1015	109 108
30	100	726.831	1015	107
		120.001	1013	107

X-Coord	Y-Coord.	Total Field	Profile	Station
(feet)	(feet)	(gammas)	Number	Number
25	100	325.928	, 1015	106
20	100	-42.771	1015	105
15	100	-306.969	1015	104
10	100	-185.869	1015	103
5	100	105.03	1015	102
0	100	-3491.47	1015	101
0	90	856.229	1016	101
5	90	-138.272	1016	102
10	90	-5075.572	1016	103
15	90	-5926.772	1016	104
20	90	-8246.771	1016	105
25 30	90 90	-5790.573 -1358.971	1016 1016	106 107
35	90	2635.529	1016	108
40	90	2411.63	1016	109
45	90	1172.028	1016	110
50	90	1656.831	1016	111
55	90	1507.927	1016	112
60	90	1715.028	1016	113
65	90	2376.028	1016	114
70	90	3345.927	1016	115
75	90	4683.428	1016	116
80	90	49.629	1016	117
85	90	174.028	1016	118
90	90	-1436.672	1016	119
95	90	3944.426	1016	120
100	90	3394.629	1016	121
105 110	90 90	1947.728	1016 1016	122 123
115	90	1066.328 307.129	1016	123
120	90	-915.672	1016	125
125	90	-3714.872	1016	126
130	90	-10141.17	1016	127
130	80	-7692.273	1017	127
125	80	-3620.872	1017	126
120	80	-2375.775	1017	125
115	80	-1640.076	1017	124
110	80	781.627	1017	123
105	80	574.828	1017	122
100	80	-1141.775	1017	121
95	80	-11153.78	1017	120
90	80	-737.975	1017	119
85	80	3628.027	1017	118
80	80	1176.224	1017	117
75	80	-1933.374	1017	116
70	80	1481.923	1017	115
65	80	1248.525	1017	114
60	80	2175.525	1017	113
55 50	80	2253.327	1017	112
45	80 80	2094.423 -11639.37	1017 1017	111 110
45 40	:00 80	-11039.37	1017	109
35	80	-68.277	1017	109
30	80	-7849.875	1017	107
25	80	-11198.87	1017	107
20	80:	-11064.17	1017	105
15	80	-11905.68	1017	104
10	80	-15988.98	1017	103
5	80	-8984.875	1017	102
0	80	-16541.68	1017	101

X-Coord	Y-Coord.	Conductivity	Profile Number	Station
(feet) 0	(feet) 240	(mmhos/m) 272.736	Number 1001	Number 101
5	240	265,962	1001	102
10	240	236.112	1001	103
15	240	226.044	1001	104
20	240	273.924	1001	105
25	240	293.52	1001	106
30	240	305.148	1001	107
35	240	268.344	1001	108
40	240	231.168	1001	109
45	240	211.488	1001	110
50	240	180.816	1001	111
55	240	177.336	1001	112
60	240	157.926	1001	113
65	240	155.73	1001	114
70	240	164.976	1001	115
75	240	177.888	1001	116
80	240	174.132	1001	117
85	240	168.546	1001	118
90	240	158.478	1001	119
95	240	147.036	1001	120
100	240	136.506	1001	121
105	240	133.848	1001	122
110 115	240 240	138.156 145.2	1001	123 124
120	240	152,526	1001	124
125	240	151.152	1001	125
130	240	144.834	1001	120
135	240	147.216	1001	128
140	240	153.624	1001	129
145	240	131.652	1001	130
150	240	124.326	1001	131
155	240	117.918	1001	132
160	240	118.836	1001	133
165	240	106.752	1001	134
170	240	96.222	1001	135
175	240	95.946	1001	136
180	240	95.034	1001	137
185	240	93.108	1001	138
190	240	95.124	1001	139
195	240	88.992	1001	140
195	230	87.066	1002	140
190	230	83.496	1002	139
185	230	88.896	1002	138
180	230	98.238	1002	137
175	230	100.344	1002	136
170	230	99.06	1002	135
165	230	101.442	1002	134
160	230	110.598	1002	133
155	230	121.032	1002	132
150	230	127.716	1002	131
145	230	152.982	1002	130
140	230	196.746	1002	129
135	230	201.324	1002	128
130	230	195.468	1002	127
125	230	191.256	1002	126
120	230	167.544	1002	125
115	230	152.346	1002	124
110	230	151.98	1002	123
105	230	148.134	1002	122
100	230	139.89	1002	121
95	230	131.652	1002	120
90	230	130.83	1002	119
85	230	123.138	1002	118
80	230	117.552	1002	117
75	230	108,948	1002	116
70	230	104.646	1002	115

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
65	230	118.194	1002	114
60	230	141.726	1002	113
55 50	230	157.836	1002 1002	112 111
50 45	230 230	160.764 139.62	1002	110
40	230	160.128	1002	109
35	230	252.87	1002	108
30	230	183.564	1002	107
25	230	158.754	1002	106
20	230	204.804	1002	105
15	230	199.77	1002	104
10	230	201.048	1002	103
5	230	171.204	1002	102
0	230	193.176	1002	101
0	220	36.624	1003	101
5	220	39.186	1003	102
10 15	220	-5.952 -61.614	1003	103 104
20	220 220	-01.014 -7.139	1003	104
25	220	40.926	1003	106
30	220	52.824	1003	107
35	220	75.9	1003	108
40	220	117.462	1003	109
45	220	112.794	1003	110
50	220	119.658	1003	111
55	220	118.284	1003	112
60	220	120.39	1003	113
65	220	120.12	1003	114
70	220	. 120.3	1003	115
75 80	220 220	119.844 133.116	1003 1003	116 117
85	220	135.588	1003	118
90	220	120.756	1003	119
95	220	142.272	1003	120
100	220	180.816	1003	121
105	220	179.532	1003	122
110	220	179.994	1003	123
115	220	183.012	1003	124
120	220	188.232	1003	125
125	220	199.038	1003	126
130	220	218.076	1003	127
135 140	220:	218.904	1003	128
140	220 220	196.656 172.212	1003 1003	129 130
150	220	152.16	1003	131
155	220	143.19	1003	132
160	220	137.238	1003	133
165	220	122.862	1003	134
170	220	111.33	1003	135
175	220	106.656	1003	136
180	220	98.874	1003	137
185	220	87.252	1003	138
190	220	88.992	1003	139
195	220	97.23	1003	140
195	210	106.842	1004	140
190	210	102.54	1004	139
185	210	117.648	1004	138
180 175	210 210	120.3 118.38	1004 1004	137
170	210	126.798	1004	136 135
165	210	139.986	1004	133
160	210	147.672	1004	133
155	210	170.748	1004	132
150	210	194.64	1004	131
145	210	202.974	1004	130
140	210	198.12	1004	129
	e entrare energia e antica una a una a una a una distribu-			

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
135	210	205.26	1004	128
130	210	214.236	1004	127
125	210	218.994	1004	126
120	210	205.716	1004	125
115	210	205.716	1004	124
110	210	218.262	1004	123
105	210	213.96	1004	122
100 95	210	212.766 209.838	1004	121 120
90	210 210	170.286	1004	119
85	210	170.200	1004	118
80	210	142.824	1004	117
75	210	128.814	1004	116
70	210	107.574	1004	115
65	210	100.614	1004	114
60	210	100.344	1004	113
55	210	95.856	1004	112
50	210	101.622	1004	111
45	210	104.922	1004	110
40	210	110.232	1004	109
35	210	117.648	1004	108
30	210	73.332	1004	107
25	210	-4.854	1004	106
20	210	4.758	1004	105
15	210	-106.752	1004	104
10	210	-170.472	1004	103
5	210	-96.221	1004	102
0	210	-23.712	1004	101
<u>0</u> ;	200	49.896	1005	101
5	200	25.176	1005	102
10	200	-79.008	1005	103
15	200	-116.088	1005	104
20:	200	-54.654	1005	105
25	200	-42.57	1005	106
30 35	200	-7.506 105 103	1005	107
40	200 200	105.192 85.512	1005 1005	108 109
45	200	88.626	1005	110
50	200	95.67	1005	111
55	200	94.758	1005	112
60	200	103.182	1005	113
65	200	101.898	1005	114
70	200	81.024	1005	115
75	200	108.672	1005	116
80	200	184.572	1005	117
85	200	187.224	1005	118
90	200	188.322	1005	119
95	200	228.696	1005	120
100	200	246.276	1005	121
105	200	241.608	1005	122
110	200	241.056	1005	123
115	200	247.74	1005	124
120	200	253.146	1005	125
125	200	253.782	1005	126
130	200	250.764	1005	127
135	200	237.396	1005	128
140	200	222.93	1005	129
145	200	218.352	1005	130
150	200	218.262	1005	131
155	200	203.064	1005	132
160	200	182.1	1005	133
165	200	169.374	1005	134
170	200	161.04	1005	135
175	200	153.348	1005	136
180	200	156.186	1005	137
185	200	162.048	1005	138
	******************			. <b> </b>

X-Coord	1	Y-Coord.	Conductivity	Profile	Station
(feet)		(feet)	(mmhos/m)	Number	Number
	190	200	147.582	1005	139
<b></b>	195	200	128.724	1005	140
	195	190	148.224	1006	140
	190	190	138.336	1006	139
and the second second second second second	185	190	132.57	1006	138
· · · · · · · · · · · · · · · · · · ·	180	190	165.162	1006	137
	175	190	172.758	1006	136
	170	190	182.742	1006	135
	165	190	200.226	1006	134
	160	190	225.312	1006	133
	155	190	257.082	1006	132
***************************************	150	190	250.032	1006	131
	145	190	· 268.8	1006	130
	140	190	278.046	1006	129
	135	190	277.224	1006	128
	130	190	261.198	1006	127
	125	190	261.66	1006	126
	120	190	274.476	1006	125
	115	190	281.892	1006	124
	110	190	282.714	1006	123
	105	190	293.244	1006	122
. a l'anni de la l'anni de la l'anni de l'anni de l'anni de l'anni de l'anni de l'anni de l'anni de l'anni de l	100	190	290.682	1006	121
	95	190	305.784	1006	120
	90	190	265.686	1006	119
	85	190	203.34	1006	118
	80	190	138.888	1006	117
	75	190	115:176	1006	116
	70	190	112.608	1006	115
	65	190	114.438	1006	114
are e ere elela a a ele alela alula a	60	190	108.216	1006	113
	55	190	99.336	1006	112
	50	190	102.354	1006	111
•••••	45	190	104.46	1006	110
to eta atata a ata atatatatatata o a a	40 35	190 190	84.78 109.68	1006 1006	109 108
	30	190	125.976	1006	107
	25	190	87.798	1006	107
	20	190	116.364	1006	105
	15	190	67.014	1006	103
	10	190	59.418	1006	103
	5	190	113.34	1006	103
••••••••••		190	244.446	1006	101
	195	180	308.442	1007	140
	190	180	282.534	1007	139
efecte temperature and temperature to the fertility of the fertility of	185	180	231.906	1007	138
	180	180	201.966	1007	137
	175	180	214.968	1007	136
*********	170	180	247.194	1007	135
	165	180	256.986	1007	134
· • • • • • • • • • • • • • • • • • • •	160	180	262.392	1007	133
enemente e la late la laterata late latera la l	155	180	263.214	1007	132
. <b></b>	150	180	254.334	1007	131
	145	180	259.92	1007	130
	140	180	266.604	1007	129
	135	180	267.702	1007	129
. <b></b>	130	180	262.848	1007	127
	125	180	274.02	1007	126
	120	180	298.734	1007	125
e a de a latatat al a a a a a a a a a a a	115	180	321.714	1007	123
· · · · · · · · · · · · · · · · · · ·	110	180	309.816	1007	123
And the figure flat for the figure flat flat flat flat flat flat flat flat	105	180	312.378	1007	122
	100	180	320.802	1007	121
	95	180	283.902	1007	120
•••••	90	180	204.162	1007	119
	~~:	100:	207.10Z	1007	119
************	85	180	149.598	1007	118

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
75	180	154.818	1007	116
70	180	147.768	1007	115
65	180	115.632	1007	114
60	180	98.508	1007	113
55	180	94.938	1007	112
50	180	98.238 86.244	1007 1007	111
45 40	180 180	107.394	1007	110 109
35	180	185.394	1007	108
30	180	16.752	1007	107
25	180	-101.166	1007	106
20	180	-53.286	1007	105
15	180	-195.006	1007	104
10	180	61.524	1007	103
5	180	82.398	1007	102
0	180	253.236	1007	101
0	170	125.43	1008	101
5	170	61.524	1008	102
10 15	170 170	59.784 20.322	1008 1008	103 104
20	170	-42.023	1008	104
25	170	54.654	1008	106
30	170	41.838	1008	107
35	170	106.752	1008	108
40	170	91.368	1008	109
45	170	89.172	1008	110
50	170	92.1	1008	111
55	170	91.368	1008	112
60	170	90.636	1008	113
65	170	96.498	1008	114
70 75	170 170	105.924 126.984	1008 1008	115 116
80	170	175.416	1008	117
85	170	258.546	1008	118
90	170	307.62	1008	119
95	170	243.162	1008	120
100	170	164.064	1008	121
105	170	194.364	1008	122
110	170	306.246	1008	123
115	170	331.512	1008	124
120	170	291.78	1008	125
125	170	257.904	1008	126
130	170	239.226	1008	127
135 140	170 170	224.214 225.768	1008 1008	128 129
145	170	230.898	1008	129
150	170	252.96	1008	131
155	170	276.948	1008	132
160	170	275.754	1008	133
165	170	250.122	1008	134
170	170	201.51	1008	135
175	170	184.386	1008	136
180	170	245.454	1008	137
185	170	283.998	1008	138
190	170	282.9	1008	139
195	170	273.468	1008	140
295	270	101.166	998	160
290	270	131.742	998	159
285	270 270	125.7	998	158
200	2713.	132.57	998	157
280 275	and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra	116 454	000.	
275	270	116.454 143.646	998	156
275 270	270 270	143.646	998	155
275 270 265	270 270 270	143.646 120.486	998 998	155 154
275 270	270 270	143.646	998	155

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
245	270	82.854	998	150
240	270	73.152	998	149
235	270	92.928	998	148
230	270	98.052	998	147
225	270	93.564	998	146
220	270	112.338	998	145
165	260	70.494	999	134
170	260	83.04	999	135
175	260	109.314	999	136
180	260	87.618	999	137
185	260	125.7 107.208	999 999	138 139
190 195	260 260	107.208	999	140
200	260	116.73	999	141
205 205	260	114.438	999	142
210	260	104.46	999	143
215	260	93.84	999	144
220	260	82.674	999	145
225	260	86.058	999	146
230	260	99.426	999	147
235	260	108.948	999	148
240	260	117.738	999	149
245	260	108.672	999	150
250	260	126.252	999	151
255	260	146.76	999	152
260	260	120.486	999	153
265	260	91.92 111.51	999 999	154 155
270 275	260	133.116	999	156
280	260 260	184.752	999	157
285	260	153.348	999	158
290	260	157.014	999	159
295	260	104.37	999	160
295	250	105,288	1000	160
290	250	121.122	1000	159
285	250	138.246	1000	158
280	250	112.152	1000	157
275	250	76.17	1000	156
270	250	74.43	1000	155
265	250	80.016	1000	154
260	250	96.774	1000	153
255	250	112.518	1000	152
250	250	130.374	1000	151
245	250 250	123.504	1000	150
240 235	250 250	123.504 87.618	1000	149 148
230	250 250	62.622	1000	140
230	250	90.546	1000	146
220	250	134.58	1000	145
215	250	123.87	1000	144
210	250	112.062	1000	143
205	250	87.888	1000	142
200	250	98.508	1000	141
195	250	101.808	1000	140
190	250	97.596	1000	139
185	250	96.588	1000	138
180	250	104.922	1000	137
175	250	100.614	1000	136
170	250	109.224	1000	135
165	250	110.412	1000	134
160	250	134.946	1000	133
155	250	123.324	1000	132
150	250	155.82	1000	131
145	250	153.444	1000	130
140	250	155.916	1000	129
135	250	138.156	1000	128

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
195	240	90.18	1001	140
200	240	86.244	1001	141
205	240	87.798	1001	142
210	240	100.344	1001	143
215	240	125.064	1001	144 145
220 225	240 240	118.194 75.258	1001 1001	145
230	240	42.756	1001	147
235	240	82.578	1001	148
240	240	118.746	1001	149
245	240	122.958	1001	150
250	240	122.04	1001	151
255 260	240 240	100.344 51.45	1001 1001	152 153
265 265	240	69.396	1001	153
270	240	142.728	1001	155
275	240	149.688	1001	156
280	240	111.966	1001	157
285	240	114.072	1001	158
290	240	121.032	1001	159
295 295	240	99.978	1001	160 160
295 290	230 230	80.568 99.882	1002 1002	160 159
285	230	100.434	1002	158
280	230	101.898	1002	157
275	230	131.01	1002	156
270	230	124.788	1002	155
265	230	56.214	1002	154
260	230	24.444	1002	153
255 250	230 230	82.764 124.056	1002 1002	152 151
245	230	127.53	1002	150
240	230	128.268	1002	149
235	230	94.206	1002	148
230	230	46.506	1002	147
225	230	59.874	1002	146
220 215	230	111.51	1002 1002	145
210	230 230	123.324 107.118	1002	144 143
205	230	94.026	1002	142
200	230	85.05	1002	141
195	230	88.992	1002	140
195	220	98.874	1003	140
200	220	104.184	1003	141
205	220	107.028	1003	142
210 215	220 220	106.566 114.99	1003 1003	143 144
220	220	121.032	1003	1 <u>44</u> 145
225	220	92.376	1003	146
230	220	54.84	1003	147
235	220	60.702	1003	148
240	220	100.344	1003	149
245	220	127.992	1003	150
250	220	135.954	1003	151
255 260	220 220	101.622 13.914	1003 1003	152 153
265	220	-17.484	1003	154
270	220	48.612	1003	155
275	220	85.692	1003	156
280	220	100.614	1003	157
285	220	86.058	1003	158
290	220	83.772	1003	159
295	220	68.388	1003	160
295 290	210 210	64.362 84.504	1004 1004	160 159
285	210	107.76	1004	158
:				100

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
280	210	115.998	1004	157
275		113.436	1004	156
270	210	73.428	1004	155
265		7.326	1004	154
260	210	31.494	1004	153
255	210	84.594	1004	152
250	210	135.954	1004	151
245	210	130.554	1004	150
240	210	102.084	1004	149
235		55.026	1004	148
230		47.424	1004	147
225	210	103.914	1004	146
220	· ·. · · · · · · · · · · · · · · · · ·	127.992	1004	145
215		126.528	1004	144
210		122.958	1004	143
205		126.798	1004	142
200		117.738	1004	141
195	~	107.664	1004	140
195	••••••••	130.644	1005	140
200		134.49	1005	141
205		148.314	1005	142
210		176.058	1005	143
215		187.956	1005	144
220		178.344	1005	145
225	• -	139.62	1005	146
230		90.456	1005	147
235		81.942	1005	148
240 245		117.282 122.772	1005 1005	149 150
250		124.056	1005	151
255 255	te Caracana na na amin'ny fivondrona na	128.634	1005	152
260	************	85.146	1005	153
265		38.268	1005	154
270	• • • • • • • • • • • • • • • • • • • •	64.362	1005	155
275	and the second and the second and the second and the second	115.266	1005	156
280		127.44	1005	157
285	**********	117.738	1005	158
290	• 4. • • • • • • • • • • • • • • • • • •	100.71	1005	159
295	and the second second second second second	49.896	1005	160
295	***************************************	65.916	1006	160
290	etiforen er en er en er en er en en en en en en en en en en en en en	104.556	1006	159
285		120.12	1006	158
280		120.486	1006	157
275		117.186	1006	156
270		103.182	1006	155
265		84.318	1006	154
260		90.636	1006	153
255		114.258	1006	152
250		125.334	1006	151
245		129	1006	150
240	e proceso e e e e e e e e e e e e e e e e e e	115.998	1006	149
235	********************************	100.434	1006	148
230	ara in anti-anti-anti-anti-anti-anti-anti-anti-	124.146	1006	147
225		176.88	1006	146
220		195.924	1006	145
215	• • • • • • • • • • • • • • • • • • • •	177.798	1006	144
210	***************************************	166.35	1006	143
205		175.506	1006	142
200		170.838	1006	141
195	•••••••••	166.812	1006	140
195	Angle Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Ca Angle Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Ca	295.992	1007	140
200		301.392	1007	141
205		270.444	1007	142
210	`····	235.566	1007	143
		243.894	1007	144
215	; 100:	2 10.00-1	1007.	

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
225	180	208.56	1007	146
230	180	140.166	1007	147
235	180	108.858	1007	148
240	180	117.282	1007	149
245	180	135.408	1007	150
250 255	180	132.474 124.056	1007 1007	151 152
260	180 180	114.072	1007	153
265	180	113.34	1007	154
270	180	131.652	1007	155
275	180	146.94	1007	156
280	180	145.752	1007	157
285	180	155.454	1007	158
290	180	129.366	1007	159
295	180	87.252	1007	160
295 290	170 170	123.048 161.868	1008 1008	160 159
285	170	199.218	1008	158
280	170	174,684	1008	157
275	170	165.342	1008	156
270	170	141.174	1008	155
265	170	120.39	1008	154
260	170	128.634	1008	153
255	170	143.28	1008	152
250	170	151.428	1008	151
245	170	163.332	1008	150
240	170	161.772	1008	149 148
235 230	170 170	137.784 138.336	1008	147
225	170	162.048	1008	146
220	170	182.28	1008	145
215	170	213.684	1008	144
210	170	241.974	1008	143
205	170	231.63	1008	142
200	170	229.248	1008	141
195	170	238.038	1008	140
195	160	321.258	1009	140
200	160	275.298 284.73	1009	141 142
205 210	160 160	312.288	1009 1009	143
215	160	264.036	1009	144
220	160	199.95	1009	145
225	160	191.988	1009	146
230	160	188.418	1009	147
235	160	190.524	1009	148
240	160	199.218	1009	149
245	160	189.054	1009	150
250	160	174.408	1009	151
255	160	166.992	1009	152
260	160	137.148	1009	153
265 270	160 160	134.766 156.462	1009 1009	154 155
275	160	208.56	1009	156
280	160	229.524	1009	157
285	160	236.664	1009	158
290	160	230.346	1009	159
295	160	203.064	1009	160
295	150	242.43	1010	160
290	150	270.996	1010	159
285	150	266.508	1010	158
280	150	273.282	1010	157
275	150	276.858	1010	156
270	150	238.128	1010	155
265	150	189.972	1010	154
260	150	175.23	1010	153

X-Coord	Y-Coord	Conductivity	Profile	Station
A-Coord (feet)	(feet)	(mmhos/m)	Number	Number
250	150	223.752	1010	151
245	150	216.888	1010	150
240	150	219.45	1010	149
235	150	215.604	1010	148
230	150	250.122	1010	147
225	150	264.954	1010 1010	146 145
220 215	150 150	226.044 229.062	1010	144
210	150	299.466	1010	143
205	150	348.816	1010	142
200	150	341.034	1010	141
195	150	332.244	1010	140
195	140	325.38	1011	140
200	140	340.392	1011	141 142
205 210	140 140	340.944 301.302	1011 1011	143
215	140	216.978	1011	144
220	140	212.034	1011	145
225	140	262.026	1011	146
230	140	276.216	1011	147
235	140	284.454	1011	148
240	140	342.774	1011 1011	149 150
245 250	140 140	388.092 381.228	1011	150
250 255	140	310.728	1011	152
260	140	278.136	1011	153
265	140	276.306	1011	154
270	140	272.916	1011	155
275	140	283.446	1011	156
280	140	337.83	1011	157
285 290	140 140	360.168 326.934	1011 1011	158 159
295	140	255.066	1011	160
295	130	385.62	1012	160
290	130	394.32	1012	159
285	130	380.31	1012	158
280	130	411.894	1012	157
275	130	405.762	1012	156
270 265	130 130	338.106 351.198	1012 1012	155 154
260	130	377.286	1012	153
255	130	356.778	1012	152
250	130	326.022	1012	151
245	130	330.594	1012	150
240	130	333.066	1012	149
235	130	273.378	1012	148
230 225	130 130	236.94 232.728	1012 1012	147 146
220	130	242.064	1012	145
215	130	263.58	1012	144
210	130	248.568	1012	143
205	130	242.34	1012	142
200	130	248.748	1012	141
195	130	257.448	1012	140
195 200	120 120	233.094	1013	140 141
200 205	120	225.492 168.366	1013 1013	141 142
210	120	150.786	1013	143
215	120	168	1013	144
220	120	199.494	1013	145
225	120	176.604	1013	146
230	120	161.958	1013	147
235	120	173.124	1013	148
240 245	120	213.228	1013	149
245 250	120 120	263.028 231.534	1013 1013	150
∠30:	120	231.534	1013	151

X-Coord	Y-Coord	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
255	120	240.42	1013	152
260	120	231.906	1013	153
265	120	244.722	1013	154
270	120	256.254	1013	155
275 280	120 120	330.69 328.122	1013 1013	156 157
285	120	270.174	1013	158
290	120	268.98	1013	159
295	120	292.878	1013	160
295	110	618.162	1014	160
290	110	218.904	1014	159
285 280	110 110	221.832 250.578	1014 1014	158 157
275	110	264.864	1014	156
270	110	176.058	1014	155
265	110	98.142	1014	154
260	110	78	1014	153
255	110	73.062	1014	152
250 245	110 110	46.782 82.764	1014 1014	151 150
245	110	111.696	1014	149
235	110	124.422	1014	148
230	110	139.344	1014	147
225	110	169,74	1014	146
220	110	210.756	1014	145
215 210	110 110	203.34 176.328	1014 1014	144 143
205	110	164.61	1014	143
200	110	176.604	1014	141
195	110	506.652	1014	140
195	100	479.646	1015	140
200	100	292.602	1015	141
205	100	249.936	1015	142
210 215	100 100	216.522 200.682	1015 1015	143 144
220	100	189.33	1015	145
225	100	142.272	1015	146
230	100	102.906	1015	147
235	100	126.162	1015	148
240	100	123.048	1015	149
245 250	100 100	136.596 216.708	1015 1015	150 151
255 255	100	175.692	1015	152
260	100	114.534	1015	153
265	100	126.618	1015	154
270	100	143.004	1015	155
275	100	163.512	1015	156
280	100	177.336	1015	157
285 290	100 100	188.052 198.672	1015 1015	158 159
290 295	100	190.072	1015	160
310	90	89.082	1016	163
305	90	169.92	1016	162
300	90	159.852	1016	161
295	90	178.71	1016	160
290	90:	162.324	1016	159
285 280	90	134.946 118.38	1016	158 157
260 27 <b>5</b>	90:	131.928	1016 1016	157
270	90	146.394	1016	155
265	90	138.156	1016	154
260	90	134.58	1016	153
255	90	142.824	1016	152
250	90	145.476	1016	151
245	90	148.134	1016	150
240	90	146.208	1016	149

X-Coord	Y-Coord	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
235	90	126.528	1016	148
230	90	89.172	1016	147
225	90	106.752	1016	146
220	90	162.87	1016	145
215	90	183.474	1016	144
210	90	189.42	1016	143
205	90	199.674	1016	142
200 195	90 90	217.344 270.906	1016 1016	141 140
195	80	256.62	1017	140
200	80	218.172	1017	141
205	80	170.286	1017	142
210	80	185.118	1017	143
215	80	213.87	1017	144
220	80 80	201.6 179.442	1017 1017	145 146
225 230	80 80	146.394	1017	140
235	80	128.448	1017	148
240	80	123.69	1017	149
245	80	132.018	1017	150
250	80	122.682	1017	151
255	80	110.964	1017	152
260	80	102.45	1017	153
265 270	80 80	102.906 106.752	1017 1017	154 155
275	80	115.542	1017	156
280	80	133.116	1017	157
285	80	133.392	1017	158
290	80	141.996	1017	159
295	80	170.652	1017	160
300	80	163.968	1017	161
305 310	80 80	149.778 87.888	1017 1017	162 163
310	70	117.096	1018	163
305	70	90.27	1018	162
300	70	98.418	1018	161
295	70	116.544	1018	160
290	70	96.132	1018	159
285	70	94.758	1018	158
280 275	70 70	90.636 101.076	1018 1018	157 156
270 270	70	134.034	1018	155
265	70	127.074	1018	154
260	70	118.284	1018	153
255	70	125.064	1018	152
250	70	158.112	1018	151
245	70	191.988	1018	150
240 235	70 70	248.106	1018	149 148
230	70 70	207.09 186.768	1018 1018	148 147
225	70 70	153.078	1018	146
220	70 70	163.236	1018	145
215	70	152.802	1018	144
210	70	159.666	1018	143
205	70	191.802	1018	142
200	70	220.458	1018	141
195 195	70 60	224.946 224.124	1018 1019	140 140
200	60	210.48	1019	140
205	60	189.882	1019	142
210	60	192.534	1019	143
215	60	171.936	1019	144
220	60	161.496	1019	145
225	60	138.612	1019	146
230	60	178.896	1019	147
235	60	215.148	1019	148

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
240	100000000000000000000000000000000000000	256.44	1019	149
245	60	224.214	1019	150
250	60	177.612	1019	151
255	60	143.922	1019	152
260	60	141.084	1019	153
265	60	147.858	1019	154
270	60	132.384	1019	155
275	60	94.758	1019	156
280	60	89.082	1019	157
285	60	98.694	1019	158
290		103.914	1019	159
295	*************************	107.574	1019	160
300	·	118.194	1019	161
305		209.838	1019	162
310	• • • • • • • • • • • • • • • • • • • •	230.802	1019	163
310		130.74	1020	163
305	<	119.112	1020	162
300	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	38.82	1020	161
295	· i · · · · · · · · · · · · · · · · · ·	66.012	1020	160
290	·	84.87	1020	159
285	<	78.372	1020	158
280	di anakaran arang arang arang arang arang arang arang arang arang arang arang arang arang arang arang arang ar	63.81	1020	157
275 270	• • • • • • • • • • • • • • • • • • • •	70.86 79.374	1020 1020	156 155
270 265	***************************************	83.682	1020	154
260	<	77.364	1020	153
255	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	67.932	1020	152
250		68.118	1020	151
245		73.518	1020	150
240	<	77.178	1020	149
235	•	76.356	1020	148
230	50	72.234	1020	147
225	50	64,176	1020	146
220	·,	72.324	1020	145
215	50	99.426	1020	144
210	50	96.498	1020	143
205	50	95.214	1020	142
200	50	114.168	1020	141
195	50	119.016	1020	140
195	40	164.154	1021	140
200	40	150.786	1021	141
205	40	122.22	1021	142
210	40	107.94	1021	143
215	40	95.214	1021	144
220	(	82.122	1021	145
225		73.794	1021	146
230	40	72.144	1021	147
235	40	70.218	1021	148
240	<	72.42	1021	149
245		70.038	1021	150
250	· · · · · · · · · · · · · · · · · · ·	63.264	1021	151
255	40	73.062	1021	152
260	(	59.598	1021	153
265		75.9	1021	154
270		73.698	1021	155
275		75.804	1021	156
280	<	78.186	1021	157
285	40	82.944	1021	158
290	40	75.438	1021	159
295	40	65.46	1021	160
300	<	48.888	1021	161
305	40	186.858	1021	162
310		-373.812	1021	163
310	(province and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and	249.666	1022	163
305	30	128.538	1022	162
305 300	30	67.014	1022	161

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
295	30	66.378 81.846	1022	160 159
290	30 30	104.37	1022	158
285	30: 30:	117.918	1022 1022	157
280 275	30	100.434	1022	156
270	30	86.886	1022	155
265	30	67.842	1022	154
260	30	68.94	1022	153
255	30	69.306	1022	152
250	30	58.32	1022	151
245	30	50.448	1022	150
240	30	47.61	1022	149
235	30	43.854	1022	148
230	30	47.7	1022	147
225	30	54.198	1022	146
220	30	52.368	1022	145
215	30	72.42	1022	144
210	30	76.266	1022	143
205	30	77.634	1022	142
200	30	43.032	1022	141
195	30	33.234	1022	140
205	20	45.87	1023	142
210	20	44.862	1023	143
215	20	53.1	1023	144
220	20	48.246	1023	145
225	20	51.084	1023	146
230	20	50.352	1023	147
235	20	46.506	1023	148
240	20	46.326	1023	149
245	20	50.718	1023	150
250	20	57.678	1023	151
255	20	72.42	1023	152
260	20	69.852	1023	153
265	20:	77.544	1023	154
270	20	116.73 148.314	1023	155 156
275 280	20	153.624	1023	157
285	20 20	121.488	1023 1023	158
290	20	81.666	1023	159
295	20	61.434	1023	160
300	20	69.672	1023	161
305	20	181.368	1023	162
310	20	376.284	1023	163
310	10	141.36	1023	163
305	10	115.542	1024	162
300	10	105.654	1024	161
295	10	120.39	1024	160
290	10	124.146	1024	159
285	10:	126.432	1024	158
280	10	121.398	1024	157
275	10	106.656	1024	156
270	10	86.79	1024	155
265	10	73.884	1024	154
260	10	65.004	1024	153
255	10	52.092	1024	152
250	10	24.168	1024	151
245	10	25.362	1024	150
240	10	44.772	1024	149
235	10	53.01	1024	148
230	10	58.41	1024	147
225	10	55.116	1024	146
220	10	54.93	1024	145
215	10	57.768	1024	144
210	10	60.702	1024	143
205	10	-27.924	1024	142
200:	10			

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
210	0	71.958	1025	143
215	0	73.242	1025	144
220 225	0	66.558 66.192	1025 1025	145 146
230	0	69.762	1025	147
235	0	96.222	1025	148
240	0	109.866	1025	149
245	0	48.708	1025	150
250	0	44.862	1025	151
255 260	0	71.136 99.15	1025 1025	152 153
435	310	1048.188	994	188
430	310	486.966	994	187
425	310	355.044	994	186
420	310	318.24	994	185
415 410	310 310	318.51 297.27	994 994	184 183
405	310	312.468	994	182
400	310	342.684	994	181
395	310	461.424	994	180
390	310	615.42	994	179
435 430	300 300	572.202 385.71	995 995	188 187
430	300	280.884	995	186
420	300	244.08	995	185
415	300	241.056	995	184
410	300	243.99	995	183
405 400	300 300	241.884 227.142	995 995	182 181
395	300	227.1 <del>4</del> 2 156.828	995 995	180
390	300	156.096	995	179
385	300	220.092	995	178
380	300	255.618	995	177
375	300	303.222	995	176
370 365	300 300	317.874 320.892	995 995	175 174
360	300	310.638	995	173
355	300	309.354	995	172
350	300	383.604	995	171
345	300	545.838	995	170
340 335	300 300	680.784 762.636	995 995	169 168
300	290	458.04	996	161
305	290	395.688	996	162
310	290	312.558	996	163
315	290	255.522	996	164
320	290	203.616	996	165
325 330	290 290	170.838 140.994	996 996	166 167
335	290	121.218	996	168
340	290	162.414	996	169
345	290	219.45	996	170
350	290	141.906	996	171
355 360	290	148.68	996	172
365	290 290	194.364 143.37	996 996	173 174
370	290	162.78	996	175
375	290	174.132	996	176
380	290	191.436	996	177
385	290	207.732	996	178
390 395	290	85.602	996	179
400	290 290	103.452 257.814	996 996	180 181
405	290	271.914	996	182
410	290	223.482	996	183
415	290	203.52	996	184

X-Coord	Y-Coord	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
420	290	222.654	996	18
425	290	254.058	996	18 18
430	290	587.034	996	••••
435	290	725.922	996 997	188 188
435	280	983.094 552.246	997	18
430 425	280 280	247.008	997	18
425	280	193.998	997	18
415	280	173.034	997	18
410	280	210.66	997	18:
405	280	265.596	997	18
400	280	257.538	997	18
395	280	130.002	997	18
390	280	42.57	997	17
385	280	143.736	997	17
380	280	165.342	997	17
375	280	150.696	997	17
370	280	159.396	997	17
365	280	150.786	997	17
360	280	176.514	997	17
355	280	158.388	997	17
350	280	146.208	997	17
345	280	132.57	997	17
340	280	124.512	997	16
335	280	127.074	997	16
330	280	126.798	997	16
325	280	120.39	997	16
320	280	110.868	997	16
315	280	106.842	997	16
310	280	114.258	997	16
305	280	132.936	997	16
300	280	147.948	997	16
295	280	157.014	997	16
290	280	173.034	997	15
285	280	178.53	997 997	15 15
280 275	280 280	171.114 212.034	997	15
270	280	207.09	997	15
270 265	280	228.696	997	15
260	280	214.326	997	15
255	280	227.598	997	15
260	270	120.756	998	15
265	270	132.66	998	15
270	270	146.304	998	15
275	270	115.266	998	15
280	270	134.4	998	15
285	270	133.026	998	15
290	270	127.53	998	15
295	270	99.426	998	16
300	270	111.966	998	16
305	270	109.224	998	16
310	270	98.508	998	16
315	270	95.214	998	16
320	270	60.972	998	16
325	270	74.616	998	16
330	270	66.834	998	16
335	270	85.878	998	16
340	270	93.108	998	16
345	270	101.076	998	17
350	270	114.072	998	
355	270	131.376	998	17
360	270	161.868	998	1/ 17
365	270	131.652	998	17
	270	94.758	998	17
3/0:	210.			
370 375	270	98.784	998	17

X-Coord	Y-Coord	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
385	270	99.882	998	178
390	270	27.372	998	179
395	270	139.986	998	180
400	270	229.524	998	. 181
405	270	223.938	998	182
410	270	182.922	998	183
415	270	146.67	998	184
420	270	128.538	998	185
425	270	176.514	998	186
430	270	520.932	998	187
435	270	664.212	998	188
435	260	878.724	999	188
430	260	466.92	999	187
425	260	191.988	999	186
420	260	169.554	999	185
415	260	180.45	999	184
410	260	188.418	999	183
405	260	194.184	999	182
400	260	193.452	999	181
395	260	150.786	999	180
390	260	49.344	999	179 178
385	260	51.45 184.476	999	178 177
380 375	260 260	184.476	999 999	177 176
375 370	260 260	99.516	999	175
365	260	97.872	999	174
360	260	122.772	999	173
355	260	111.234	999	172
350	260	94.848	999	171
345	260	82.854	999	170
340	260	78.738	999	169
335	260	69.582	999	168
330	260	73.794	999	167
325	260	86.334	999	166
320	260	88.44	999	165
315	260	79.374	999	164
310	260	82.578	999	163
305	260	114.534	999	162
300	260	117.186	999	161
295	260	100.614	999	160
290	260	149.598	999	159
285	260	157.746	999	158
280	260	150.054	999	157
275	260	132.384	999	156
270	260	115.998	999	155
265	260	106.386	999	154
260	260	109.77	999	153
260	250	113.07	1000	153
265	250	98.874	1000	154
270	250	50.352	1000	155
275	250	81.024	1000	156
280	250	120.39	1000	157
285	250	141.996	1000	158
290	250	120.21	1000	159
295	250	100.614	1000	160
300	250	83.496	1000	161
305	250	76.356	1000	162
310	250	68.94	1000	163
315	250	73.794	1000	164
320	250	70.128	1000	165
325	250	71.958	1000	166
330	250	64.638	1000	167
335	250	69.948	1000	168
340	250	34.152	1000	169
345	250	56.76	1000	170
350	250	79.74	1000	171

X-Coord	•	Y-Coord.	Conductivity	Profile Number	Station Number
(feet)	355	(feet) 250	(mmhos/m)   63.54	1000	Number 17
	360	250	26.55	. 1000	17
contrate at a series and a series and	365	250	34.698	1000	17
	370	250	124.788	1000	17
***	375	250	229,434	1000	17
· · · · · · · · · · · · · · · · · · ·	380	250	158.112	1000	17
and a second control of the second control of	385	250	24.168	1000	17
	390	250	88.806	1000	17:
	395	250	190.248	1000	18
	400	250	195.558	1000	18
	405	250	172.668	1000	18
	410	250	155.274	1000	18
******	415	250	154.542	1000	18
	420	250	157.014	1000	18
	425	250	174.774	1000	18
	430	250	342.042	1000	18
and the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of t	435	250	657.258	1000	18
	435	240	578.244	1001	18
	430	240	298.464	1001	18
	425	240:	192.996	1001	18
	420 420	240	168.642	1001	18
· • • • • • • • • • • • • • • • • • • •	415	240	163.056	1001	18
	410	240	161.316	1001	18
	405	240	177.612	1001	18
	400	240	189,054	1001:	18
<i> </i>	395	240	202,608	1001	18
	390	240	152.982	1001	17
	385	240	43.764	1001	17
	380	240	110.232	1001	17
	375	240	218.442	1001	17
and the second second second second	370	240	122.958	1001	17
	365	240	21.33	1001	17
	360	240	55.026	1001	17
	355	240	109.314	1001	17:
and a second contract of the second contract of	350	240	112.242	1001	17
• • • • • • • • • • • • • • • • • • •	345	240	93.75	1001	17
	340	240	78.462	1001	16
	335	240	72.144	1001	16
	330	240	65.916	1001	16
	325	240	56.856	1001	16
أدورو والمعودي والمراوعات معطمه والمعادلوا	320	240	60.336	1001	16
			~~~	4.004	
	315 310	240	72.966 82.674	1001:	15
	305	240	75.714	1001	16 16
** ** ** ** ** ** ** ** ** ** ** ** **	300	ng mga ng ng ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga	and the same of the same of the same of the same of the same of the same of the same of the same of the same of	and and a second contract to the second contr	ter the transfer terms for the transfer the transfer terms and the transfer terms.
**************	295	240 240	71.778 97.41	1001	16
	290	240	125.43	1001	16 15
	285		120.024		15
APPROXIMATE TO THE PARTY OF THE PARTY OF THE PARTY.	280	240: 240:	116.364	1001	15 15
	275	240	110.304	1001	15
	270	240		1001	15
	265		161.04 80.292	1001	15
	260	240 240	49.254	1001	15
· · · · · · · · · · · · · · · · · · ·					
reference a la la la la la la la la la la la la l	260	230	29.112	1002	15
· · · · · · · · · · · · · · · · · · ·	265	230	49.344	1002	15
	270	230	131.928	1002	15
	275	230	139.068	1002	15
	280	230	121.854	1002	15
. 	285	230	110.322	1002	15
And the first test and the first	290	230	110.502	1002	15
	295	230	76.632	1002	160
** ** * * * * * * * * * * * * * * * * *	300	230	60.15	1002	16
· · · · · · · · · · · · · · · · · · ·	305	230	74.25	1002	16
3	310	230	65.736	1002	163
			CC EC	4000	40
3	315 320	230 230	65.55 69.03	1002 1002	164 165

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
325	230	61.158	1002	166
330	230	59.328	1002	167
335	230	61.98	1002	168
340	230	46.05	1002	169
345	230	87.252	1002	170
350	230	95.856	1002	171
355	230	35.886	1002	172
360	230	21.15	1002	173
365	230	33.144	1002	174
370	230	39.186	1002	175
375	230	175.506	1002	176
380	230	95.946 69.948	1002 1002	177 178
385	230	166.44	1002	179
390 395	230 230	202.698	1002	180
	· • • • • • • • • • • • • • • • • • • •	211.032		181
400 405	230 230	183.564	1002 1002	182
410	230	140.994	1002	183
carara ara arara a grasa sirinda ca a a a a a ara		134.58	1002	184
415 420	230 230	134.56	1002	185
420 425	230	160.764	1002	186
425 430	230	292.692	1002	187
435	230	498.594	1002	188
435	220	401.55	1002	188
430	220	259.188	1003	187
425	220	153.81	1003	186
420	220	119.202	1003	185
415	220	121.308	1003	184
410	220	136.416	1003	183
405	220	170.652	1003	182
400	220	198.762	1003	181
395	220	200.868	1003	180
390	220	237.306	1003	179
385	220	197.478	1003	178
380	220	125.52	1003	177
375	220	180.45	1003	176
370	220	129.636	1003	175
365	220	57.954	1003	174
360	220	29.388	1003	173
355	220	43.212	1003	172
350	220	131.838	1003	171
345	220	132.384	1003	170
340	220	91.188	1003	169
335	220	66.834	1003	168
330	220	77.453	1003	167
325	220	80.934	1003	166
320	220	91.464	1003	165
315	220	87.798	1003	164
310	220	80.292	1003	163
305	220	75,899	1003	162
300	220	57.498	1003	161
295	220	65.736	1003	160
290	220	91.092	1003	159
285	220	86.976	1003	158
280	220	86.52	1003	157
275	220	107.94	1003	156
270	220	72.876	1003	155
265	220	15.474	1003	154
260	220	7.782	1003	153
** *****				
260	210	24.354	1004	153
265	210	11.628	1004	154
270	210	80.292	1004	155
275	210	114.258	1004	156
	210	113.706	1004	157
280 285	210	101.346	1004	158

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
295	210	54.474	1004	160
300	210	53.652	1004	161
305	210	79.374	1004	162
310	210	85.05	1004 1004	163
315	210 210	91.002 87.342	1004	164 165
320 325	210	88.35	1004	166
330	210	91.464	1004	167
335	210	102.906	1004	168
340	210	118.47	1004	169
345	210	141,084	1004	170
350	210	153.168	1004	171
355	210	74.526	1004	172
360	210	49.254	1004	173
365	210	120.756	1004	174
370	210	144.468	1004	175
375	210	167.544	1004	176
380	210	153.624	1004	177
385	210	244.17	1004	178
390	210	288.576	1004	179
395	210	199.86	1004	, 180
400	210	121.308	1004	181
405 410	210 210	112.062 129.546	1004 1004	182 183
410	210		1004	184
420	210	119.112 121.488	1004	185
425	210	143.832	1004	186
430	210	223.386	1004	187
435	210	630.432	1004	188
435	200	612.306	1005	188
430	200	245.364	1005	187
425	200	137.238	1005	186
420	200	97.41	1005	185
415	200	96.036	1005	184
410	200	120.3	1005	183
405	200	121.584	1005	182
400	200	107.85	1005	181
395	200	139.344	1005	180
390	200	186.678	1005	179
385	200	190.794	1005	178
380	200	164.976	1005	177
375	200	124.878	1005	1/6
370 365	200	123.504	1005	175
365 360	200	170.106 177.06	1005	174
355	200 200	81.39	1005 1005	173 172
350	200	56.67	1005	172
345	200	110.688	1005	170
340	200	121.398	1005	169
335	200	119.934	1005	168
330	200	108.03	1005	167
325	200	98.052	1005	166
320	200	95.946	1005	165
315	200	109.5	1005	164
310	200	107.664	1005	163
305	200	98,508	1005	162
300	200	64.638	1005	161
295	200	49.074	1005	160
290	200	75.258	1005	159
285	200	106.29	1005	158
280	200	120.486	1005	157
275	200	120,486	1005	156
270	200	108.672	1005	155
265	200	56.76	1005	154
260	200	43.122	1005	153
260	1 9 0	98.784	1006	153

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
265	190	96.588	1006	154
270	190	108.216	1006	155
275	190	117.552	1006	156
280	190	122.04	1006	157
285	190	125.154	1006	158
290	190	115.176 73.794	1006 1006	159 160
295 300	190 190	66.558	1006	161
305	190	103.086	1006	162
310	190	146.85	1006	163
315	190	154.818	1006	164
320	190	135.588	1006	165
325	190	113.34	1006	166
330	190	161,13	1006	167
335	190	179.352	1006	168
340	190	171.204	1006	169
345	190	119.016	1006	170
350 355	190	113.25 175.962	1006 1006	171 172
355 360	190 190	249.936	1006	172 173
365	190	231.444	1006	173
370	190	133.668	1006	175
375	190	63,72	1006	176
380	190	154.266	1006	177
385	190	193.818	1006	178
390	190	174.96	1006	179
395	190	140.532	1006	180
400	190	111.966	1006	181
405	190	118.65	1006	182
410	190	116.73	1006	183
415 420	190 190	59.418 9.612	1006 1006	184 185
425	190	7.968	1006	186
430	190	127.53	1006	187
435	190	606.63	1006	188
435	180	578.982	1007	188
430	180	58.23	1007	187
425	180	89.724	1007	186
420	180	67.476	1007	185
415	180	81.21	1007	184
410	180	108.948 106.11	1007	183
405	180		1007	182
400 395	180 180	102.174 121.122	1007 1007	181 180
390	180	139.62	1007	179
385	180	176.424	1007	178
380	180	160.764	1007	177
375	180	35.34	1007	176
370	180	50.262	1007	175
365	180	174.864	1007	174
360	180	214.602	1007	173
355	180	182.28	1007	172
350	180	179.076	1007	171
345	180	168.546	1007	170
340	180	105.192	1007	169
335 330	180	112.884	1007	168 167
330	180 180	169.278 144.012	1007	167 166
320	180	139.344	1007	165
315	180	175.782	1007	164
310	180	167.724	1007	163
305	180	132.474	1007	162
300	180	79.56	1007	161
				160
295	180:	01.40	1007:	100:
295 290	180 180	81.48 127.44	1007 1007	159

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
280	180	151.614	1007	157
275	180	148.866	1007	156
270	180	136,416	1007	155
265	180	115.356	1007	154
260	180	115.998	1007	153
260	170	135.408 120.756	1008	153 154
265	170 170	120.756	1008 1008	155
270 275	170	157.656	1008	156
280	170	169.554	1008	157
285	170	202.056	1008	158
290	170	187.5	1008	159
295	170	128.172	1008	160
300	170	130.098	1008	161
305	170	195.834	1008	162
310	170	246.462	1008	163
315	170	298.83	1008	164 165
320 325	170 170	276.858 156.648	1008 1008	166
325 330	170	115.908	1008	167
335	170	118.926	1008	168
340	170	159.12	1008	169
345	170	186.402	1008	170
350	170	175.962	1008	171
355	170	199.584	1008	172
360	170	223.938	1008	173
365	170	161.13	1008	174
370	170 170	31.86 57.222	1008 1008	175 176
375 380	170	179.994	1008	177
385	170	205.812	1008	178
390	170	186.858	1008	179
395	170	121.218	1008	180
400	170	67.29	1008	181
405	170	87.342	1008	182
410	170	131.928	1008	183
415	170	221.01	1008	184
420	170	164.064	1008	185
425	170	171.384	1008	186
430 435	170	392.214	1008	187
	170 160	632.082	1008	188
435 430	160 160	279.234 118.65	1009 1009	188 187
425	160	117.828	1009	186
420	160	198.852	1009	185
415	160	165.708	1009	184
410	160	154.818	1009	183
405	160	113.16	1009	182
400	160	59.142	1009	181
395	160	50.814	1009	180
390	160	134.676	1009	179
385	160	223.662	1009	178
380	160	234.192	1009	177
375 370	160 160	150.972	1009	176
370 365	160 160	0.276 27.192	1009 1009	175 174
360	160	170.016	1009	174
355	160	208.008	1009	173
350	160	178.896	1009	171
345	160	138.978	1009	170
340	160	153.624	1009	169
335	160	207.366	1009	168
330	160	182.832	1009	167
325	160	134.946	1009	166
320	160	143.466	1009	165
315	160	179.262	1009	164

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
310	160	200.868	1009	163
305	160	221.376	1009	162
300 295	160 160	197.934 203.43	1009 1009	161 160
290	160	203.45	1009	159
285	160	235.656	1009	158
280	160	228.972	1009	157
275	160	214.782	1009	156
270 265	160 160	176.604 144.198	1009 1009	155 154
260 260	160	135.684	1009	153
260	150	176.79	1010	153
265	150	196.836	1010	154
270	150	244.08	1010	155
275 280	150 150	274.29 274.842	1010 1010	156 157
285	150	272.736	1010	158
290	150	272.736	1010	159
295	150	232.542	1010	160
300	150	200.226	1010	161
305 310	150 150	188.508 160.308	1010 1010	162 163
310 315	150	164.064	1010	164
320	150	154.818	1010	165
325	150	154.998	1010	166
330	150	200.406	1010	167
335 340	150	188.322 144.102	1010	168
345	150 150	144.102	1010 1010	169 170
350	150	177.978	1010	171
355	150	203.34	1010	172
360	150	139.254	1010	173
365 370	150 150	3.114 29.298	1010 1010	174 175
375	150	29.256	1010	176
380	150	255.618	1010	177
385	150	177.336	1010	178
. 390	150	52.554	1010	179
395 400	150	37.902	1010	180 181
405	150 150	112.974 112.704	1010 1010	182
410	150		1010	183
415	150	95.034	1010	184
420	150	126.528	1010	185
425 430	150	114.072	1010	186
430 435	150 150	74.892 63.354	1010 1010	187 188
435	140	53.466	1011	188
430	140	77.453	1011	187
425	140	123.138	1011	186
420	140	122.592	1011	185
415 410	140 140	115.266 120.12	1011 1011	184 183
405	140	126,984	1011	182
400	140	148.59	1011	181
395	140	138.792	1011	180
390	140	11.262	1011	179
385 380	140 140	49.62	1011	178
375	140	235.38 243.714	1011 1011	177 176
370	140	64.452	1011	175
365	140	-8.148	1011	174
360	140	140.808	1011	· 173
355 350	140 140	246.552	1011	172 171
345	140	230.166 182.742	1011 1011	171 170
		.02.1-42)		

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
340	140	183.288	1011	169
335	140	218.172	1011	168
330	140	205.992	1011	167
325	140	137.418	1011	166
320	140	151.428	1011 1011	165 164
315 310	140 140	216.798 250.212	1011	163
305	140	214.602	1011	162
300	140	148.866	1011	161
295	140	202.512	1011	. 160
290	140	309.084	1011	159
285	140	358.248	1011	158
280 275	140 140	372.714 323.184	1011 1011	157 156
270	140	295.35	1011	155
265	140	291.048	1011	154
260	140	271.182	1011	153
260	130	379.302	1012	153
265	130	366.3	1012	154
270	130	351.012	1012	155
275	130	453.918	1012	156
280 285	130 130	449.616 404.844	1012 1012	157 158
290	130	417.666	1012	159
295	130	411.162	1012	160
300	130	279.966	1012	161
305	130	126.798	1012	162
310	130	91.554	1012	163
315	130	175.326	1012	164
320 325	130 130	197.202 176.97	1012 1012	165 166
330	130	249.48	1012	167
335	130	287.292	1012	168
340	130	229.434	1012	169
345	130	185.85	1012	170
350	130	222.108	1012	171
355 360	130	218.172	1012	172
365	130 130	100.71 117.738	1012 1012	173 174
370	130	250.578	1012	175
375	130	229.614	1012	176
380	130	11.442	1012	
385	130	21.24	1012	178
390	130	202.512	1012	179
395	130	199.038	1012	180
400	130	144.654	1012	181
405 410	130 130	136.416 132.294	1012 1012	182 183
415	130	137.514	1012	184
420	130	110.868	1012	185
425	130	88.074	1012	186
430	130	74.25	1012	187
435	130	210.294	1012	188
295	140	196.836	1011	160
300 305	140 140	138.792 185.394	1011 1011	161 162
310	140	239.316	1011	162
315	140	208.74	1011	163
320	140	152.982	1011	165
325	140	131.562	1011	166
330	140	185.67	1011	167
335	140	209.748	1011	168
340	140	180.45	1011	169
	140	176.514	1011	170
345 350	140	210.294	1011	171

X-Coord (feet)	Y-Coord (feet)	Conductivity (mmhos/m)	Profile Number	Station Number
(leet) 360	(leet) 140	136.32	1011	173
365	140	19.5	1011	174
370	140	62.622	1011	175
375	140	212.676	1011 1011	176
380 385	140 140	243.714 102.996	1011	177 178
390	140	22.614	1011	179
395	140	97.32	1011	180
400	140	155.82	1011	181
405	140 140	137.604 111.054	1011 1011	182 183
410 415	140	104.37	1011	184
420	140	115.266	1011	185
425	140	130.374	1011	186
430	140	111.966	1011 1011	187 188
435 435	140 130	197.112 156.924	1011	188
430	130	85.878	1012	187
425	130	91.277	1012	186
420	130	112.152	1012	185
415 410	130 130	139.62 131.376	1012 1012	184 183
405	130	134.31	1012	182
400	130	146.94	1012	181
395	130	185.76	1012	180
390	130	174.864	1012	179
385 380	130 130	23.622 43.668	1012 1012	178 177
375	130	224.67	1012	176
370	130	229.8	1012	175
365	130	107.76	1012	174
360 355	130 130	109.59 200.04	1012 1012	173 172
350	130	208.74	1012	171
345	130	183.474	1012	170
340	130	215.148	1012	169
335 330	130 130	266.694 235.842	1012 1012	168 167
325	130	176.79	1012	166
320	130	188.598	1012	165
315	130	178.71	1012	164
310	130	104.826	1012	163
305 300	130 130	129.366 252.684	1012 1012	162 161
295	130	354.582	1012	160
295	120	301.482	1013	160
300	120	262.758	1013	161
305	120	212.496	1013	162
310 315	120 120	149.598 110.778	1013 1013	163 164
320	120	156.738	1013	165
325	120	232.452	1013	166
330	120	329.04	1013	167
335 340	120	392.67	1013	168
340	120 120	310.458 256.44	1013 1013	169 170
350	120	278.502	1013	171
355	120	262.572	1013	172
360	120	209.658	1013	173
365	120	211.032	1013	174
370 375	120 120	197.202 66.834	1013 1013	175 176
380	120	44.862	1013	176
385	120	201.6	1013	178
390	120	245.454	1013	179
395	120	154.176	1013	180

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
400	120	109.68	1013	181
405	120	114.714 128.358	1013 1013	182 183
410 415	120	125.61	1013	184
420	120 120	107.028	1013	185
425	120	100.434	1013	186
430	120	102.72	1013	187
435	120	99.15	1013	188
435	110	116.364	1014	188
430	110	120.942	1014	187
425	110	121.584	1014	186
420	110	138:156	1014	185
415	110	144.468	1014	184
410	110	177.702	1014	183
405	110:	151.062	1014	182 181
400 395	110 110	86.424 146.67	1014: 1014:	180
390	110	261.75	1014	179
385	110	230.988	1014	178
380	110	90.546	1014	177
375	110	63.72	1014	176
370	110	199.038	1014	175
365	110	416.562	1014	174
360	110	524.508	1014	173
355	110	486.6	1014	172
350	110	407.502	1014	171
345	110	241.974	1014	170
340	110	170.838	1014	169
335 380	110 100	-11.538 203.34	1014: 1015	168 177
385	100	203.34	1015	178
390	100	283.632	1015	179
395	100	225.588	1015	180
400	100	190.062	1015	181
405	100	206.268	1015	182
410	100	163.332	1015	183
415	100	154.542	1015	184
420	100	162.234	1015	185
425	100	145.938	1015	186
430	100	145.566	1015	187
435	100	155.82	1015	188
435	90:	180.906 179.442	1016	188
430	90:	227.508	1016 1016	187 186
420	90	233.184	1016	185
415	90	160.128	1016	184
410	90:	228.33	1016	183
405	90	343.962	1016	182
400	90	362.916	1016	181
395	90	300.384	1016	180
390	90	229.8	1016	179
385	90:	176.514	1016	178
380	90	170.286	1016	177
380	80	221.01	1017	177
385	80:	150.876	1017	178
390	80	168.822	1017	179
395	80	300.75	1017	180
400 405	80	397.158 388.368	1017	181
410	80 80	235.014	1017 1017	182 183
415	80	177.336	1017	184
420	80	282.714	1017	185
425	80	237.306	1017	186
430	80	158.478	1017	187
435	80	163.512	1017	188
435	70	141.45	1018	188
		and the second s		and the second s

X-Coord	Y-Coord.	Conductivity	Profile Number	Station
(feet)	(feet)	(mmhos/m) [202.146	Number 1018	Number 187
430	70	410.796	1018	186
425 420	70 70	458.496	1018	185
420	70	278.226	1018	184
410	70	250.488	1018	183
405	70	350.37	1018	182
400	70	364.104	1018	18
395	70	236.112	1018	180
390	70	201.234	1018	179
385	70	152.16	1018	178
380	60	237.216	1019	17
385	60	164.52	1019	178
390	60	188.142	1019	179
395	60	215.148	1019	180
400	60	319.794	1019	18
405	60	344.97	1019	183
410	60	307.158	1019	183
415	60	315.03	1019	184
420	60	247.926	1019	18
425	60	304.962	1019	186
430	60	318.33	1019	18
435	60	250.122	1019	188
435	50	254.244	1020	188
430	50	317.598	1020	18
425	50	351.378	1020	186
420	50	248.382	1020	18
415	50	233,55	1020	184
410	50	250.674	1020	183
405	50	248.106	1020	182
400	50:	234.558	1020	18
395	50:	221.01	1020	180
390	.50	208.56	1020	179
385	50	198.12	1020	178
380	50	209.016	1020	17
380	40	280.884	1021	17
385	40	278.868	1021	178
390	40	300.57	1021	179
395	40	296.814	1021	180
400	40	286.194	1021	18
405	40	315.582	1021	183
410	40	349.734	1021	183
415	40	345.06	1021	184
420	40	341.49	1021	189
425	40	339.936	1021	186
430	40	328.218	1021	18
435	40	294.252	1021	188
380	30	251.406	1022	177
385	30	125.886	1022	178
390	30	108.582	1022	179
395	30	217.44	1022	180
400	30	-103.452	1022	181
405	30	205.716	1022	182
410	30	404.844	1022	183
415	30	352,752	1022	184
420	30	302.124	1022	185
425	30	292.326	1022	186
430	30	275.85	1022	187
435	30	288.39	1022	188
380	20	303.042	1023	177
385	20	228.24	1023	178
390	20	441,468	1023	179
415	20	347.352	1023	184
420	20	294.708	1023	185
425	20	200.226	1023	186
430	20	204.528	1023	187

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
435 430	10 10	342.864 170.928	1024 1024	188 187
425	10	62.166	1024	186
420	10	153.168	1024	185
415	10	306.702	1024	184
410	10 10	284.91 282.438	1024 1024	183 182
405 400	10	467.928	1024	181
395	10	585.39	1024	180
390	10	339.57	1024	179
385	10 10	212.766 374.082	1024 1024	178
380 385	0	275.022	1024	177 178
390	0	291.048	1025	179
395	0	270.54	1025	180
400	0	244.902	1025	181
405 410	0	215.604 200.778	1025 1025	182 183
415	0.	255.888	1025	184
420	0	237.03	1025	185
425	0	108.858	1025	186
430 435	0	123.594 199.95	1025 1025	187 188
195	160	313.296	1023	140
190	160	346.434	1009	139
185	160	321.99	1009	138
180 175	160 160	267.15 205.902	1009 1009	137 136
170	160	204.348	1009	135
165	160	221.466	1009	134
160	160	. 233.826	1009	133
155 150	160 160	247.008 254.334	1009 1009	132
145	160	264.132	1009	131 130
140	160	262.662	1009	129
135	160	264.036	1009	128
130	160	278.778	1009	127
125 120	160 160	297.27 268.524	1009	126 125
115	160	196.2	1009	124
110	160	197.388	1009	123
105	160	250.488	1009	122
100 95	160 160	293.154 287.112	1009 1009	121 120
90	160	237.03	1009	119
85	160	196.2	1009	118
80	160	145.842	1009	117
75	160	142.272	1009	116
70 65	160 160	171.936 127.164	1009 1009	115 114
60	160	85.146	1009	113
55	160	72.234	1009	112
50	160	76.812	1009	111
45 40	160 160	71.322 70.128	1009 1009	110 100
35	160	70.126	1009	109 108
30	160	36.252	1009	107
25	160	19.59	1009	106
20	160	-5.586	1009	105
20 25	150 150	-34.974 -89.538	1010	105 106
30	150	-26.916	1010	107
35	150	83.31	1010	108
40	150	79.104	1010	109
45 50	150 150	77.453	1010	110
JU:	I DU:	83.586	1010	111

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
55	150	86.52	1010	112
60	150	89.904	1010	113
65	150	102.174	1010	114
70	150	125.886	1010	115
75	150	140.622	1010	116
80	150	165.894	1010	117
85 90	150 150	193.998 232.362	1010 1010	118 119
95	150	262.482	1010	120
100	150	292.056	1010	121
105	150	339.114	1010	122
110	150	332.064	1010	123
115	150	309.45	1010	124
120	150	312.654	1010	125
125	150	350.646	1010	126
130	150	334.902	1010	127
135	150	341.31	1010	128
140 145	150 150	314.94 325.56	1010 1010	129 130
145	150 150	325.56 305.514	1010	130
155	150	278.502	1010	132
160	150	291.138	1010	133
165	150	297.456	1010	134
170	150	301.482	1010	13 5
175	150	273.282	1010	136
180	150	277.68	1010	137
185	150	311.826	1010	138
190	150	331.512	1010	139
195	150	336.546	1010	140
195 190	140 140	318.33 278.592	1011 1011	140 139
185	140	211.302	1011	138
180	140	197.298	1011	137
175	140	214,326	1011	136
170	140	255.156	1011	135
165	140	279.51	1011	134
160	140	276.306	1011	133
155	140	265.5	1011	132
150	140	280.332	1011	131
145	140	311.37	1011	130
140 135	140 140	345.792	1011 1011	129 128
130	140	378.024 369.234	1011	120
125	140	344.058	1011	126
120	140	345.426	1011	125
115	140	381.96	1011	124
110	140	381.408	1011	123
105	140	320.436	1011	122
100	140	235.2	1011	121
95	140	266.874	1011	120
90	140	239.046	1011	119
85	140	99.702	1011	118
80 75	140	75.161	1011	117
75 70	140 140	111.876 130.83	1011 1011	116 115
70 65	140	149.142	1011	114
60	140	131.742	1011	113
55	140	111.054	1011	112
50	140	103.818	1011	111
45	140	110.502	1011	110
40	140	106.02	1011	109
35	140	98.694	1011	108
30	140	22.794	1011	107
25	140	-279.786	1011	106
20	140	-30.762	1011	105
15	140	-263.58	1011	104

X-Coor	đ	Y-Coord.	Conductivity	Profile	Station
(feet)		(feet)	(mmhos/m)	Number	Number
	10		-72.144	1011	103
	5		75.99	1011	102
	0	140	95.399	1011	101
	0	130	94.482	1012	101
	5	130	92.928	1012	102
	10	130	20.598	1012	103
	15	130	-203.34	1012	104
	20	130	-180.816	1012	105
• • • • • • • • • • • • • • • • • • • •	25	130	-268.89	1012	106
ata atala atalahatatatatata atalah g	30	130	-207.186	1012 1012	107 108
•••••••••••••••••••••••••••••••••••••••	35	130 130	-9.246 -60.972	1012	109
	40 45	130	-22.428	1012	110
	50	130	13.824	1012	111
are arabata atarata a atara a a aru J	55	130	-63.81	1012	112
••••••••	60	130	-4.854	1012	113
	65	130	-46.416	1012	114
	70	130	-21.06	1012	115
	75	130	47.058	1012	116
	80	130	138.978	1012	117
	85	130	98.874	1012	118
	90	130	182.1	1012	119
	95	130	267.516	1012	120
*******************************	100	130	183.108	1012	121
	105	130	241.788	1012	122
	110	130	379.668	1012	123
	115	130	422.976	1012	124
	120	130	374.268	1012	125
	125	130	336.18	1012	126
	130	130	353.028	1012	127
	135	130	354.768	1012	128
	140	130	350.832	1012	129
	145	130	325.284	1012	130
	150	130	326.112	1012	131
	155	130	323.73	1012	132
	160	130	279.33	1012	133
	165	130	241.698	1012	134
~~~~~	170	130	247.47	1012	135
	175	130	232.818	1012	136
	180	130	225.492	1012	137
	185	130	219.726	1012	138
	190	130	216.798	1012	139
	195	130	225.312	1012	140
	195	120	251.772	1013	140
	190	120	275.484	1013	139
	185	120	250.944	1013	138
	180	120	212.4 217.806	1013	137
and the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transf	175	120	ana na mana na mana na mana na mana na mana na mana na mana na mana na mana na mana na mana na mana na mana na	1013	136
	170	120	253.326 245.82	1013	135
and after a take and a fall after a great	165 160	120 120	245.82 267.792	1013 1013	134 133
	155	120	322.722	1013	132
	150	120	348.084	1013:	132
	145	120	326.844	1013	130
allefatetale are where the eletarity of	140	120	354.402	1013	129
	135	120	396.24	1013	128
	130	120	362.55	1013	127
	125	120	317.412	1013	126
to alternate alternate a statutoria.	120	120	309.816	1013	125
****************	115	120	314.118	1013	124
	110	120	330.87	1013	123
	105	120	231.72	1013	122
ليتين ومالناها والمالو والواوا والمالوا	100	120	159.21	1013	121
	95	120	225.126	1013	120
		120	230.802	1013	119
	90:	1 / 1 / .	Z _s nicut/		

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
80	120	134.946	1013	117
75 70	120	77.088	1013	116
70	120	38.454	1013	115
65	120 120	-65.55 -137.418	1013 1013	114 113
60 55	120	-137.416	1013	113
50 50	120	-102.084	1013	111
45	120	49.62	1013	110
40	120	-58.23	1013	109
35	120	-18.312	1013	108
30	120	-24.168	1013	107
25	120	-24.534	1013	106
20	120	77.82	1013	105
15	120	16.662	1013	104
10	120	65.55	1013	103
5	120	94.572	1013	102
0	120	127.164	1013	101
0	110	-85.146	1014	101
5	110	-15.474	1014	102
10	110	-180.906	1014	103
15	110	-239.226	1014	104
. 20	110	264.402	1014	105
25 30	110 110	-283.17 -96.132	1014 1014	106 107
35	110	-96.132 -36.714	1014:	107
40	110	165.894	1014	109
45	110	141.726	1014	110
50	110	100.524	1014	111
55	110	102.084	1014	112
60	110	254,79	1014	113
65	110	318.42	1014	114
70	110	281.436	1014	115
75	110	184.476	1014	116
80	110	116.82	1014	117
85	110	168.732	1014	118
90	110	263.4	1014	119
95	110	32.316	1014	120
100	110	-50.082	1014	121
105	110	39.732	1014	122
110 115	110	27.282	1014	123
400	110	-37.902 178.344	1014	124
120 125	110	178.344 285.738	1014	125 126
130	110	307.89	1014	120
135	110	389.742	1014	128
140	110	398.256	1014	129
145	110	348.264	1014	130
150	110	392.394	1014	131
155	110	395.688	1014	132
160	110	303.222	1014	133
165	110	263.214	1014	134
170	110	272.736	1014	135
175	110	222.108	1014	136
180	110	184.296	1014	137
185	110	213.96	1014	138
190	110	235.932	1014	139
195	110	203.064	1014	140
195	100	313.11	1015	140
190	100	313.842	1015	139
185	100	202.608	1015	138
180	100	136.782	1015	137
175	100	191.712	1015	136
170	100	388.458	1015	135
165	100	464.172	1015	134
160	100	427.644	1015	133
155	100	432.864	1015	132

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
150	100	321.078	1015	131
145	100	338.106	1015	130
140	100	302.58	1015	129
135	. 100	240.786	1015	128
130	100	252.684	1015	127
125	100	255.246	1015	126
120	100	259.824	1015	125
115	100	88.806	1015	124
110	100	52.92	1015	123
105	100	-55.296	1015	122
100	100	5.766	1015	121
95	100	-85.416	1015	120
90	100	178.434	1015	119
85	100	220.914	1015	118
80	100	73.608	1015	117
75	100	107.298	1015	116
70	100	246.462	1015	115
65	100 100	264.402 188.598	1015 1015	113
60 55	100	,,,.,.,.,.,.,.,,,,,,,,,,,,,,,	1015	112
55 50	100	167.724 159.942	1015	111
45	100	111.696	1015	110
40	100	56.124	1015	109
35	100	69.948	1015	108
30	100	47.88	1015	107
25	100	121.854	1015	106
20 20	100	-85.416	1015	105
15	100	24.72	1015	104
10	100	-195.006	1015	103
5	100	-45.138	1015	102
0	100	-38.82	1015	101
0	90	-42.57	1016	101
5	90	-53,466	1016	102
10	90	-281.982	1016	103
15	90	-88.806	1016	104
20	90	-73.242	1016	105
25	90	82.578	1016	106
30	90	100.158	1016	107
35	90	102.354	1016	108
40	90	111.51	1016	109
45	90	152.07	1016	110
50	90		1016	111
55	90	174.864	1016	112
60	90		1016	113
65	90	÷	1016	114
70	90	162.138	1016	115
75	90	124.056	1016	116
80	90		1016	117
85	90		1016	118
90	90		1016	119
95	90	161.682	1016	120
100	90	128.904	1016	12
105	90		1016	122
110	90	139.524	1016	123
115	90		1016	124
120	90	230.256	1016	125
125	90		1016	120
0	80	et a coma a a a quanta a a contra a a a contra a a contra de tratal.	1017	101
5	80	<b></b>	1017	102
10	80	d commence and a commence of the commence of	1017	100
. 15	80		1017	104
20	80	a are are a a characa a material a manage a constant for	1017	10
25	80		1017	106
30 35	80	La construcción de la construcción de la construcción de la construcción de la construcción de la construcción	1017	10
	80	115.266	1017	108

X-Coord	Y-Coord.	Conductivity	Profile	Station
(feet)	(feet)	(mmhos/m)	Number	Number
45	80	109.404	1017	110
50	80	123.414	1017	111
55	80	148.5	1017	112
60	80	161.496	1017	113
65	80	178.254	1017	to the property of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contrac
70	80	187.866	1017	115
75	80	184.11	1017	116
80	80	190.152	1017	
and the first term to the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		ty and the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the second read of the se
85	80	185.394	1017	· · · · · · · · · · · · · · · · · · ·
90	80	174.042	1017	119
95	80	144.102	1017	120
100	80	145.386	1017	121
105	80	197.664	1017	122
110	80	203.52	1017	123
115	80	101.622	1017	124
120	80	202.512	1017	125
125	80	233.184	**************	126
			**************	
	:			
			*****************	
••••••	•••••••••••••••••••••••••••••••••••••••			
				alala a a sie ale e ele e ele a ale a a sie
		j January		
		j		
				, na manana dia kamana dia kababahahan ana na manana na mananka
	·····			
***************************************				
•••••••••••••••••••••••••••••••••••••••				
	,,			
	:			
			***************************************	
			***************************************	
······				
•				
		2	:	
				·····